Statistique Canada

Canadian Community Health Survey Cycle 2.2, Nutrition (2004)

Nutrient Intakes from Food

Provincial, Regional and National Summary Data Tables Volume 1

Revised March 31, 2008 and February 2009

Health Canada is the federal department responsible for helping the people of Canada maintain and improve their health.

We assess the safety of drugs and many consumer products, help improve the safety of food, and provide information to Canadians to help them make healthy decisions. We provide health services to First Nations people and to Inuit communities. We work with the provinces to ensure our health care system serves the needs of Canadians.

Published by authority of the Minister of Health.

Canadian Community Health Survey, Cycle 2.2, Nutrition (2004)—
Nutrient Intakes from Food
Provincial, Regional and National Summary Data Tables, Volume 1
is available on Internet at the following address:
www.hc-sc.gc.ca/fn-an/surveill/nutrition/commun/index-eng.php

Également disponible en français sous le titre :

Enquête sur la santé dans les collectivités canadiennes, cycle 2.2, Nutrition (2004)— Apports nutritionnels provenant des aliments Tableaux sommaires provinciaux, régionaux et nationaux, Volume 1

This publication can be made available on request on diskette, large print, audio-cassette and braille.

For further information or to obtain additional copies, please contact:

Publications Health Canada Ottawa, Ontario K1A 0K9

Tel.: (613) 954-5995 Fax: (613) 941-5366 E-Mail: info@hc-sc.gc.ca

© Her Majesty the Queen in Right of Canada, represented by the Minister of Health Canada, 2008

This publication may be reproduced without permission provided the source is fully acknowledged.

Cat.: H164-45/1-2008E-PDF ISBN: 978-0-662-47637-5

Acknowledgements

Health Canada would like to acknowledge and thank the individuals who have contributed to this report. This publication was produced as a joint venture between Health Canada and Statistics Canada. Technical experts from Health Canada's Food Directorate and Office of Nutrition Policy and Promotion and from Statistics Canada's Health Statistics Division wrote the report. Project guidance was provided by Health Canada's Food and Nutrition Surveillance System Working Group, which consists of individuals from Health Canada, the Public Health Agency of Canada and the Federal/Provincial/Territorial Group on Nutrition. External experts have advised both departments, through the CCHS 2.2 Users Group, on the need for a consistent approach to analyzing and reporting these data. The draft report was reviewed by internal experts from both departments and underwent external peer review.

We gratefully acknowledge the contribution to the completion of this publication by external reviewers Nancy Yu (Manitoba Health); Nathalie Plante (Institut de la statistique du Québec); Alanna Moshfegh (United States Department of Agriculture); and Susan Barr (University of British Columbia).

i

Table of Contents

	Ackr	nowledgementsi	
	List of Tables		
	List	of Appendicesxii	
	List	of Abbreviationsxiii	
	Glos	saryxiv	
I	Intro	duction1	
II		nodology: Estimation with Software for Intake Distribution nation (SIDE)5	
	II.1	Introduction5	
	II.2	SIDE6	
	II.3	Using SIDE to Produce Tables from the CCHS Share File7	
	II.4	Measuring Sampling Variability with Bootstrap Replication9	
III	Sum	mary Data Tables13	
	1.	Total energy intake (kcal/d): Usual intakes from food13	
	2.	Percentage of total energy intake from fats	
	3.	Percentage of total energy intake from protein41	
	4.	Percentage of total energy intake from carbohydrates55	
	5.	Percentage of total energy intake from saturated fats69	
	6.	Percentage of total energy intake from monounsaturated fats83	
	7.	Percentage of total energy intake from polyunsaturated fats97	
	8.	Total dietary fibre (g/d): Usual intakes from food111	
	9.	Cholesterol (mg/d): Usual intakes from food	
	10.	Vitamin A (RAE/d): Usual intakes from food	
	11.	Vitamin C (mg/d): Usual intakes from food	
	12.	Calcium (mg/d): Usual intakes from food	
	13.	Sodium (mg/d): Usual intakes from food	

List of Tables

1.		y intake (kcal/d), by DRI age–sex group, population	13
	Table 1.1	Newfoundland and Labrador, 2004	14
	Table 1.2	Prince Edward Island, 2004	15
	Table 1.3	Nova Scotia, 2004	16
	Table 1.4	New Brunswick, 2004	17
	Table 1.5	Quebec, 2004	18
	Table 1.6	Ontario, 2004	19
	Table 1.7	Manitoba, 2004	20
	Table 1.8	Saskatchewan, 2004	21
	Table 1.9	Alberta, 2004	22
	Table 1.10	British Columbia, 2004	23
	Table 1.11	Atlantic Region, 2004	24
	Table 1.12	Prairie Region, 2004	25
	Table 1.13	Canada excluding territories, 2004	26
2.		of total energy intake from fats, by DRI age–sex group, population	27
	Table 2.1	Newfoundland and Labrador, 2004	28
	Table 2.2	Prince Edward Island, 2004	29
	Table 2.3	Nova Scotia, 2004	30
	Table 2.4	New Brunswick, 2004	31
	Table 2.5	Quebec, 2004	32
	Table 2.6	Ontario, 2004	33
	Table 2.7	Manitoba, 2004	34
	Table 2.8	Saskatchewan, 2004	35
	Table 2.9	Alberta, 2004	36
	Table 2.10	British Columbia, 2004	37
	Table 2.11	Atlantic Region, 2004	38
	Table 2.12	Prairie Region, 2004	39
	Table 2.13	Canada excluding territories, 2004	40

3.		of total energy intake from protein, by DRI age–sex group, population	41
	Table 3.1	Newfoundland and Labrador, 2004	42
	Table 3.2	Prince Edward Island, 2004	43
	Table 3.3	Nova Scotia, 2004	44
	Table 3.4	New Brunswick, 2004	45
	Table 3.5	Quebec, 2004	46
	Table 3.6	Ontario, 2004	47
	Table 3.7	Manitoba, 2004	48
	Table 3.8	Saskatchewan, 2004	49
	Table 3.9	Alberta, 2004	50
	Table 3.10	British Columbia, 2004	51
	Table 3.11	Atlantic Region, 2004	52
	Table 3.12	Prairie Region, 2004.	53
	Table 3.13	Canada excluding territories, 2004	54
4.		of total energy intake from carbohydrates, by DRI age–sex sehold population	55
4.			
4.	group, hous	sehold population	56
4.	group, hous Table 4.1	Newfoundland and Labrador, 2004.	56 57
4.	Table 4.1 Table 4.2	Newfoundland and Labrador, 2004. Prince Edward Island, 2004.	56 57 58
4.	Table 4.1 Table 4.2 Table 4.3	Newfoundland and Labrador, 2004	56 57 58 59
4.	Table 4.1 Table 4.2 Table 4.3 Table 4.4	Newfoundland and Labrador, 2004	56 57 58 59 60
4.	Table 4.1 Table 4.2 Table 4.3 Table 4.4 Table 4.5	Newfoundland and Labrador, 2004	56 57 58 59 60 61
4.	Table 4.1 Table 4.2 Table 4.3 Table 4.4 Table 4.5 Table 4.6	Newfoundland and Labrador, 2004	56 57 58 59 60 61 62
4.	Table 4.1 Table 4.2 Table 4.3 Table 4.4 Table 4.5 Table 4.6 Table 4.7	Newfoundland and Labrador, 2004	56 57 58 59 60 61 62 63
4.	Table 4.1 Table 4.2 Table 4.3 Table 4.4 Table 4.5 Table 4.6 Table 4.7 Table 4.8	Newfoundland and Labrador, 2004. Prince Edward Island, 2004. Nova Scotia, 2004. New Brunswick, 2004. Quebec, 2004. Ontario, 2004. Manitoba, 2004. Saskatchewan, 2004.	56 57 58 59 60 61 62 63 64
4.	Table 4.1 Table 4.2 Table 4.3 Table 4.4 Table 4.5 Table 4.6 Table 4.7 Table 4.8 Table 4.9	Newfoundland and Labrador, 2004 Prince Edward Island, 2004 Nova Scotia, 2004 New Brunswick, 2004 Quebec, 2004 Ontario, 2004 Manitoba, 2004 Saskatchewan, 2004 Alberta, 2004	56 57 58 59 60 61 62 63 64 65
4.	Table 4.1 Table 4.2 Table 4.3 Table 4.4 Table 4.5 Table 4.6 Table 4.7 Table 4.8 Table 4.9 Table 4.10	Newfoundland and Labrador, 2004 Prince Edward Island, 2004 Nova Scotia, 2004 New Brunswick, 2004 Quebec, 2004 Ontario, 2004 Manitoba, 2004 Saskatchewan, 2004 Alberta, 2004 British Columbia, 2004	56 57 58 59 60 61 62 63 64 65 66

5.		Percentage of total energy intake from saturated fats, by DRI age-sex group, household population69		
	Table 5.1	Newfoundland and Labrador, 2004	70	
	Table 5.2	Prince Edward Island, 2004	71	
	Table 5.3	Nova Scotia, 2004	72	
	Table 5.4	New Brunswick, 2004	73	
	Table 5.5	Quebec, 2004	74	
	Table 5.6	Ontario, 2004	75	
	Table 5.7	Manitoba, 2004	76	
	Table 5.8	Saskatchewan, 2004	77	
	Table 5.9	Alberta, 2004	78	
	Table 5.10	British Columbia, 2004	79	
	Table 5.11	Atlantic Region, 2004	80	
	Table 5.12	Prairie Region, 2004	81	
	Table 5.13	Canada excluding territories, 2004	82	
6.		of total energy intake from monounsaturated fats, by DRI oup, household population	83	
	Table 6.1	Newfoundland and Labrador, 2004	84	
	Table 6.2	Prince Edward Island, 2004	85	
	Table 6.3	Nova Scotia, 2004	86	
	Table 6.4	New Brunswick, 2004	87	
	Table 6.5	Quebec, 2004	88	
	Table 6.6	Ontario, 2004	89	
	Table 6.7	Manitoba, 2004	90	
	Table 6.8	Saskatchewan, 2004	91	
	Table 6.9	Alberta, 2004	92	
	Table 6.10	British Columbia, 2004	93	
	Table 6.11	Atlantic Region, 2004	94	
	Table 6.12	Prairie Region, 2004		
	Table 6.13	Canada excluding territories, 2004	06	

7.	7. Percentage of total energy intake from polyunsaturated fats, by DRI age-sex group, household population			
	Table 7.1	Newfoundland and Labrador, 2004	98	
	Table 7.2	Prince Edward Island, 2004	99	
	Table 7.3	Nova Scotia, 2004	100	
	Table 7.4	New Brunswick, 2004	101	
	Table 7.5	Quebec, 2004	102	
	Table 7.6	Ontario, 2004	103	
	Table 7.7	Manitoba, 2004	104	
	Table 7.8	Saskatchewan, 2004	105	
	Table 7.9	Alberta, 2004	106	
	Table 7.10	British Columbia, 2004	107	
	Table 7.11	Atlantic Region, 2004	108	
	Table 7.12	Prairie Region, 2004	109	
	Table 7.13	Canada excluding territories, 2004	110	
	10.0107.10			
8.	Total dietary	γ fibre (g/d): Usual intakes from food, by DRI age–sex grou population		
8.	Total dietary	ر fibre (g/d): Usual intakes from food, by DRI age–sex grou	111	
8.	Total dietary household p	γ fibre (g/d): Usual intakes from food, by DRI age–sex grou population	111 112	
8.	Total dietary household p Table 8.1	r fibre (g/d): Usual intakes from food, by DRI age—sex groupopulation	111 112 113	
8.	Total dietary household p Table 8.1 Table 8.2	y fibre (g/d): Usual intakes from food, by DRI age–sex groupopulation Newfoundland and Labrador, 2004 Prince Edward Island, 2004	111112113114	
8.	Total dietary household p Table 8.1 Table 8.2 Table 8.3	Newfoundland and Labrador, 2004 Prince Edward Island, 2004	111112113114115	
8.	Total dietary household p Table 8.1 Table 8.2 Table 8.3 Table 8.4	Newfoundland and Labrador, 2004	111112113114115116	
8.	Table 8.1 Table 8.2 Table 8.3 Table 8.4 Table 8.5	Newfoundland and Labrador, 2004	111112113114115116117	
8.	Total dietary household p Table 8.1 Table 8.2 Table 8.3 Table 8.4 Table 8.5 Table 8.6	Newfoundland and Labrador, 2004	111112113114115116117	
8.	Total dietary household p Table 8.1 Table 8.2 Table 8.3 Table 8.4 Table 8.5 Table 8.6 Table 8.7	Newfoundland and Labrador, 2004	111112113114115116117118	
8.	Total dietary household p Table 8.1 Table 8.2 Table 8.3 Table 8.4 Table 8.5 Table 8.6 Table 8.7 Table 8.8	Newfoundland and Labrador, 2004	111112113114115116117118119	
8.	Total dietary household p Table 8.1 Table 8.2 Table 8.3 Table 8.4 Table 8.5 Table 8.6 Table 8.7 Table 8.8 Table 8.9	Newfoundland and Labrador, 2004	111 112 113 114 115 116 117 118 119 120 121	
8.	Total dietary household p Table 8.1 Table 8.2 Table 8.3 Table 8.4 Table 8.5 Table 8.6 Table 8.7 Table 8.8 Table 8.9 Table 8.10	Newfoundland and Labrador, 2004	111112113114115116117118119120121	

9.	9. Cholesterol (mg/d): Usual intakes from food, by DRI age-sex group, household populationhousehold population		
	Table 9.1	Newfoundland and Labrador, 2004	126
	Table 9.2	Prince Edward Island, 2004	127
	Table 9.3	Nova Scotia, 2004	128
	Table 9.4	New Brunswick, 2004	129
	Table 9.5	Quebec, 2004	130
	Table 9.6	Ontario, 2004	131
	Table 9.7	Manitoba, 2004	132
	Table 9.8	Saskatchewan, 2004	133
	Table 9.9	Alberta, 2004	134
	Table 9.10	British Columbia, 2004	135
	Table 9.11	Atlantic Region, 2004	136
	Table 9.12	Prairie Region, 2004	137
	Table 9.13	Canada excluding territories, 2004	138
10). Vitamin A (Canada excluding territories, 2004	
10). Vitamin A (RAE/d): Usual intakes from food, by DRI age–sex group,	139
10). Vitamin A (household	RAE/d): Usual intakes from food, by DRI age–sex group, population	139
10	D. Vitamin A (household Table 10.1	(RAE/d): Usual intakes from food, by DRI age—sex group, population	1 39 140 141
10	7. Vitamin A (household Table 10.1 Table 10.2	(RAE/d): Usual intakes from food, by DRI age—sex group, population Newfoundland and Labrador, 2004 Prince Edward Island, 2004	139 140 141 142
10	7. Vitamin A (household) Table 10.1 Table 10.2 Table 10.3	RAE/d): Usual intakes from food, by DRI age—sex group, population Newfoundland and Labrador, 2004 Prince Edward Island, 2004 Nova Scotia, 2004	149141142143
10	Table 10.1 Table 10.2 Table 10.3 Table 10.4	RAE/d): Usual intakes from food, by DRI age—sex group, population Newfoundland and Labrador, 2004 Prince Edward Island, 2004 Nova Scotia, 2004 New Brunswick, 2004	149141142143
10	Table 10.1 Table 10.2 Table 10.3 Table 10.4 Table 10.5	RAE/d): Usual intakes from food, by DRI age—sex group, population Newfoundland and Labrador, 2004 Prince Edward Island, 2004 Nova Scotia, 2004 New Brunswick, 2004 Quebec, 2004	149141142143144
10	Table 10.1 Table 10.2 Table 10.3 Table 10.4 Table 10.5 Table 10.6	RAE/d): Usual intakes from food, by DRI age—sex group, population Newfoundland and Labrador, 2004 Prince Edward Island, 2004 Nova Scotia, 2004 New Brunswick, 2004 Quebec, 2004 Ontario, 2004	140 141 142 143 144 145
10	Table 10.1 Table 10.2 Table 10.3 Table 10.4 Table 10.5 Table 10.6 Table 10.7	RAE/d): Usual intakes from food, by DRI age—sex group, population Newfoundland and Labrador, 2004 Prince Edward Island, 2004 Nova Scotia, 2004 New Brunswick, 2004 Quebec, 2004 Ontario, 2004 Manitoba, 2004	140141142143144145146
10	Table 10.1 Table 10.2 Table 10.3 Table 10.4 Table 10.5 Table 10.6 Table 10.7 Table 10.8	RAE/d): Usual intakes from food, by DRI age—sex group, population Newfoundland and Labrador, 2004 Prince Edward Island, 2004 Nova Scotia, 2004 New Brunswick, 2004 Quebec, 2004 Ontario, 2004 Manitoba, 2004 Saskatchewan, 2004 Alberta, 2004	149141142143145146147
10	Table 10.1 Table 10.2 Table 10.3 Table 10.4 Table 10.5 Table 10.6 Table 10.7 Table 10.8 Table 10.9	RAE/d): Usual intakes from food, by DRI age—sex group, population Newfoundland and Labrador, 2004 Prince Edward Island, 2004 Nova Scotia, 2004 New Brunswick, 2004 Quebec, 2004 Ontario, 2004 Manitoba, 2004 Saskatchewan, 2004 Alberta, 2004 British Columbia, 2004	139140141142143145146147148
10	Table 10.1 Table 10.2 Table 10.3 Table 10.4 Table 10.5 Table 10.6 Table 10.7 Table 10.8 Table 10.9 Table 10.10	RAE/d): Usual intakes from food, by DRI age—sex group, population Newfoundland and Labrador, 2004 Prince Edward Island, 2004 Nova Scotia, 2004 New Brunswick, 2004 Quebec, 2004 Ontario, 2004 Manitoba, 2004 Saskatchewan, 2004 Alberta, 2004 British Columbia, 2004 Atlantic Region, 2004	139140141142143145146147148149

	/d): Usual intakes from food, by DRI age–sex group, pulation	153
Table 11.1	Newfoundland and Labrador, 2004	154
Table 11.2	Prince Edward Island, 2004	155
Table 11.3	Nova Scotia, 2004	156
Table 11.4	New Brunswick, 2004	157
Table 11.5	Quebec, 2004	158
Table 11.6	Ontario, 2004	159
Table 11.7	Manitoba, 2004	160
Table 11.8	Saskatchewan, 2004	161
Table 11.9	Alberta, 2004	162
Table 11.10	British Columbia, 2004	163
Table 11.11	Atlantic Region, 2004	164
Table 11.12	Prairie Region, 2004	165
		4.66
Table 11.13	Canada excluding territories, 2004	166
12. Calcium (mg/d	Canada excluding territories, 2004 I): Usual intakes from food, by DRI age-sex group, pulation	
12. Calcium (mg/d	l): Usual intakes from food, by DRI age–sex group,	167
12. Calcium (mg/d household po	l): Usual intakes from food, by DRI age–sex group, pulation	167 168
12. Calcium (mg/d household po Table 12.1	l): Usual intakes from food, by DRI age—sex group, pulation Newfoundland and Labrador, 2004	167 168 169
12. Calcium (mg/d household po Table 12.1 Table 12.2	Newfoundland and Labrador, 2004	167 168 169 170
12. Calcium (mg/d household po Table 12.1 Table 12.2 Table 12.3	Newfoundland and Labrador, 2004	167 168 169 170 171
12. Calcium (mg/d household po Table 12.1 Table 12.2 Table 12.3 Table 12.4	Newfoundland and Labrador, 2004 Prince Edward Island, 2004 Nova Scotia, 2004 New Brunswick, 2004	167168169170171
12. Calcium (mg/d household po Table 12.1 Table 12.2 Table 12.3 Table 12.4 Table 12.5	Newfoundland and Labrador, 2004 Prince Edward Island, 2004 Nova Scotia, 2004 New Brunswick, 2004 Quebec, 2004	167168169170171172
Table 12.3 Table 12.4 Table 12.5 Table 12.6	Newfoundland and Labrador, 2004 Prince Edward Island, 2004 Nova Scotia, 2004 New Brunswick, 2004 Quebec, 2004 Ontario, 2004	167168170171172173
Table 12.1 Table 12.2 Table 12.3 Table 12.4 Table 12.5 Table 12.6 Table 12.7	Newfoundland and Labrador, 2004 Prince Edward Island, 2004 Nova Scotia, 2004 New Brunswick, 2004 Quebec, 2004 Ontario, 2004 Manitoba, 2004	167168170171172173174
Table 12.1 Table 12.2 Table 12.3 Table 12.4 Table 12.5 Table 12.6 Table 12.7 Table 12.8	Newfoundland and Labrador, 2004 Prince Edward Island, 2004 Nova Scotia, 2004 New Brunswick, 2004 Quebec, 2004 Ontario, 2004 Manitoba, 2004 Saskatchewan, 2004	167168170171172173174175
Table 12.1 Table 12.2 Table 12.3 Table 12.4 Table 12.5 Table 12.6 Table 12.7 Table 12.8 Table 12.9	I): Usual intakes from food, by DRI age—sex group, pulation Newfoundland and Labrador, 2004 Prince Edward Island, 2004 Nova Scotia, 2004 New Brunswick, 2004 Quebec, 2004 Ontario, 2004 Manitoba, 2004 Saskatchewan, 2004 Alberta, 2004	167168170171172173174175176
Table 12.1 Table 12.2 Table 12.3 Table 12.4 Table 12.5 Table 12.6 Table 12.7 Table 12.8 Table 12.9 Table 12.10	Newfoundland and Labrador, 2004 Prince Edward Island, 2004 Nova Scotia, 2004 New Brunswick, 2004 Quebec, 2004 Ontario, 2004 Manitoba, 2004 Saskatchewan, 2004 Alberta, 2004 British Columbia, 2004	167168170171172174175176177

13.	13. Sodium (mg/d): Usual intakes from food, by DRI age-sex group,		
	nousenoia popu	llation	181
	Table 13.1	Newfoundland and Labrador, 2004	182
	Table 13.2	Prince Edward Island, 2004	183
	Table 13.3	Nova Scotia, 2004	184
	Table 13.4	New Brunswick, 2004	185
	Table 13.5	Quebec, 2004	186
	Table 13.6	Ontario, 2004	187
	Table 13.7	Manitoba, 2004	188
	Table 13.8	Saskatchewan, 2004	189
	Table 13.9	Alberta, 2004	190
	Table 13.10	British Columbia, 2004	191
	Table 13.11	Atlantic Region, 2004	192
	Table 13.12	Prairie Region, 2004	193
	Table 13.13	Canada excluding territories, 2004	194

List of Appendices

Appendix A:	Table Footnotes	.195
Appendix B:	Interpretation of Sodium Results	.199
Appendix C:	References	.201
Appendix D:	Note on Changes to Volume 1	.203

List of Abbreviations

Abbreviation	Meaning
AI	Adequate Intake
AMDR	Acceptable Macronutrient Distribution Range
CCHS	Canadian Community Health Survey
CV	coefficient of variation
d	day
DRI	Dietary Reference Intake
EAR	Estimated Average Requirement
g	gram
kcal	kilocalories
mg	milligram
n	sample size
RAE	Retinol Activity Equivalent
SE	standard error
SIDE	Software for Intake Distribution Estimation
UL	Tolerable Upper Intake Level

Glossary

A complete glossary of terms appears in *Canadian Community Health Survey, Cycle 2.2, Nutrition* (2004)—*A Guide to Accessing and Interpreting the Data* starting on page xiii. Additional technical terms found in the Methodology section of the present document (Section II) are described below.

BOOTVAR

A program available in SAS or SPSS, which was developed by Statistics Canada, that uses the bootstrap method to estimate variance from complex survey sampling designs.

Centered Fourth Moment

The Kurtosis statistic that measures the heaviness or thickness of the tails of a distribution. Observations that are normally distributed should have a Kurtosis near three.

LINFRAC

SIDE option that specifies the proportion of data points to treat as linear at the tails of the distribution when attempting a semi-parametric transformation to normality (Default = 0.0 or two points).

MAXJP

SIDE option that specifies the maximum number of join points allowed when fitting a grafted polynomial function to a normal probability plot (Default = 12).

PEVCR

SIDE dataset that instructs SIDE to force the within-individual variance and centered fourth moment to the specified amount.

NPEVCR

SIDE dataset (used with PEVCR) that contains the relative weight that SIDE should use to determine when to force the variance from PEVCR (name = 9999 instructs SIDE to give full weight to PEVCR and not to attempt to calculate the within-individual variance).

I Introduction

This publication provides summary data tables about the nutrient intakes from food obtained by Canadians in 2004, using data from the Canadian Community Health Survey (CCHS), Cycle 2.2, Nutrition (2004). Data are provided for 14 Dietary Reference Intake (DRI) age—sex groups. For nutrients that have DRIs, the tables also compare usual intakes of selected nutrients to the DRIs. Data used for producing the tables in this report were obtained from the CCHS 2.2 Share File. The nutrient intakes represent food consumption; data on nutrient intakes from vitamin and mineral supplements were still being validated at the time these tables were compiled.¹

This document is a reference for those who will use the CCHS Cycle 2.2 data and its findings to guide nutrition-related program and policy decisions. It will be of particular benefit to provincial ministries of health, researchers and graduate students, policy makers and analysts, public health professionals, epidemiologists, dietitians, the food industry, and the health media.

This report is the third in a series of products released by Health Canada as part of its ongoing support to users of the CCHS 2.2 data. It has been undertaken as a joint venture with Statistics Canada. To optimize its usage, we recommend that it be read in concert with the first report, Canadian Community Health Survey, Cycle 2.2, Nutrition (2004)—A Guide to Accessing and Interpreting the Data (available at www.hc-sc.gc.ca/fn-an/surveill/nutrition/commun/cchs_focus-volet_escc-eng.php), published by Health Canada in 2006. That report includes an overview of the CCHS 2.2, including a description of the survey sample, how the survey was conducted, survey components and an introduction to DRIs.

Nutrient Intakes from Food Provincial, Regional and National Summary Data Tables, Volume 1

supplements.

¹ Because supplements may make meaningful contributions to nutrient intakes, inferences about the prevalence of nutrient excess or inadequacy based on intakes from food alone may respectively underestimate or overestimate the prevalences based on total nutrient intakes from both food and

This document consists primarily of data tables. Section II describes the methodology used to produce the tables, including the process used and the means of addressing problems encountered. The report does not provide any interpretation or draw conclusions. Readers are encouraged to consult Canadian Community Health Survey, Cycle 2.2, Nutrition (2004)—A Guide to Accessing and Interpreting the Data for examples of how to interpret the CCHS 2.2 data.

This document is Volume 1 of what is expected to be a three-volume set of summary tables comparing the usual intake of 30 nutrients and other dietary components to the DRIs. The 13 sets of tables created for Volume 1 are based on the core nutrients that must be listed on the Nutrition Facts table; they include energy, 6 nutrients presented as percent of total energy intake and 6 as absolute amounts. Results are presented for 13 geographical areas: the 10 provinces, the Atlantic Region, the Prairie Region, and Canada excluding the territories. Data from the four Atlantic provinces and the three Prairie provinces were combined into the Atlantic Region and the Prairie Region, respectively, given the small sample sizes in these provinces.

Volumes 2 and 3 will present data tables related to the remaining nutrients, two as percent of energy intake (linoleic acid, linolenic acid) and the remainder in absolute amounts. The latter include the vitamins folate (Dietary Folate Equivalents, folic acid, naturally occuring folate and total folacin), niacin, riboflavin, thiamin, and vitamins A, B6, B12 and D; the minerals iron, magnesium, phosphorus, potassium and zinc; the macronutrients linoleic acid, linolenic acid, monounsaturated fats, polyunsaturated fats, saturated fats, total fat, protein, carbohydrates and sugar; and the other dietary components water and caffeine. Recognizing that smoking status affects vitamin C requirements, additional tables will be provided on the intake of vitamin C by smoking status.

² There are two exceptions. Because iron needs the full probability method for the EAR comparisons, it will be included in a subsequent Summary Data Tables volume. (**Note**: Explanation of the full probability method can be found in *Canadian Community Health Survey, Cycle 2.2, Nutrition* (2004)— *A Guide to Accessing and Interpreting the Data*.) Trans fat intake data cannot be obtained from the CCHS 2.2 dataset and therefore are not reported.

Work is underway to complete the data tables for the remaining nutrients. The table below provides a tentative outline of which components are intended to be included in Volume 2 and Volume 3.

Tentative Release Schedule for Remaining Data Tables	
Volume 2	Volume 3
Dietary Folate Equivalents	Caffeine
Folic acid	Carbohydrates
Iron	Linolenic acid (g, % energy)
Linoleic acid (g, % energy)	Moisture (water)
Magnesium	Monounsaturated fats
Niacin	Naturally occuring folate
Phosphorus	Polyunsaturated fats
Potassium	Protein
Riboflavin	Saturated fats
Thiamin	Sugar
Vitamin B6	Total fats
Vitamin B12	Total folacin
Vitamin C intake by smoking status*	
Vitamin D	
Zinc	

^{*} For domains with adequate sample

II Methodology: Estimation with Software for Intake Distribution Estimation (SIDE)

II.1 Introduction

One of the goals of the Canadian Community Health Survey (CCHS), Cycle 2.2, Nutrition (2004) is to estimate distributions of usual intake from food for several nutrients at the provincial level for 15 Dietary Reference Intake (DRI) age—sex groups. To accomplish this, recalls of what respondents ate in the 24 hours preceding the interview were collected; a second recall was obtained from a representative subsample of the group. Using data from only the first dietary recall produces a measure of daily intake, while data from both the first and second recalls can be used to produce an estimate of usual intake.

The *daily intake* of an individual is the quantity of nutrients or food eaten in one day, whereas an individual's *usual intake* is the long-term average of the daily intake. Similarly, for a population, daily intake data reflect intakes of a large number of people on a given day. To obtain an estimate of a population's *usual intake* distribution from daily intake data, one must fit a measurement error model. The Software for Intake Distribution Estimation (SIDE) is a program that is able to do this.

In general, it is more informative to study the usual intake distribution of a population than its daily intake distribution. For example, knowing the fraction of the population with low intakes of a particular nutrient over a long period of time is more important than knowing the fraction of the population with low intakes of a particular nutrient on a given day. It is important to note that SIDE does not compute whether a single respondent does or does not have low (or high) intakes over the long or short term, but rather computes only the proportion of the population as a whole. The variability in intakes among a group on a given day reflects both variability in intake *within* specific individuals (who may have eaten more or less than usual on that day) as well as *between* different individuals (who habitually have higher or lower intakes). One of the main reasons that SIDE is used as a measurement

error model is to reduce the effect of the within-individual variance while measuring the between-individual variance.

It is not necessary to use SIDE to calculate estimates that have no link to the usual intake distribution. For example, to study daily intake distributions, one can simply use any preferred statistical software. Practically, this means SIDE is only needed for analyses requiring both the first and second recalls.

Three main types of estimates can be obtained from studying usual intake distributions (listed from the simplest to the most complex):

- 1. the usual intake mean;
- 2. the percentage of the population having a usual intake under (or over) a given threshold (cut-off); and
- 3. a percentile of the distribution.

Under the fitted measurement error model, the mean of the usual intakes is equal to the mean of the daily intakes. Consequently, it is not necessary to use SIDE (i.e. adjust the model) to obtain this type of estimate. For the estimate of the mean, a standard technique is used. However, SIDE is needed for estimating a percentage or a percentile of a usual intake distribution.

II.2 SIDE

SIDE uses the method described by Nusser et al. (1996).³ As indicated in Section II.1, this method is based on a measurement error model that makes the link between daily intake measurements and estimates of usual intake distributions. The methodology of the software is divided into four steps:

- 1. preliminary adjustments;
- 2. a semi-parametric transformation to normality;
- 3. estimation of the within-individual and between-individual variances of the daily intake, which is needed to estimate the usual intake distribution in the normal scale; and

³ Nusser SM, Carriquiry AL, Dodd KW, Fuller WA: A semiparametric transformation approach to estimating usual daily intake distributions. *J Am Stat Assoc* 1996; 91: 1440–1449

4. a transformation of the usual intake distribution from the normal scale to the original scale.

Statistics Canada recommends the use of SIDE to estimate usual intake distribution characteristics from the CCHS Cycle 2.2 data. This software is complex, complete and precise for this kind of estimation. The version of SIDE used was Version 1.11, written in the SAS/IML language.

The use of SIDE is laborious, especially when confidence intervals of the studied characteristics are needed.

- Statistics Canada documentation (available at www.statcan.ca/english/sdds/document/5049_D22_T9_V1_E.pdf) and the SIDE user guide explain the process for using the software.
- The official SIDE user guide can be obtained from the Department of Statistics and Center for Agricultural and Rural Development, Iowa State University. The guide for the SAS/IML version of SIDE can be found at: www.card.iastate.edu/publications/DBS/PDFFiles/96tr30.pdf.
- For more information on the mathematics behind the software, consult the technical guide at: www.card.iastate.edu/publications/DBS/PDFFiles/96tr32.pdf.

II.3 Using SIDE to Produce Tables from the CCHS Share File

The dataset used in this compendium was the CCHS 2.2 Share File, which consists of all respondents who agreed to share their responses with Health Canada, provincial ministries of health and l'Institut de la Statistique du Quebec. Fewer than 5% of respondents refused to share their responses. Excluded from the dataset were respondents with null intakes (zero total intake from food) or invalid intakes, breastfed children and pregnant or breastfeeding women. Day one and day two recalls were used, although respondents with day two recalls who did not have a corresponding day one recall were excluded. Analysis was performed on provincial, regional (Atlantic and Prairies) and national levels for all DRI age—sex groups other

than children aged between 0 and 1 year. Analysis was also performed on the aggregated age—sex groups: males 19+ years and females 19+ years.

SIDE is a generalized software product that offers the option of specifying certain restraints or implementing options different than the default. The following settings were used in the production of this compendium:⁴

CLASSVAR

CLASSVAR specifies the list of variables to ratio-adjust the analysis variables for the effects of classification variables. Because the variables included in this dataset must not reduce the estimate of the between-individual variance, only day of the week (ADMDDD) was used in the CLASSVAR dataset.

NPTS

This option controls the number of percentiles to output. If NPTS is fixed at 9999, the software will output all percentiles from 0.0001 to 0.9999 (0.0001, 0.0002, ..., 0.9998, 0.9999). By default NPTS is equal to 41, but NPTS = 1000 was used sometimes to obtain better graphical assessments of the model.

DESC

The DESC dataset includes the LINFRAC and MAXJP options which are useful for solving some problems with the model fitting. When SIDE attempts a semi-parametric transformation to normality, LINFRAC specifies the proportion of data points to treat as linear at the tails of the distribution. By default, LINFRAC uses two points in each tail: the highest two points and the lowest two points. For the tables in this compendium, LINFRAC was set to 1% of the data points then adjusted if needed to a value between 0 and 5%. Adjustments were made based on SIDE's ability to produce normality with its transformation. Occasionally the nature of the data required a different value of LINFRAC to satisfy normality of the transformation. Similarly, MAXJP specifies the maximum number of join points allowed when fitting a

P=2&CORID=5049

⁴ The document *Software for Intake Distribution (SIDE) Non-default Model Options* presents all of the non-default model options that were used for each summary data table. Available from the Statistics Canada website at: http://cansim2.statcan.ca/cgi-win/cnsmcgi.exe?LANG=e&ResultTemplate=OLC&CORCMD=GETEXT&CORTYP=1&CORRELTY

grafted polynomial function to a normal probability plot. The default value for MAXJP is 12 but occasionally the nature of the data required an adjustment to get an acceptable semi-parametric transformation.

PEVCR and NPEVCR

These datasets enable the user to force values of the measurement error variance (within-individual variance) and the centered fourth moment for the procedure. Forcing the within-individual variance is sometimes required when SIDE is unable to produce an estimate because it calculates a negative value for the variance of usual intake (Warning 65). In these cases the within-individual variance and centered fourth moment of a higher level domain (regional or national level) must be used to allow SIDE to produce a valid estimate. When forcing the variance it is assumed that the within-individual variance at the higher level domain is similar to that of the lower level domain.

WTVAR

The WTVAR dataset assigns the weights to be used for each record. Each respondent in the CCHS 2.2 Share File dataset has an assigned weight representing the Canadian population. For the tables the sampling weight called WTSD_S was used. For bootstrap estimation of the variance the bootstrap weights BSW1–BSW500 were used.

II.4 Measuring Sampling Variability with Bootstrap Replication

For surveys with simple sampling designs (e.g. simple random sampling or stratified sampling), mathematical formulas exist to estimate the sampling variance. The CCHS 2.2 has a complex design, implying that no mathematical formula exists to calculate the sampling variability. It is necessary to use a replication method to estimate this variance, and the most convenient method is bootstrap replication. BOOTVAR is a program available in SAS or SPSS, developed by Statistics Canada, that uses the bootstrap method to estimate variance from complex survey sampling designs.

For simple estimates such as totals, ratios or regression parameters, it is possible to estimate the sampling variability by using BOOTVAR directly with the bootstrap weights. To obtain this estimate, the macro calculates the parameter of interest (e.g. total, ratio) for each of the 500 replicates and then calculates the variance between the 500 values. This is the method used to estimate the nutrient intake average using day one recalls only. For estimates related to distributions of usual intake, this process must be imitated when estimating with SIDE. Thus, it is necessary to estimate the parameters of interest with SIDE for each replicate (using each bootstrap weight) and then calculate the variance between each of the 500 estimates. It is important to note that for distribution estimates other than the mean, the method used for calculating the variance among the 500 SIDE estimates is slightly different than that used by BOOTVAR.

When BOOTVAR calculates the variance of the 500 replicates it compares each estimate to the mean of the 500 bootstraps (the bootstrap mean). But we also have the root estimate (the estimate calculated using the design weights) from the data. Under normal circumstances, because the number of replicates is large (500) the bootstrap mean will converge to the root estimate. However, since SIDE may fail for some of the 500 replicates, we cannot be certain that all 500 distribution estimates will be available to calculate the mean of the bootstrap estimates. For this reason, when calculating the variance from the bootstrap estimates we compare each replicate to the root estimate, not to the mean of the bootstrap estimates. This allows us to account for some of the bias caused by failing replicates.

For a description of the BOOTVAR programs consult the documentation located at: www.statcan.ca/english/rdc/whatdata.htm#tools.

Because SIDE requires steps including adjustments, transformations to normality and estimates of within-individual and between-individual variance, it is not always possible to produce 500 error-free replicates when using bootstrap replication to estimate sampling variability. For each domain studied, decisions had to be made as to whether the estimates produced by

SIDE were acceptable. Often, changing the default values such as LINFRAC and MAXJP produced more reliable results. Since SIDE stops processing when it calculates a negative value for the variance of usual intake (Warning 65) it is possible that some or many of the 500 replicates fail. When some replicates fail, accepting the estimate of sampling variability means accepting a certain level of bias. In general, a small number of failing replicates represents a small bias, while a large number of failing replicates represents a large bias. It should be noted that point estimates and bootstrap estimates are produced using the same SIDE options.

When using bootstrap replication to estimate the sampling variability, it is important to ensure that the estimate converges to a value over the 500 replicates. Ideally, 1000 or more bootstrap replicates would be used to ensure that the estimate converges to a value. However, by convention and due to processing time, 500 replicates are considered sufficient.

Considering the convergence of the bootstrap estimate of sampling variability and the number of failing replicates due to SIDE errors, we adopted the following general guidelines to decide when a bootstrap estimate may be accepted:

- 1. If the bootstrap estimate does not converge to a value then the estimate is not accepted.
- 2. If the number of failed replicates is 100 or less then the level of convergence must be medium to strong, otherwise the estimate is not accepted.
- 3. If the number of failed replicates is 100 to 150 then the level of convergence must be strong, otherwise the estimate is not accepted.
- 4. If the number of failed replicates is 150 to 200 then the level of convergence must be strong to very strong, otherwise the estimate is not accepted.
- 5. If the number of failed replicates is greater than 200 then the estimate is not accepted regardless of the strength of convergence.

The thresholds listed above are overlapping because each decision is made separately in a subjective manner, based on a visual interpretation of the plot

of variance estimate over the 500 replicates. The assessment of whether a particular plot represents a very strong, strong or medium convergence is at the discretion of the analyst. The plot of a very strong convergence will show a wave that decreases its width as the number of replicates increases. The tail end of a very strong convergence plot should resemble a straight line of slope 0. Conversely, a weaker convergence plot may show a wave that has one or many spikes and valleys with no tendency of approaching a slope of 0 at the tail.

One has to balance the risk of accepting bias with the ability of the bootstrap method to estimate the sampling variability. For cases in which the estimate is not accepted, the SIDE option of forcing the within-individual variance is used. The within-individual variance and centered fourth moment of the next highest geographical domain are used, whether it is at the regional or national level. For cases in which the regional level variance also fails to produce an acceptable estimate, forcing the variance from the national level is used. When using the bootstrap method it is important to note that the centered fourth moment and the within-individual variance are forced for each of the 500 replicates using the values obtained with the initial estimate.

In some cases, one or possibly two replicates are too influential in the bootstrapping method. When these one or two influential replicates cause a bootstrap estimate not to converge, and when the exclusion of these one or two replicates allows the bootstrap estimate to converge, it is an option to exclude them from the bootstrap estimate.

III Summary Data Tables

1. Total energy intake (kcal/d): Usual intakes from food

Table 1.1 Total energy intake (kcal/d): Usual intakes from food, by DRI age-sex group, household population, Newfoundland and Labrador, 2004¹

						Percentiles (and SE) of usual intake											
		n	Mean	(SE)	5th (<i>SE</i>)	10th (<i>SE</i>)	25th (SE)	50th (<i>SE</i>)	75th (<i>SE</i>)	90th (<i>SE</i>)	95th (SE)						
Sex	Age (years)																
Both																	
	1-3	79	1585	(92)	1236 (146)	1301 (135)	1414 (120)	1549 (120)	1694 (144)	1832 (180)	1917 (206)						
	4-8	127	2137	(103)	1602 (207)	1715 (190)	1918 (163)	2171 (145)	2452 (165)	2730 (227)	2912 (275)						
Male																	
	9-13	111	2652	(152)	1927 (206)	2041 (191)	2252 (173)	2539 (174)	2912 (230)	3322 (345)	3596 (433)						
	14-18	107	2831	(166)	1967 (264)	2133 (244)	2445 (216)	2870 (204)	3407 (256)	3994 (379)	4386 (480)						
	19-30	77	2569	(142)	1760 (188)	1936 (181)	2242 (179)	2600 (184)	2975 (196)	3326 (224)	3543 (246)						
	31-50	145	2578	(176)	1678 (245)	1850 (221)	2173 (186)	2580 (186)	2966 (224)	3330 (297)	3624 (382)						
	51-70	182	2056	(97)	1200 (287) ^E	1350 (248) ^E	1630 (175)	1965 (119)	2340 (161)	2735 (281)	2993 (372)						
	>70	63	2119	(102)	1544 (293) ^E	1712 (237)	1981 (168)	2247 (148)	2529 (184)	2841 (279)	3046 <i>(358)</i>						
	19+	467	2380	(86)	1608 (115)	1768 (106)	2045 (95)	2386 (96)	2762 (118)	3128 (156)	3369 (191)						
Female																	
	9-13	96	2057	(73)	1428 (126)	1552 (119)	1781 (107)	2073 (99)	2409 (114)	2755 (156)	2983 (195)						
	14-18	105	2144	(163)	1302 (213)	1422 (218)	1687 (215)	2090 (214)	2571 (260)	3097 (373)	3465 (474)						
	19-30	91	1839	(126)	1301 (240) ^E	1398 (209)	1563 (166)	1772 (139)	2030 (184)	2292 (289)	2451 (361)						
	31-50	167	1656	(85)	1000 (132)	1135 (129)	1368 (112)	1630 (104)	1933 (141)	2255 (181)	2454 (213)						
	51-70	198	1558	(74)	999 (128)	1119 (111)	1325 (88)	1567 (80)	1828 (107)	2089 (158)	2259 (197)						
	>70	74	1693	(144)	1021 (251) ^E	1136 (229) ^E	1360 (184)	1653 (152)	1975 (185)	2266 (253)	2433 (295)						
	19+	530	1663	(50)	1003 (63)	1137 (58)	1368 (53)	1647 (57)	1964 (73)	2279 (93)	2476 (106)						

Symbol Legend

Footnote

^E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.

<3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>

F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

Table 1.2 Total energy intake (kcal/d): Usual intakes from food, by DRI age-sex group, household population, Prince Edward Island, 2004¹

							Percen	ntiles (and SE) of usu	al intake		
		n	Mean	(SE)	5th (<i>SE</i>)	10th (<i>SE</i>)	25th (SE)	50th (<i>SE</i>)	75th (<i>SE</i>)	90th (<i>SE</i>)	95th (SE)
Sex	Age (years)					·					
Both											
	1-3	58	1490	(93)	1163 (121)	1232 (115)	1354 (109)	1499 (111)	1654 (124)	1803 (148)	1896 (168)
	4-8	110	1842	(75)	1476 (147)	1556 (131)	1693 (101)	1847 (87)	2003 (111)	2145 (141)	2230 (164)
Male											
	9-13	95	2268	(113)	1806 (214)	1906 (198)	2078 (175)	2280 (161)	2496 (169)	2709 (201)	2845 (232)
	14-18	87	2734	(171)	1765 (297) ^E	1986 (270)	2381 (229)	2858 (223)	3373 (283)	3866 (387)	4176 (470)
	19-30	70	3029	(231)	1967 (336) ^E	2210 (308)	2653 (270)	3180 (274)	3761 <i>(354)</i>	4341 (477)	4699 (559)
	31-50	109	2364	(114)	1510 (154)	1665 (141)	1956 (127)	2337 (142)	2789 (193)	3264 (267)	3583 (325)
	51-70	128	2131	(76)	1538 (205)	1685 (181)	1943 (145)	2221 (117)	2473 (111)	2695 (132)	2839 (161)
	>70	65	1728	(72)	1111 (129)	1216 (120)	1413 (104)	1670 (97)	1973 (122)	2293 (178)	2508 (224)
	19+	372	2371	(73)	1467 (95)	1629 (92)	1954 (88)	2381 (93)	2845 (120)	3359 (174)	3733 (222)
Female											
	9-13	75	1959	(122)	1332 (230) ^E	1463 (217)	1706 (197)	2015 (193)	2371 (235)	2735 (312)	2976 (373)
	14-18	81	1990	(106)	1258 (193)	1422 (171)	1701 (142)	2020 (128)	2349 (144)	2652 (181)	2838 (212)
	19-30	101	1967	(96)	1429 (170)	1572 (153)	1822 (134)	2119 (137)	2432 (168)	2727 (218)	2911 (256)
	31-50	116	1748	(77)	1148 (119)	1273 (112)	1498 (104)	1765 (99)	2034 (104)	2266 (118)	2397 (130)
	51-70	146	1647	(49)	1115 (111)	1224 (99)	1418 (76)	1651 (64)	1903 (82)	2145 (116)	2297 (142)
	>70	94	1406	(91)	874 (124)	965 (114)	1136 (99)	1358 (95)	1616 (118)	1885 (166)	2065 (206)
	19+	457	1717	(40)	1139 (58)	1262 (54)	1484 (53)	1753 (56)	2036 (67)	2295 (79)	2450 (88)

Symbol Legend

Footnote

^E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.

<3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>

F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

Table 1.3 Total energy intake (kcal/d): Usual intakes from food, by DRI age-sex group, household population, Nova Scotia, 2004¹

					Percentiles (and SE) of usual intake													
		n	Mean	(SE)	5th	(SE)	10tł	(SE)	25th	(SE)	50tl	n (<i>SE</i>)	75tl	n (SE)	90tl	n (SE)	95th	(<i>SE</i>)
Sex	Age (years)										•		·					
Both																		
	1-3	112	1459	(51)	1083	(130)	1153	(115)	1280	(90)	1440	(69)	1621	(83)	1805	(123)	1925	(157)
	4-8	177	1883	(72)	1303	$(219)^{E}$	1431	(186)	1652	(134)	1906	(94)	2167	(135)	2407	(225)	2553	(292)
Male																		
	9-13	111	2449	(110)	1700	(282)	1840	(243)	2099	(175)	2423	(141)	2772	(207)	3094	(314)	3286	(383)
	14-18	113	2656	(192)	1720	$(300)^{E}$	1865	(298)	2171	(284)	2581	(284)	3046	(323)	3507	(407)	3818	(482)
	19-30	91	2782	(181)	1688	$(360)^{E}$	1897	$(321)^{E}$	2254	(260)	2670	(217)	3124	(244)	3588	(345)	3897	(434)
	31-50	101	2663	(122)	1872	(212)	2031	(192)	2312	(168)	2650	(162)	3016	(186)	3369	(239)	3591	(291)
	51-70	134	2208	(97)	1584	(153)	1697	(141)	1921	(121)	2198	(120)	2494	(149)	2786	(209)	2974	(257)
	>70	56	1815	(106)	1208	(129)	1324	(138)	1532	(142)	1785	(126)	2061	(135)	2331	(167)	2503	(187)
	19+	382	2469	(70)	1534	(114)	1713	(99)	2028	(87)	2405	(88)	2826	(105)	3259	(140)	3549	(174)
Female																		
	9-13	105	2020	(109)	1482	(117)	1592	(111)	1777	(113)	2009	(124)	2287	(149)	2575	(185)	2760	(204)
	14-18	120	1932	(156)	1110	$(229)^{E}$	1269	$(218)^E$	1555	(193)	1904	(171)	2287	(174)	2659	(220)	2894	(270)
	19-30	91	2040	(121)	1474	(194)	1592	(177)	1806	(154)	2069	(142)	2361	(168)	2649	(244)	2835	(315)
	31-50	159	1924	(110)	1135	(105)	1315	(111)	1618	(121)	1958	(134)	2303	(147)	2617	(159)	2805	(170)
	51-70	174	1694	(91)	1080	(80)	1203	(81)	1412	(85)	1654	(94)	1913	(110)	2168	(126)	2332	(136)
	>70	80	1586	(105)	1116	(173)	1214	(162)	1401	(150)	1658	(155)	1928	(178)	2149	(191)	2296	(211)
	19+	504	1834	(59)	1105	(77)	1259	(74)	1518	(70)	1845	(77)	2220	(97)	2556	(110)	2770	(127)

Symbol Legend

Footnote

^E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.

<3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>

F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

Table 1.4 Total energy intake (kcal/d): Usual intakes from food, by DRI age-sex group, household population, New Brunswick, 2004¹

										Percei	ntiles (and	SE) of usu	ual intake					
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50tl	n (SE)	75th	(SE)	90tl	n (SE)	95th	n (SE)
Sex	Age (years)										·							
Both																		
	1-3	99	1554	(57)	1245	(114)	1313	(104)	1433	(90)	1575	(79)	1722	(82)	1855	(99)	1932	(115)
	4-8	140	2021	(82)	1733	(149)	1799	(128)	1913	(98)	2046	(86)	2185	(113)	2316	(163)	2398	(200)
Male																		
	9-13	92	2495	(182)	1614	$(274)^{E}$	1781	(252)	2065	(235)	2435	(229)	2865	(240)	3259	(267)	3503	(295)
	14-18	107	3024	(173)	1981	(229)	2185	(221)	2566	(211)	3087	(215)	3749	(266)	4441	(358)	4869	(419)
	19-30	73	3029	(251)	1907	(231)	2115	(225)	2518	(232)	3060	(284)	3727	(401)	4458	(571)	4964	(712)
	31-50	134	2546	(146)	1799	(237)	1915	(216)	2141	(185)	2441	(164)	2778	(188)	3099	(261)	3301	(332)
	51-70	131	2208	(98)	1765	(190)	1853	(168)	2007	(134)	2191	(117)	2391	(144)	2584	(209)	2707	(262)
	>70	55	2071	(144)	1250	(171)	1388	(169)	1649	(173)	1992	(188)	2400	(209)	2831	(244)	3123	(289)
	19+	393	2505	(81)	1554	(100)	1719	(97)	2032	(96)	2459	(99)	2983	(122)	3545	(173)	3930	(220)
Female																		
	9-13	79	2064	(125)	1630	(218)	1741	(204)	1928	(181)	2132	(165)	2353	(190)	2593	(257)	2759	(314)
	14-18	104	1912	(82)	1486	(181)	1588	(150)	1755	(111)	1940	(99)	2134	(133)	2325	(195)	2450	(243)
	19-30	101	1754	(112)	1095	$(219)^E$	1251	$(208)^E$	1528	(183)	1845	(152)	2180	(130)	2521	(138)	2747	(163)
	31-50	143	1666	(77)	1145	(148)	1252	(124)	1434	(93)	1645	(90)	1870	(124)	2093	(178)	2237	(221)
	51-70	193	1582	(51)	1087	(152)	1177	(132)	1337	(98)	1529	(73)	1736	(85)	1935	(128)	2060	(161)
	>70	94	1422	(67)	935	(122)	1005	(114)	1136	(100)	1305	(93)	1501	(110)	1705	(156)	1842	(196)
	19+	531	1626	(42)	1051	(74)	1167	(66)	1371	(55)	1616	(51)	1873	(59)	2116	(76)	2272	(91)

Symbol Legend

Footnote

^E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.

<3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>

F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

Table 1.5 Total energy intake (kcal/d): Usual intakes from food, by DRI age-sex group, household population, Quebec, 2004¹

										Perce	entiles (and	SE) of us	ual intake					
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50tl	h (SE)	75th	(SE)	90tl	n (SE)	95tl	h (SE)
Sex	Age (years)										•	•					·	
Both																		
	1-3	311	1585	(57)	1002	(97)	1134	(90)	1356	(79)	1611	(76)	1890	(90)	2178	(124)	2372	(156)
	4-8	485	2020	(52)	1415	(101)	1533	(89)	1750	(71)	2023	(64)	2307	(85)	2560	(119)	2720	(146)
Male																		
	9-13	277	2767	(116)	1871	(172)	2067	(164)	2427	(161)	2880	(176)	3394	(216)	3912	(275)	4249	(320)
	14-18	339	3233	(129)	2220	(185)	2430	(174)	2823	(158)	3339	(158)	3952	(201)	4652	(297)	5156	(382)
	19-30	237	2873	(92)	2152	(213)	2302	(188)	2572	(150)	2899	(137)	3252	(180)	3588	(253)	3795	(306)
	31-50	423	2630	(119)	1687	(178)	1856	(170)	2180	(153)	2597	(147)	3064	(178)	3526	(243)	3826	(299)
	51-70	387	2312	(73)	1503	(138)	1662	(128)	1950	(104)	2304	(90)	2684	(117)	3049	(205)	3282	(296)
	>70	132	1970	(107)	1067	(177)	1248	(170)	1578	(163)	1981	(160)	2424	(173)	2855	(197)	3127	(218)
	19+	1179	2536	(60)	1556	(76)	1732	(77)	2075	(77)	2522	(79)	3013	(93)	3496	(120)	3815	(145)
Female	;																	
	9-13	281	2183	(89)	1425	(126)	1560	(117)	1813	(105)	2135	(101)	2483	(114)	2819	(145)	3036	(173)
	14-18	321	2139	(65)	1490	(91)	1632	(86)	1894	(84)	2214	(93)	2559	(117)	2899	(154)	3121	(184)
	19-30	249	2106	(96)	1489	(179)	1614	(157)	1833	(124)	2093	(115)	2372	(150)	2637	(208)	2798	(251)
	31-50	364	2008	(78)	1384	(130)	1526	(113)	1725	(102)	2009	(96)	2367	(127)	2729	(208)	3027	(296)
	51-70	467	1829	(51)	1193	(104)	1327	(90)	1560	(70)	1833	(61)	2129	(79)	2423	(118)	2615	(148)
	>70	215	1484	(50)	1044	(87)	1137	(83)	1293	(77)	1470	(75)	1671	(84)	1886	(104)	2027	(121)
	19+	1295	1909	(38)	1253	(56)	1388	(51)	1624	(45)	1893	(45)	2231	(59)	2573	(95)	2817	(134)

Symbol Legend

Footnote

^E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.

<3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>

F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

Table 1.6 Total energy intake (kcal/d): Usual intakes from food, by DRI age-sex group, household population, Ontario, 2004¹

							Percer	ntiles (and SE) of usu	ıal intake		
		n	Mean	(SE)	5th (<i>SE</i>)	10th (<i>SE</i>)	25th (<i>SE</i>)	50th (<i>SE</i>)	75th (<i>SE</i>)	90th (<i>SE</i>)	95th (SE)
Sex	Age (years)									·	
Both											
	1-3	644	1454	(33)	878 (67)	1003 (57)	1213 (43)	1456 (36)	1719 (43)	1986 (66)	2163 (86)
	4-8	956	1859	(27)	1404 (84)	1501 (70)	1670 (48)	1870 (32)	2085 (48)	2297 (82)	2432 (107)
Male											
	9-13	589	2333	(51)	1549 (86)	1694 (78)	1960 (66)	2296 (58)	2688 (74)	3110 (117)	3403 (157)
	14-18	639	2718	(64)	1759 (138)	1961 (122)	2325 (95)	2763 (79)	3238 (97)	3710 (146)	4020 (187)
	19-30	481	2594	(87)	1744 (234)	1908 (198)	2200 (139)	2558 (101)	2951 (147)	3345 (244)	3605 (318)
	31-50	709	2324	(60)	1555 (199)	1697 (170)	1954 (119)	2285 (72)	2679 (117)	3084 (220)	3341 (292)
	51-70	758	2132	(53)	1340 (116)	1486 (102)	1747 (78)	2070 (59)	2447 (73)	2853 (123)	3132 (168)
	>70	734	1774	(36)	1066 (60)	1199 (55)	1441 (46)	1737 (41)	2064 (47)	2383 (66)	2587 (85)
	19+	2682	2284	(35)	1393 (72)	1561 (62)	1852 (50)	2230 (41)	2666 (52)	3115 (87)	3434 (115)
Female	:										
	9-13	585	1967	(41)	1285 (82)	1425 (71)	1664 (53)	1942 (43)	2243 (57)	2548 (89)	2748 (116)
	14-18	645	2069	(50)	1354 (108)	1496 (95)	1760 (72)	2085 (61)	2434 (81)	2785 (130)	3022 (172)
	19-30	514	1760	(50)	1010 (79)	1149 (72)	1398 (62)	1703 (57)	2041 (68)	2378 (95)	2597 (120)
	31-50	758	1759	(44)	1035 (63)	1166 (57)	1409 (49)	1714 (50)	2060 (67)	2408 (96)	2633 (119)
	51-70	955	1647	(35)	1027 (78)	1150 (69)	1369 (53)	1627 (41)	1905 (47)	2190 (74)	2386 (99)
	>70	1345	1521	(24)	996 (51)	1089 (47)	1267 (36)	1487 (28)	1724 (37)	1962 (60)	2118 (78)
	19+	3572	1700		1011 (33)	1137 (31)	1371 (27)	1661 (26)	1980 (33)	2306 (47)	2522 (58)

Symbol Legend

Footnote

^E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.

<3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>

F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

Table 1.7 Total energy intake (kcal/d): Usual intakes from food, by DRI age-sex group, household population, Manitoba, 2004¹

										Percentiles (and	d SE) of us	sual intake					
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th (S	SE) 50	th (SE)	75th	(SE)	90tl	n (SE)	95th	n (SE)
Sex	Age (years)									·	·	·					
Both																	
	1-3	324	1401	(40)	939	(85)	1019	(77)	1188 (60	(i) 140 3	3 (50)	1608	(68)	1801	(103)	1934	(129)
	4-8	425	1815	(60)	1351	(42)	1436	(47)	1590 (58	8) 178 2	2 (70)	1998	(82)	2213	(93)	2347	(98)
Male																	
	9-13	274	2339	(68)	1773	(215)	1892	(176)	2097 (11	<i>19)</i> 234 3	3 (85)	2614	(124)	2880	(211)	3048	(277)
	14-18	297	3035	(133)	2065	$(377)^{E}$	2258	(337)	2609 (25	57) 3048	3 (178)	3550	(238)	4067	(473)	4411	(667)
	19-30	249	2830	(151)	1808	$(385)^{E}$	2000	$(333)^{E}$	2352 (24	<i>42)</i> 279 2	2 (171)	3288	(240)	3784	(403)	4104	(524)
	31-50	309	2273	(80)	1632	(197)	1768	(175)	2008 (12	29) 228 9	(100)	2586	(128)	2878	(197)	3075	(273)
	51-70	277	2075	(75)	1388	(203)	1515	(183)	1748 (14	<i>47)</i> 2038	3 (103)	2361	(130)	2682	(233)	2888	(312)
	>70	136	1761	(92)	1195	$(238)^{E}$	1307	(211)	1492 (15	50) 1708	3 (96)	1957	(158)	2215	(276)	2380	(347)
	19+	971	2295	(58)	1327	(91)	1481	(90)	1813 (80	2255	5 (68)	2709	(81)	3178	(123)	3522	(170)
Female	:																
	9-13	265	1996	(68)	1399	(176)	1512	(148)	1701 (10	(O2) 191 7	7 (68)	2145	(107)	2364	(185)	2504	(237)
	14-18	290	2047	(109)	1431	(146)	1547	(130)	1753 (11	(11) 201 5	5 (112)	2329	(151)	2664	(222)	2889	(279)
	19-30	197	2032	(144)	1371	(220)	1496	(193)	1716 (15	50) 197 9	(130)	2260	(160)	2530	(223)	2699	(273)
	31-50	312	1806	(68)	1269	(116)	1370	(109)	1560 (96	5) 1797	7 (84)	2056	(100)	2318	(159)	2492	(210)
	51-70	312	1644	(53)	1173	(111)	1267	(97)	1435 (75	5) 1637	7 (64)	1854	(80)	2063	(117)	2197	(147)
	>70	239	1380	(50)	978	(113)	1053	(99)	1189 (75	5) 1361	l <i>(58)</i>	1560	(75)	1760	(120)	1888	(155)
	19+	1060	1744	(43)	1110	(60)	1222	(54)	1436 (43	3) 171 1	1 (43)	2018	(66)	2333	(105)	2544	(136)

Symbol Legend

Footnote

^E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.

<3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>

F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

Table 1.8 Total energy intake (kcal/d): Usual intakes from food, by DRI age-sex group, household population, Saskatchewan, 2004¹

										Percei	ntiles (and	SE) of usu	ual intake					
		n	Mean	(SE)	5th	(SE)	10tł	(SE)	25th	(SE)	50tl	n (SE)	75th	(SE)	90tl	n (SE)	95tl	h (SE)
Sex	Age (years)										·						·	"
Both																		
	1-3	129	1464	(57)	963	(103)	1072	(91)	1263	(78)	1488	(79)	1726	(90)	1950	(107)	2089	(122)
	4-8	213	1930	(67)	1448	(118)	1548	(105)	1714	(86)	1913	(68)	2148	(145)	2394	(315)	2553	$(453)^{E}$
Male																		
	9-13	122	2457	(161)	1898	(211)	2015	(197)	2231	(180)	2511	(184)	2837	(227)	3156	(295)	3356	(344)
	14-18	150	2966	(186)	2049	(279)	2238	(254)	2568	(220)	2967	(211)	3415	(259)	3880	(354)	4194	(434)
	19-30	106	2781	(160)	1461	$(326)^{E}$	1717	$(296)^{E}$	2167	(241)	2704	(200)	3302	(229)	3913	(337)	4317	(442)
	31-50	155	2503	(148)	1335	$(225)^{E}$	1573	(189)	1972	(156)	2438	(162)	2994	(217)	3650	(345)	4138	(479)
	51-70	122	2121	(91)	1180	(173)	1381	(141)	1742	(107)	2178	(124)	2650	(198)	3103	(288)	3387	(348)
	>70	88	1978	(87)	1258	(142)	1398	(128)	1653	(109)	1969	(108)	2320	(140)	2668	(194)	2892	(240)
	19+	471	2404	(73)	1270	(88)	1494	(80)	1875	(79)	2362	(85)	2940	(110)	3554	(165)	3991	(225)
Female																		
	9-13	103	2076	(112)	1525	(147)	1637	(137)	1833	(130)	2076	(140)	2360	(169)	2653	(219)	2842	(258)
	14-18	142	2128	(95)	1452	(140)	1619	(134)	1897	(133)	2215	(141)	2550	(159)	2879	(194)	3102	(231)
	19-30	111	1848	(82)	1160	(149)	1283	(134)	1511	(110)	1803	(104)	2138	(142)	2481	(210)	2706	(264)
	31-50	146	1804	(75)	1273	(178)	1366	(156)	1530	(121)	1728	(93)	1942	(102)	2149	(147)	2279	(185)
	51-70	184	1763	(83)	1354	(179)	1446	(153)	1605	(114)	1792	(96)	1989	(136)	2175	(207)	2290	(259)
	>70	143	1552	(76)	1061	(99)	1155	(94)	1319	(97)	1542	(110)	1849	(127)	2185	(163)	2392	(191)
	19+	584	1763	(41)	1143	(69)	1261	(64)	1475	(56)	1739	(52)	2033	(60)	2324	(81)	2511	(100)

Symbol Legend

Footnote

^E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.

<3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>

F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

Table 1.9 Total energy intake (kcal/d): Usual intakes from food, by DRI age-sex group, household population, Alberta, 2004¹

										Percei	ntiles (and	SE) of usu	ıal intake					
		n	Mean	(SE)	5th	(SE)	10th	n (SE)	25th	(SE)	50tl	n (SE)	75th	(SE)	90tl	n (SE)	95th	n (SE)
Sex	Age (years)										•						•	
Both																		
	1-3	169	1341	(45)	983	(114)	1058	(99)	1188	(75)	1342	(57)	1506	(69)	1661	(110)	1759	(146)
	4-8	281	1818	(53)	1312	(45)	1403	(47)	1569	(51)	1775	(59)	2008	(70)	2242	(86)	2395	(99)
Male																		
	9-13	183	2471	(113)	1794	(251)	1923	(221)	2163	(169)	2472	(131)	2835	(180)	3214	(299)	3469	(393)
	14-18	187	2837	(109)	1891	$(359)^{E}$	2091	(301)	2445	(204)	2874	(132)	3355	(205)	3850	(367)	4180	(490)
	19-30	223	2591	(99)	1563	(111)	1755	(111)	2105	(113)	2541	(117)	3028	(125)	3510	(144)	3820	(163)
	31-50	229	2464	(123)	1564	(211)	1743	(183)	2058	(151)	2462	(152)	2957	(216)	3485	(325)	3832	(408)
	51-70	197	2042	(84)	1251	$(239)^{E}$	1406	(203)	1682	(145)	2016	(103)	2390	(149)	2772	(259)	3024	(342)
	>70	72	1805	(76)	1304	(156)	1414	(135)	1599	(108)	1809	(95)	2038	(115)	2275	(170)	2435	(218)
	19+	721	2346	(61)	1417	(104)	1593	(93)	1921	(78)	2340	(77)	2821	(96)	3312	(130)	3633	(156)
Female																		
	9-13	165	1979	(82)	1443	(107)	1567	(111)	1792	(116)	2050	(118)	2320	(123)	2584	(134)	2753	(146)
	14-18	206	1903	(70)	1299	(203)	1415	(173)	1622	(123)	1874	(90)	2148	(124)	2415	(199)	2584	(254)
	19-30	191	1917	(92)	1176	(123)	1307	(120)	1556	(120)	1881	(133)	2265	(159)	2667	(208)	2937	(266)
	31-50	258	1769	(73)	1112	$(312)^E$	1243	$(266)^{E}$	1481	(186)	1784	(112)	2142	(167)	2529	(329)	2797	(458)
	51-70	249	1631	(61)	1039	(94)	1159	(83)	1369	(70)	1621	(69)	1908	(89)	2211	(133)	2421	(174)
	>70	128	1423	(67)	950	(126)	1039	(114)	1220	(104)	1442	(90)	1652	(94)	1849	(154)	1989	(214)
	19+	826	1730	(42)	1065	(60)	1194	(59)	1429	(58)	1728	(59)	2078	(68)	2453	(88)	2710	(110)

Symbol Legend

Footnote

^E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.

<3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>

F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

Table 1.10 Total energy intake (kcal/d): Usual intakes from food, by DRI age-sex group, household population, British Columbia, 2004¹

•										Percei	ntiles (and	SE) of usu	ıal intake					
		n	Mean	(SE)	5th	(SE)	10th	(<i>SE</i>)	25th	(SE)	50tl	n (SE)	75th	(SE)	90tl	(SE)	95th	h (<i>SE</i>)
Sex	Age (years)						•				•	,					•	
Both																		
	1-3	192	1468	(48)	1065	(115)	1146	(101)	1287	(79)	1450	(68)	1620	(81)	1779	(111)	1877	(134)
	4-8	321	1826	(44)	1253	(79)	1364	(69)	1565	(55)	1813	(52)	2090	(72)	2366	(108)	2543	(138)
Male																		
	9-13	226	2369	(76)	1533	(118)	1703	(107)	2017	(96)	2398	(94)	2810	(110)	3271	(162)	3625	(221)
	14-18	262	2952	(151)	2085	(264)	2269	(234)	2592	(190)	2983	(168)	3425	(207)	3885	(299)	4195	(379)
	19-30	197	2957	(130)	2059	(186)	2226	(173)	2542	(152)	2952	(156)	3427	(213)	3909	(307)	4222	(377)
	31-50	282	2908	(108)	1750	(185)	1975	(166)	2391	(136)	2895	(124)	3429	(159)	3954	(241)	4300	(309)
	51-70	234	2373	(93)	1463	(110)	1612	(111)	1897	(115)	2277	(122)	2738	(144)	3237	(200)	3580	(253)
	>70	119	1964	(98)	1225	(141)	1363	(128)	1603	(114)	1910	(124)	2285	(170)	2656	(220)	2874	(246)
	19+	832	2675	(58)	1599	(64)	1780	(64)	2150	(65)	2649	(72)	3196	(86)	3745	(115)	4121	(143)
Female																		
	9-13	226	2046	(96)	1355	(120)	1487	(116)	1729	(110)	2043	(112)	2431	(135)	2856	(178)	3137	(207)
	14-18	242	1972	(77)	1075	(107)	1242	(102)	1547	(95)	1923	(99)	2350	(112)	2786	(135)	3074	(160)
	19-30	208	1919	(76)	1349	(165)	1482	(148)	1716	(120)	1967	(105)	2220	(117)	2466	(152)	2627	(182)
	31-50	263	1966	(73)	1298	(112)	1430	(100)	1675	(84)	1971	(86)	2272	(117)	2570	(170)	2781	(219)
	51-70	322	1668	(73)	980	(111)	1107	(103)	1344	(93)	1656	(90)	2024	(112)	2401	(164)	2651	(210)
	>70	198	1563	(67)	963	(97)	1081	(92)	1290	(87)	1542	(90)	1814	(105)	2074	(130)	2237	(148)
	19+	991	1820	(37)	1117	(50)	1246	(48)	1494	(48)	1828	(49)	2195	(58)	2523	(77)	2729	(97)

Symbol Legend

Footnote

^E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.

<3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>

F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

Table 1.11 Total energy intake (kcal/d): Usual intakes from food, by DRI age-sex group, household population, Atlantic Region, 2004¹

										Perce	ntiles (and	SE) of usi	ual intake					
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50tl	n (SE)	75th	(SE)	90tl	n (SE)	95tl	h (SE)
Sex	Age (years)										·						•	
Both																		
	1-3	348	1520	(35)	1118	(55)	1198	(52)	1342	(49)	1518	(49)	1713	(55)	1904	(66)	2027	(76)
	4-8	554	1979	(48)	1532	(92)	1633	(83)	1811	(70)	2022	(63)	2246	(70)	2459	(92)	2592	(111)
Male																		
	9-13	409	2495	(81)	1795	(122)	1927	(113)	2166	(104)	2473	(105)	2811	(123)	3126	(152)	3325	(177)
	14-18	414	2815	(99)	1775	(136)	1970	(133)	2334	(132)	2821	(138)	3423	(162)	4059	(206)	4471	(241)
	19-30	311	2828	(111)	1789	(156)	2005	(143)	2378	(132)	2825	(131)	3333	(157)	3877	(221)	4254	(279)
	31-50	489	2589	(76)	1655	(95)	1821	(91)	2124	(89)	2525	(92)	2992	(108)	3461	(141)	3774	(176)
	51-70	575	2168	(57)	1530	(101)	1650	(89)	1867	(71)	2136	(68)	2436	(89)	2734	(129)	2924	(160)
	>70	239	1955	(66)	1288	(94)	1422	(93)	1663	(86)	1961	(82)	2294	(104)	2618	(127)	2820	(142)
	19+	1614	2455	(42)	1523	(52)	1692	(48)	1999	(48)	2410	(52)	2885	(62)	3362	(80)	3691	(101)
Female	;																	
	9-13	355	2038	(61)	1490	(106)	1614	(98)	1834	(86)	2071	(79)	2335	(90)	2640	(122)	2852	(150)
	14-18	410	1977	(76)	1125	(121)	1293	(107)	1589	(91)	1950	(83)	2355	(100)	2767	(136)	3035	(170)
	19-30	384	1899	(67)	1339	(101)	1472	(92)	1696	(80)	1953	(78)	2239	(92)	2531	(119)	2722	(142)
	31-50	585	1772	(56)	1025	(73)	1182	(71)	1461	(68)	1791	(73)	2137	(83)	2462	(95)	2663	(104)
	51-70	711	1625	(43)	1033	(63)	1149	(56)	1353	(49)	1595	(50)	1857	(61)	2115	(81)	2281	(97)
	>70	342	1543	(59)	977	(75)	1083	(73)	1266	(73)	1506	(79)	1808	(98)	2118	(127)	2312	(149)
	19+	2022	1724	(30)	1079	(40)	1212	(38)	1448	(38)	1734	(41)	2045	(47)	2345	(55)	2537	(64)

Symbol Legend

Footnote

^E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.

<3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>

F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

Table 1.12 Total energy intake (kcal/d): Usual intakes from food, by DRI age-sex group, household population, Prairie Region, 2004¹

							Percer	ntiles (and SE) of usu	ial intake		
		n	Mean	(SE)	5th (<i>SE</i>)	10th (<i>SE</i>)	25th (SE)	50th (<i>SE</i>)	75th (<i>SE</i>)	90th (<i>SE</i>)	95th (SE)
Sex	Age (years)									·	
Both											
	1-3	622	1375	(30)	895 (51)	989 (48)	1163 (42)	1375 (40)	1595 (44)	1812 (56)	1963 (71)
	4-8	919	1837	(36)	1341 (81)	1431 (70)	1594 (52)	1799 (41)	2034 (61)	2268 (98)	2418 (125)
Male											
	9-13	579	2440	(73)	1796 (107)	1922 (99)	2156 (88)	2459 (87)	2809 (112)	3164 (157)	3394 (195)
	14-18	634	2902	(81)	1877 (140)	2090 (126)	2462 (108)	2913 (101)	3450 (121)	3982 (164)	4331 (209)
	19-30	578	2670	(76)	1543 (158)	1748 (146)	2139 (117)	2623 (94)	3141 (121)	3662 (198)	4016 (259)
	31-50	693	2432	(83)	1504 (127)	1684 (117)	2004 (103)	2418 (102)	2906 (149)	3411 (244)	3749 <i>(316)</i>
	51-70	596	2064	(55)	1210 (91)	1361 (88)	1664 (81)	2063 (74)	2476 (80)	2892 (109)	3181 (141)
	>70	296	1835	(50)	1152 (78)	1289 (69)	1524 (61)	1799 (63)	2111 (72)	2444 (96)	2674 (120)
	19+	2163	2346	(41)	1356 (55)	1535 (51)	1876 (49)	2321 (52)	2823 (60)	3353 (80)	3723 (99)
Female	;										
	9-13	533	2000	(57)	1398 (103)	1527 (96)	1756 (84)	2025 (79)	2310 (88)	2591 (112)	2773 (133)
	14-18	638	1975	(52)	1292 (71)	1424 (66)	1664 (63)	1962 (65)	2295 (77)	2628 (104)	2850 (130)
	19-30	499	1929	(66)	1147 (89)	1284 (85)	1541 (81)	1873 (84)	2258 (101)	2657 (133)	2920 (162)
	31-50	716	1783	(50)	1267 (133)	1373 (119)	1567 (95)	1806 (73)	2071 (79)	2335 (117)	2509 (153)
	51-70	745	1659	(40)	1142 (63)	1247 (56)	1432 (47)	1657 (45)	1907 (56)	2157 (82)	2322 (104)
	>70	510	1442	(40)	869 (45)	976 (47)	1176 (50)	1431 (53)	1724 (60)	2023 (75)	2219 (88)
	19+	2470	1739	, ,	1079 (38)	1201 (37)	1431 (37)	1725 (38)	2063 (43)	2414 (55)	2654 (68)

Symbol Legend

Footnote

^E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.

<3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>

F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

Table 1.13 Total energy intake (kcal/d): Usual intakes from food, by DRI age-sex group, household population, Canada excluding territories, 2004¹

							Percer	tiles (and SE) of usu	ial intake		
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)
Sex	Age (years)										
Both											
	1-3	2117	1475	(21)	956 (34)	1066 (31)	1255 (27)	1478 (25)	1721 (29)	1961 (40)	2119 (51)
	4-8	3235	1894	(19)	1341 (29)	1451 (26)	1648 (23)	1890 (24)	2161 (32)	2424 (44)	2590 (53)
Male											
	9-13	2080	2467	(38)	1702 (53)	1848 (51)	2123 (48)	2471 (48)	2863 (57)	3269 (75)	3544 (92)
	14-18	2288	2901	(48)	1855 (67)	2073 (63)	2462 (57)	2943 (57)	3492 (69)	4073 (97)	4474 (124)
	19-30	1804	2737	(47)	1752 (71)	1938 (65)	2282 (58)	2700 (60)	3161 (76)	3632 (107)	3945 (132)
	31-50	2596	2510	(42)	1520 (55)	1695 (54)	2035 (50)	2473 (52)	2972 (64)	3484 (87)	3821 (107)
	51-70	2550	2204	(31)	1369 (45)	1522 (42)	1798 (39)	2155 (39)	2568 (44)	2985 (61)	3262 (77)
	>70	1520	1871	(34)	1144 (45)	1287 (42)	1539 (41)	1840 (43)	2181 (51)	2537 (66)	2768 (76)
	19+	8470	2420	(22)	1426 (27)	1603 (26)	1932 (26)	2371 (28)	2868 (35)	3388 (46)	3736 (56)
Female	•										
	9-13	1980	2037	(31)	1361 (41)	1499 (38)	1737 (34)	2021 (33)	2335 (40)	2654 (55)	2865 (67)
	14-18	2256	2048	(27)	1266 (34)	1422 (33)	1704 (32)	2056 (35)	2452 (44)	2848 (58)	3112 (71)
	19-30	1854	1902	(34)	1203 (47)	1338 (44)	1579 (39)	1868 (41)	2185 (50)	2500 (66)	2702 (79)
	31-50	2686	1850	(30)	1133 (35)	1269 (34)	1516 (34)	1831 (34)	2185 (43)	2541 (65)	2781 (89)
	51-70	3200	1696	(22)	1094 (35)	1216 (32)	1430 (27)	1688 (25)	1973 (31)	2262 (44)	2453 (55)
	>70	2610	1507	(20)	970 (29)	1072 (28)	1258 (27)	1486 (27)	1744 <i>(32)</i>	2006 (42)	2175 (49)
	19+	10350	1775		1088 (17)	1220 (16)	1460 (16)	1751 (18)	2084 (23)	2422 (34)	2651 (45)

Symbol Legend

Footnote

E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.

<3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>

F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

2. Percentage of total energy intake from fats	

Table 2.1 Percentage of total energy intake from fats, by DRI age-sex group, household population, Newfoundland and Labrador, 2004¹

							Percentile	es (and SE) of usu	al intake				%	% within		% above	
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	AMDR ²	below AMDR (S		(SE)	AMDR	(SE)
Sex	Age (years)																
Both																	
	1-3	79	30.5	(1.4)	23.0 (2.7)	24.8 (2.3)	27.6 (1.9)	30.7 (1.7)	33.7 (1.9)	36.4 (2.4)	38.1 (2.8)	30-40	F	54.2	$(16.6)^{E}$	F	
	4-8	127	31.9	(1.1)	25.5 (1.6)	26.8 (1.4)	29.1 (1.2)	31.8 (1.3)	34.7 (1.7)	37.5 (2.3)	39.1 (2.6)	25-35	F	73.1	(11.7)	F	
Male																	
	9-13	111	32.3	(1.2)	29.0 (1.5)	29.9 (1.5)	31.5 (1.5)	33.2 (1.5)	35.0 (1.6)	36.6 (1.7)	37.6 (1.7)	25-35	<3	75.2	$(18.1)^{E}$	F	
	14-18	107	30.3	(1.1)	23.5 (2.2)	24.9 (1.9)	27.3 (1.5)	29.8 (1.3)	32.3 (1.4)	34.4 (1.7)	35.6 (1.9)	25-35	F	82.5	(10.3)	F	
	19-30	77	32.0	(1.2)	26.2 (1.9)	27.4 (1.7)	29.4 (1.5)	31.5 (1.4)	33.5 (1.4)	35.2 (1.4)	36.2 (1.5)	20-35	<3	88.7	(10.5)	F	
	31-50	145	31.7	(1.2)	26.5 (2.4)	27.6 (2.0)	29.4 (1.6)	31.3 (1.4)	33.1 (1.6)	34.7 (2.0)	35.7 (2.3)	20-35	<3	91.8	(11.0)	F	
	51-70	182	29.6	(0.9)	22.0 (0.9)	23.3 (0.9)	25.7 (0.9)	28.5 (1.0)	31.5 (1.1)	34.1 (1.2)	35.8 (1.2)	20-35	F	91.6	(3.6)	F	
	>70	63	30.3	(1.4)	22.4 (3.7)	24.5 (3.2)	27.9 (2.4)	31.6 (1.8)	34.9 (1.5)	37.5 (1.7)	39.0 (1.9)	20-35	F	73.7	(10.6)	F	
	19+	467	31.0	(0.6)	23.9 (1.4)	25.4 (1.2)	28.0 (0.9)	30.7 (0.7)	33.4 (0.8)	35.9 (1.1)	37.4 (1.3)	20-35	<3	85.2	(5.7)	F	
Female																	
	9-13	96	30.7	(0.8)	24.4 (1.9)	25.7 (1.6)	27.8 (1.2)	30.2 (1.0)	32.6 (1.3)	35.0 (1.8)	36.5 (2.2)	25-35	F	83.1	(8.9)	F	
	14-18	105	31.2	(0.9)	26.8 (1.3)	27.7 (1.2)	29.1 (1.2)	30.6 (1.2)	32.2 (1.2)	33.6 (1.2)	34.5 (1.3)	25-35	F	95.9	(6.3)	F	
	19-30	91	32.5	(1.4)	28.0 (2.4)	29.1 (2.1)	30.9 (1.8)	32.9 (1.7)	34.8 (1.9)	36.6 (2.3)	37.6 (2.6)	20-35	<3	77.2	(18.8) ^E	F	
	31-50	167	34.2	(1.0)	27.3 (1.9)	28.7 (1.7)	30.9 (1.4)	33.3 (1.4)	35.8 (1.5)	38.0 (1.7)	39.4 (2.0)	20-35	<3		(14.8) ^E	F	
	51-70	198		(1.0)	20.6 (1.8)	22.5 (1.6)	25.7 (1.3)	29.5 (1.3)	34.1 (1.7)	38.5 (2.4)	41.3 (2.9)	20-35	F		(8.4)	F	
	>70	74		(1.5)	22.4 (1.8)	23.9 (1.7)	26.6 (1.7)	30.1 (1.9)	34.0 (2.6)	38.0 (3.6)	40.6 (4.4)	20-35	F		$(13.1)^{E}$	F	
		530			· · ·		, ,	, ,	, ,	, ,	, ,		.2			24.5	(6.2) E
	19+	530	32.0	(0.6)	24.2 (1.0)	25.7 (0.9)	28.4 (0.8)	31.6 (0.8)	34.9 (1.0)	38.0 (1.2)	39.8 (1.4)	20-35	<3	/5.0	(6.2)	24.5	$(6.2)^{E}$

Symbol Legend

- E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 2.2 Percentage of total energy intake from fats, by DRI age-sex group, household population, Prince Edward Island, 2004¹

							Percentile	es (and SE) of usu	al intake				%		%		%	
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	AMDR ²	below AMDR	(SE)	within AMDR	(SE)	above AMDR	(SE)
Sex	Age (years)																	
Both																		
	1-3	58	29.9	(1.3)	21.8 (2.6)	23.5 (2.3)	26.1 (2.0)	29.1 (1.9)	31.8 (2.0)	34.0 (2.0)	35.2 (2.1)	30-40	58.8	$(18.9)^{E}$	F		<3	
	4-8	110	31.3	(0.8)	30.4 (2.7)	30.6 (2.3)	31.0 (1.6)	31.4 (1.1)	31.8 (1.4)	32.2 (2.1)	32.4 (2.6)	25-35	<3		100.0	(8.6)	F	
Male																		
	9-13	95	31.1	(1.1)	26.4 (2.0)	27.5 (1.8)	29.5 (1.5)	31.9 (1.4)	34.4 (1.7)	36.9 (2.2)	38.4 (2.7)	25-35	F		77.6	(12.1)	F	
	14-18	87	33.6	(1.2)	30.6 (2.5)	31.1 (2.1)	32.1 (1.5)	33.2 (1.4)	34.3 (2.0)	35.3 (2.7)	35.9 (3.2)	25-35	F		86.7	(25.8) ^E	F	
	19-30	70	37.0	(1.5)	32.2 (2.8)	33.8 (2.5)	36.3 (2.0)	39.1 (1.8)	41.9 (1.9)	44.3 (2.2)	45.7 (2.5)	20-35	<3		F		84.0	(13.3)
	31-50	109	34.4	(1.2)	31.7 (3.1)	32.5 (2.7)	33.9 (2.2)	35.4 (1.5)	36.9 (2.6)	38.3 (4.3)	39.1 (5.5)	20-35	F		F		F	
	51-70	128	31.3	(0.9)	24.5 (1.3)	26.1 (1.4)	28.9 (1.4)	31.9 (1.4)	34.7 (1.3)	37.0 (1.3)	38.4 (1.4)	20-35	<3		77.1	(9.1)	F	
	>70	65	32.3	(1.0)	28.2 (2.1)	29.0 (1.9)	30.3 (1.6)	31.8 (1.5)	33.3 (1.8)	34.8 (2.3)	35.8 (2.7)	20-35	<3		91.2	$(16.7)^{E}$	F	
	19+	372	33.8	(0.6)	29.6 (1.8)	30.8 (1.6)	32.8 (1.2)	35.0 (0.9)	37.2 (1.0)	39.1 (1.3)	40.2 (1.5)	20-35	<3		49.5	$(12.3)^{E}$	50.5	$(12.3)^{E}$
Female																		
	9-13	75	30.9	(1.1)	28.4 (1.7)	29.0 (1.5)	30.0 (1.2)	31.3 (1.1)	32.5 (1.4)	33.7 (1.8)	34.4 (2.2)	25-35	F		97.5	(9.2)	F	
	14-18	81	32.1	(1.1)	24.9 (2.3)	26.8 (2.0)	30.0 (1.6)	33.3 (1.5)	36.4 (1.7)	38.9 (2.0)	40.4 (2.3)	25-35	F		58.8	$(13.1)^{E}$	F	
	19-30	101	29.8	(1.1)	23.7 (1.9)	25.0 (1.7)	27.2 (1.5)	29.7 (1.4)	32.2 (1.5)	34.4 (1.8)	35.7 (2.0)	20-35	<3		92.2	(6.8)	F	
	31-50	116	31.6	(1.1)	25.0 (2.2)	26.4 (1.9)	28.8 (1.5)	31.4 (1.4)	34.1 (1.6)	36.6 (2.1)	38.1 (2.5)	20-35	<3		81.4	(11.1)	F	
	51-70	146	32.4	(1.0)	25.7 (2.2)	27.2 (1.8)	29.6 (1.4)	32.2 (1.3)	34.8 (1.5)	37.0 (1.9)	38.3 (2.1)	20-35	<3		76.9	(12.4)	F	
	>70	94		(1.2)	29.6 (2.3)	30.5 (2.1)	32.1 (1.8)	34.0 (1.6)	35.9 (1.7)	37.7 (1.9)	38.8 (2.2)	20-35	<3			(19.2) E	F	
	19+	457		(0.6)	25.1 (1.1)	26.5 (1.0)	29.0 (0.9)	31.8 (0.8)	34.5 (0.9)	37.1 (1.1)	38.6 (1.2)	20-35	<3			(6.5)	21.6	(6.5) E

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 2.3 Percentage of total energy intake from fats, by DRI age-sex group, household population, Nova Scotia, 2004¹

							Percentile	es (and SE) of usu	al intake				% below		% within		% above	
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	AMDR ²	AMDR	(SE)	AMDR	(SE)	AMDR	(SE)
Sex	Age (years)																	
Both																		
	1-3	112	29.7	(0.8)	27.5 (2.8)	28.0 (2.3)	28.9 (1.7)	29.8 (1.1)	30.8 (1.4)	31.6 (2.1)	32.2 (2.6)	30-40	F		F		<3	
	4-8	177	29.5	(0.7)	25.5 (0.9)	26.4 (0.8)	27.9 (0.8)	29.5 (0.7)	31.0 (0.8)	32.3 (0.8)	33.1 (0.9)	25-35	F		96.0	(3.0)	<3	
Male																		
	9-13	111	30.7	(0.7)	25.7 (1.5)	26.7 (1.2)	28.5 (1.0)	30.5 (0.8)	32.5 (1.0)	34.2 (1.3)	35.3 (1.6)	25-35	F		90.9	(7.2)	F	
	14-18	113	33.7	(0.6)	28.9 (1.8)	30.2 (1.4)	32.1 (1.0)	34.1 (0.9)	36.0 (1.1)	37.8 (1.5)	38.9 (1.8)	25-35	<3		62.3	$(13.1)^{E}$	F	
	19-30	91	32.0	(1.7)	25.5 (2.5)	27.0 (2.2)	29.6 (1.8)	32.7 (1.8)	36.1 (2.4)	39.3 (3.2)	41.3 (3.8)	20-35	<3		67.8	(16.3) ^E	F	
	31-50	101	33.0	(1.0)	26.9 (2.2)	28.1 (1.9)	30.1 (1.5)	32.3 (1.4)	34.6 (1.7)	36.6 (2.1)	37.7 (2.4)	20-35	<3		79.0	$(14.0)^{E}$	F	
	51-70	134	31.1	(1.8)	22.7 (2.4)	24.4 (2.3)	27.3 (2.3)	30.8 (2.2)	34.5 (2.1)	38.0 (2.1)	40.2 (2.1)	20-35	F		76.3	(10.0)	F	
	>70	56	29.7	(1.4)	25.4 (3.7)	26.3 (3.0)	27.9 (2.1)	29.5 (1.6)	31.1 (1.8)	32.5 (2.4)	33.4 (2.8)	20-35	F		99.1	(11.3)	F	
	19+	382	31.9	(0.7)	24.6 (1.0)	26.1 (0.9)	28.6 (0.9)	31.5 (0.9)	34.6 (1.0)	37.5 (1.1)	39.2 (1.1)	20-35	<3		77.0	(6.1)	22.6	(6.3) ^E
Female																		
	9-13	105	30.3	(0.8)	25.3 (1.5)	26.3 (1.3)	28.0 (1.1)	30.0 (1.0)	32.2 (1.2)	34.2 (1.7)	35.5 (2.1)	25-35	F		89.4	(9.6)	F	
	14-18	120	27.9	(1.7)	27.0 (5.3) ^E	27.2 (4.3)	27.6 (2.6)	28.0 (1.8)	28.4 (3.1)	28.8 (5.0) ^E	29.0 (6.4) ^E	25-35	F		100.0	(26.8) ^E	F	
	19-30	91	33.1	(1.7)	25.5 (3.4)	27.3 (3.0)	30.3 (2.4)	33.6 (2.2)	37.1 (2.4)	40.3 (2.8)	42.1 (3.2)	20-35	F		60.3	(18.1) ^E	F	
	31-50	159	34.4	(1.1)	25.2 (3.0)	27.5 (2.4)	31.2 (1.6)	34.9 (1.4)	38.2 (1.6)	41.0 (2.0)	42.7 (2.3)	20-35	F		50.1	(12.8) ^E	49.1	$(13.0)^{E}$
	51-70	174	33.5	(1.2)	25.2 (1.3)	26.9 (1.4)	29.7 (1.4)	33.0 (1.4)	36.4 (1.5)	39.6 (1.6)	41.5 (1.6)	20-35	<3		65.1	(10.2)	34.6	$(10.4)^{E}$
	>70	80		(2.2)	26.9 (3.7)	27.9 (3.5)	29.7 (3.1)	31.8 (2.9)	33.9 (2.8)	35.8 (3.0)	36.9 (3.3)	20-35	F			$(16.9)^{E}$	F	
	19+	504		(0.7)		26.8 (1.3)	30.2 (1.1)	34.0 (0.9)	37.8 (1.0)	41.2 (1.2)	43.2 (1.4)	20-35	<3			(6.5)	42.8	(6.7)
	127	304	33.3	(0.7)	2-7.0 (1.3)	20.0 (1.3)	30.2 (1.1)	3 4.0 (0.7)	37.6 (1.0)	71.2 (1.2)	73.2 (1.4)	20-33	<u> </u>		30.3	(0.5)	72.0	(0.7)

Symbol Legend

- E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 2.4 Percentage of total energy intake from fats, by DRI age-sex group, household population, New Brunswick, 2004¹

•								Percentile	es (and SE) of usu	al intake				%		%		%	
		n	Mean	(SE)	5th	(SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	AMDR ²	below AMDR	(SE)	within AMDR	(SE)	above AMDR	(SE)
Sex	Age (years)																		
Both																			
	1-3	99	32.0	(1.0)	26.5	(1.6)	27.5 (1.4)	29.4 (1.2)	31.6 (1.3)	33.9 (1.6)	36.0 (1.9)	37.1 (2.2)	30-40	F		68.5	(13.8) ^E	F	
	4-8	140	30.3	(0.8)	26.5	(1.7)	27.4 (1.5)	28.8 (1.2)	30.4 (1.0)	32.0 (1.2)	33.5 (1.6)	34.4 (1.9)	25-35	F		95.9	(8.4)	F	
Male																			
	9-13	92	34.4	(3.2)	24.5	$(4.7)^{E}$	27.0 (3.9)	30.4 (3.2)	33.7 (3.1)	37.4 (3.6)	41.2 (4.6)	43.7 (5.4)	25-35	F		F		F	
	14-18	107	32.4	(1.5)	26.5	(2.4)	27.8 (2.2)	30.0 (1.9)	32.4 (1.8)	34.9 (1.9)	37.1 (2.1)	38.4 (2.4)	25-35	F		74.1	(13.4) ^E	F	
	19-30	73	31.4	(1.8)	25.5	(2.1)	26.9 (2.1)	29.2 (2.2)	31.8 (2.2)	34.5 (2.4)	36.9 (2.5)	38.3 (2.5)	20-35	<3		79.2	(15.9) ^E	F	
	31-50	134	32.7	(1.2)	23.3	(2.2)	25.4 (2.0)	29.1 (1.7)	33.2 (1.5)	37.4 (1.6)	41.3 (2.0)	43.6 (2.2)	20-35	F		59.8	(9.9)	38.8	$(10.4)^{E}$
	51-70	131	33.2	(1.1)	28.0	(2.6)	29.0 (2.2)	30.7 (1.6)	32.7 (1.4)	34.7 (1.8)	36.6 (2.6)	37.7 (3.1)	20-35	<3		77.8	(15.4) ^E	F	
	>70	55	32.1	(1.3)	23.7	(3.0)	25.5 (2.6)	28.6 (2.0)	32.1 (1.7)	35.7 (2.0)	39.0 (2.7)	41.0 (3.2)	20-35	F		69.8	(13.5) ^E	F	
	19+	393	32.5	(0.6)	24.4	(1.4)	26.2 (1.2)	29.2 (1.0)	32.6 (0.8)	36.1 (0.9)	39.3 (1.1)	41.2 (1.4)	20-35	<3		67.1	(6.0)	32.3	(6.1) ^E
Female																			
	9-13	79	29.0	(2.4)	19.4	$(4.2)^{E}$	21.5 (3.9) ^E	24.8 (3.3)	28.2 (2.8)	31.6 (2.4)	34.9 (2.2)	37.1 (2.2)	25-35	F		63.8	(15.1) ^E	F	
	14-18	104	30.5	(1.0)	29.6	(2.5)	30.0 (2.1)	30.6 (1.5)	31.3 (1.3)	32.1 (1.8)	32.7 (2.5)	33.1 (3.0)	25-35	F		100.0	(14.7)	F	
	19-30	101	30.9	(1.8)	22.3	$(4.1)^{E}$	24.5 (3.6)	28.0 (2.8)	31.7 (2.0)	35.0 (1.8)	37.8 (2.0)	39.5 (2.3)	20-35	F		72.6	(11.8)	F	
	31-50	143	30.4	(0.9)	24.4	(1.1)	25.7 (1.1)	27.9 (1.1)	30.4 (1.1)	33.0 (1.1)	35.3 (1.2)	36.7 (1.2)	20-35	<3		88.4	(6.4)	F	
	51-70	193	31.9	(0.9)	27.2	(2.1)	28.3 (1.8)	30.0 (1.4)	31.9 (1.2)	33.9 (1.4)	35.7 (1.9)	36.8 (2.2)	20-35	<3		85.3	(11.5)	F	
	>70	94	30.6	(1.0)	23.5	(1.4)	24.8 (1.3)	27.1 (1.3)	30.1 (1.4)	33.4 (1.7)	36.4 (2.3)	38.4 (2.7)	20-35	<3		83.6	(9.3)	F	
	19+	531	30.9	(0.6)	24.4	(1.5)	25.9 (1.2)	28.4 (0.9)	31.2 (0.7)	33.9 (0.9)	36.4 (1.2)	37.9 (1.4)	20-35	<3		82.2	(6.3)	F	

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 2.5 Percentage of total energy intake from fats, by DRI age-sex group, household population, Quebec, 2004¹

<u> </u>							Percentile	s (and SE) of usu	al intake				% below		% within		% above	
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	AMDR ²	AMDR	(SE)	AMDR	(SE)	AMDR	(SE)
Sex	Age (years)																	
Both																		
	1-3	311	31.5	(0.6)	24.0 (1.3)	25.8 (1.1)	28.7 (0.9)	31.9 (0.7)	35.0 (0.9)	37.7 (1.1)	39.4 (1.2)	30-40	34.7	(6.5) ^E	61.5	(6.3)	F	
	4-8	485	31.9	(0.5)	25.3 (0.8)	26.6 (0.7)	28.9 (0.6)	31.4 (0.5)	34.0 (0.7)	36.5 (0.9)	38.1 (1.1)	25-35	F		78.0	(5.3)	17.8	$(4.7)^{E}$
Male																		
	9-13	277	31.9	(0.7)	26.8 (1.5)	27.9 (1.3)	29.7 (1.0)	31.8 (0.9)	34.0 (1.1)	35.9 (1.5)	37.1 (1.8)	25-35	F		82.9	(9.8)	F	
	14-18	339	32.3	(0.8)	25.1 (1.5)	26.5 (1.4)	29.1 (1.1)	32.0 (1.0)	35.2 (1.3)	38.1 (1.7)	40.0 (2.0)	25-35	F		69.3	(8.0)	26.1	(8.3) ^E
	19-30	237	31.7	(0.8)	24.8 (2.3)	26.3 (2.0)	28.8 (1.6)	31.6 (1.3)	34.4 (1.4)	37.0 (1.8)	38.6 (2.2)	20-35	<3		78.9	(10.5)	F	
	31-50	423	32.4	(1.1)	23.6 (2.1)	25.5 (1.8)	28.7 (1.5)	32.4 (1.3)	36.1 (1.5)	39.4 (1.9)	41.4 (2.2)	20-35	F		67.3	(9.5)	31.9	(9.6) ^E
	51-70	387	32.5	(0.8)	23.7 (1.4)	25.4 (1.2)	28.4 (1.0)	31.9 (0.9)	35.6 (1.0)	38.9 (1.2)	41.0 (1.4)	20-35	<3		70.5	(6.4)	28.7	(6.4) ^E
	>70	132	31.8	(1.0)	24.8 (2.6)	26.4 (2.2)	29.0 (1.6)	31.9 (1.3)	34.7 (1.5)	37.2 (1.9)	38.7 (2.2)	20-35	<3		76.7	(11.6)	F	
	19+	1179	32.2	(0.5)	23.7 (1.0)	25.4 (0.9)	28.6 (0.7)	32.2 (0.6)	35.8 (0.7)	39.0 (0.8)	40.9 (1.0)	20-35	<3		69.5	(4.3)	29.7	(4.4)
Female																		
	9-13	281	31.9	(0.7)	25.7 (1.9)	27.1 (1.6)	29.5 (1.2)	32.2 (1.0)	35.0 (1.2)	37.4 (1.5)	38.9 (1.8)	25-35	F		71.9	(10.2)	F	
	14-18	321	32.4	(0.9)	29.4 (2.4)	30.2 (2.1)	31.5 (1.5)	33.0 (1.2)	34.4 (1.4)	35.6 (1.9)	36.3 (2.2)	25-35	F		83.7	(15.6) ^E	F	
	19-30	249	30.8	(0.9)	25.8 (2.3)	26.8 (2.0)	28.5 (1.5)	30.3 (1.1)	32.2 (1.6)	33.9 (2.3)	34.9 (2.6)	20-35	F		95.2	(8.7)	F	
	31-50	364	32.3	(0.7)	27.2 (2.1)	28.4 (1.8)	30.4 (1.3)	32.6 (0.9)	35.0 (1.1)	37.1 (1.6)	38.4 (1.9)	20-35	<3		75.4	(10.4)	F	
	51-70	467	32.0	(0.6)	24.0 (1.5)	25.9 (1.3)	28.9 (0.9)	32.3 (0.7)	35.6 (0.9)	38.6 (1.2)	40.4 (1.4)	20-35	<3		70.0	(6.3)	29.1	(6.1) ^E
	>70	215	31.3		27.8 (1.8)	28.6 (1.6)	30.0 (1.2)	31.6 (1.1)	33.2 (1.2)	34.7 (1.6)	35.6 (1.9)	20-35	<3			(9.4)	F	
	19+	1295		(0.4)	26.1 (1.0)	27.4 (0.9)	29.5 (0.6)	31.9 (0.5)	34.4 (0.6)	36.7 (0.8)	38.0 (1.0)	20-35	<3			(5.3)	20.1	(5.2) ^E
-	1.7.T	12/3	31.0	(0.7)	20.1 (1.0)	21.4 (0.2)	27.3 (0.0)	31.7 (0.3)	34.4 (0.0)	30.7 (0.0)	30.0 (1.0)	20-33			17.3	(3.3)	20.1	(3.2)

Symbol Legend

- E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 2.6 Percentage of total energy intake from fats, by DRI age-sex group, household population, Ontario, 2004¹

									F	Percentile	es (and S.	E) of usu	al intake							%		%		%	
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	(SE)	75th	(SE)	90th	(SE)	95th	(SE)	AMDR ²	below AMDR	(SE)	within AMDR	(SE)	above AMDR	(SE)
Sex	Age (years)																								
Both																									
	1-3	644	29.3	(0.5)	21.6	(1.3)	23.3	(1.1)	26.2	(0.7)	29.5	(0.6)	32.8	(0.7)	35.7	(1.1)	37.5	(1.3)	30-40	54.3	(4.9)	44.1	(4.5)	F	
	4-8	956	29.2	(0.3)	23.2	(1.1)	24.5	(0.9)	26.7	(0.6)	29.3	(0.4)	31.8	(0.6)	34.1	(0.9)	35.6	(1.2)	25-35	F		80.9	(6.9)	F	
Male																									
	9-13	589	30.0	(0.4)	25.3	(0.4)	26.4	(0.4)	28.1	(0.4)	30.1	(0.4)	32.0	(0.4)	33.7	(0.5)	34.8	(0.5)	25-35	F		91.8	(1.2)	F	
	14-18	639	30.7	(0.4)	27.6	(1.7)	28.3	(1.4)	29.4	(0.8)	30.6	(0.5)	31.9	(0.9)	33.0	(1.5)	33.7	(1.8)	25-35	F		98.9	(8.7)	F	
	19-30	481	30.7	(0.6)	23.2	(2.5)	24.8	(2.0)	27.6	(1.2)	30.6	(0.7)	33.7	(1.2)	36.5	(2.0)	38.2	(2.5)	20-35	F		82.0	(9.5)	F	
	31-50	709	30.8	(0.6)	21.4	(1.4)	23.2	(1.2)	26.8	(0.9)	31.1	(0.7)	35.2	(0.9)	38.6	(1.2)	40.8	(1.5)	20-35	F		71.4	(5.8)	25.9	$(5.2)^{E}$
	51-70	758	30.6	(0.5)	22.7	(1.7)	24.4	(1.4)	27.2	(0.9)	30.4	(0.6)	33.8	(0.8)	37.0	(1.4)	39.0	(1.8)	20-35	F		80.6	(6.4)	18.2	(5.7) ^E
	>70	734	29.7	(0.5)	19.1	(0.9)	21.3	(0.8)	25.1	(0.6)	29.6	(0.6)	34.2	(0.8)	38.3	(1.0)	40.7	(1.2)	20-35	6.7	$(1.7)^{E}$	71.7	(4.5)	21.5	$(3.7)^{E}$
	19+	2682	30.6	(0.3)	21.0	(0.7)	23.0	(0.6)	26.5	(0.5)	30.7	(0.4)	34.9	(0.5)	38.6	(0.7)	40.9	(0.9)	20-35	3.4	$(1.0)^{E}$	72.2	(3.1)	24.4	(2.7)
Female																									
	9-13	585	30.4	(0.5)	25.5	(1.5)	26.6	(1.3)	28.5	(0.8)	30.5	(0.6)	32.7	(0.9)	34.7	(1.4)	35.9	(1.8)	25-35	F		88.3	(8.5)	F	
	14-18	645	30.7	(0.5)	25.4	(0.5)	26.6	(0.5)	28.6	(0.5)	30.8	(0.6)	33.0	(0.6)	35.0	(0.7)	36.3	(0.7)	25-35	F		85.9	(2.9)	F	
	19-30	514	29.6	(0.6)	23.5	(2.0)	24.8	(1.6)	27.0	(1.1)	29.4	(0.8)	32.0	(1.2)	34.3	(1.8)	35.7	(2.3)	20-35	F		92.4	(7.1)	F	
	31-50	758	32.0	(0.6)	24.4	(2.1)	26.1	(1.7)	28.9	(1.1)	31.9	(0.7)	35.0	(1.0)	37.8	(1.7)	39.7	(2.2)	20-35	<3		74.8	(8.3)	24.7	$(8.0)^{E}$
	51-70	955	30.6	(0.5)	23.9	(1.9)	25.5	(1.6)	28.0	(1.0)	30.7	(0.6)	33.7	(0.9)	36.4	(1.5)	37.9	(1.8)	20-35	<3		82.9	(7.2)	F	
	>70	1345	30.3	(0.4)	22.2	(1.2)	24.1	(0.9)	27.1	(0.6)	30.6	(0.5)	34.2	(0.7)	37.4	(1.1)	39.4	(1.4)	20-35	F		78.0	(5.4)	20.2	(4.7) ^E
	19+	3572	31.0	(0.3)	23.2	(0.9)	24.9	(0.7)	27.8	(0.5)	31.0	(0.4)	34.3	(0.5)	37.4	(0.7)	39.2	(0.9)	20-35	<3		78.0	(3.4)	21.0	(3.1)

Symbol Legend

- E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 2.7 Percentage of total energy intake from fats, by DRI age-sex group, household population, Manitoba, 2004¹

									P	Percentiles	(and S	E) of usu	al intake							%		% within		% above	
		n	Mean	(SE)	5th	(SE)	10tł	n (SE)	25th	(SE)	50th	(SE)	75th	(SE)	90th	(SE)	95th ((SE)	AMDR ²	below AMDR	(SE)	AMDR	(SE)	AMDR	(SE)
Sex	Age (years)																								
Both																									
	1-3	324	29.8	(0.5)	25.0	(1.7)	26.1	(1.4)	27.8	(0.9)	29.7	(0.7)	31.7	(0.9)	33.4	(1.4)	34.4	(1.7)	30-40	53.7	(12.8) ^E	46.3	$(12.7)^{E}$	<3	
	4-8	425	30.0	(0.4)	24.7	(1.9)	26.0	(1.5)	28.0	(0.9)	30.2	(0.5)	32.3	(0.9)	34.3	(1.6)	35.4	(2.0)	25-35	F		87.7	(10.0)	F	
Male																									
	9-13	274	30.5	(0.7)	22.7	(1.7)	24.6	(1.4)	27.6	(1.4)	30.7	(0.7)	34.0	(1.2)	37.1	(1.7)	39.1	(2.1)	25-35	F		69.4	(10.7)	F	
	14-18	297	32.3	(0.8)	26.8	(2.1)	28.1	(1.7)	30.3	(1.2)	32.5	(0.9)	34.7	(1.1)	36.7	(1.5)	37.8	(1.8)	25-35	F		75.8	(10.9)	F	
	19-30	249	32.4	(0.9)	24.8	(1.1)	26.4	(1.0)	29.2	(0.9)	32.4	(1.0)	35.9	(1.2)	39.3	(1.4)	41.5	(1.6)	20-35	<3		68.9	(7.2)	30.6	$(7.5)^{E}$
	31-50	309	31.6	(1.0)	24.5	(2.9)	26.4	(2.4)	28.8	(1.7)	31.8	(1.2)	34.9	(1.6)	37.4	(2.3)	39.0	(2.8)	20-35	F		75.2	(12.2)	F	
	51-70	277	31.4	(0.8)	25.0	(2.1)	26.4	(1.8)	28.9	(1.3)	31.7	(1.0)	34.5	(1.2)	37.1	(1.8)	38.7	(2.2)	20-35	<3		78.3	(9.5)	F	
	>70	136	29.1	(0.9)	21.9	(2.0)	23.3	(1.7)	25.7	(1.3)	28.5	(1.0)	31.5	(1.3)	34.4	(2.0)	36.2	(2.4)	20-35	F		90.6	(6.7)	F	
	19+	971	31.5	(0.5)	24.5	(1.5)	26.0	(1.2)	28.6	(0.8)	31.5	(0.6)	34.5	(0.9)	37.2	(1.4)	39.0	(1.7)	20-35	<3		78.3	(6.9)	21.3	$(6.6)^{E}$
Female																									
	9-13	265	29.3	(0.6)	24.8	(0.8)	25.7	(0.8)	27.2	(0.7)	28.9	(0.7)	30.6	(0.7)	32.2	(0.7)	33.1	(0.7)	25-35	F		93.1	(4.0)	F	
	14-18	290	31.3	(1.0)	26.3	(2.6)	27.5	(2.2)	29.5	(1.6)	31.7	(1.3)	34.0	(1.6)	36.1	(2.1)	37.4	(2.6)	25-35	F		81.0	(12.6)	F	
	19-30	197	29.5	(1.1)	23.3	(2.5)	24.6	(2.2)	26.8	(1.7)	29.4	(1.3)	32.2	(1.6)	34.9	(2.3)	36.7	(2.8)	20-35	F		89.7	(9.2)	F	
	31-50	312	32.2	(0.7)	27.3	(0.9)	28.4	(0.9)	30.2	(0.8)	32.2	(0.9)	34.2	(0.9)	36.1	(0.9)	37.3	(1.0)	20-35	0.0	(0.0)	82.3	(7.2)	F	
	51-70	312	31.4	(0.8)	25.7	(1.0)	27.0	(1.0)	29.1	(1.0)	31.5	(1.1)	34.0	(1.1)	36.2	(1.1)	37.4	(1.1)	20-35	<3		83.1	(7.6)	F	
	>70	239	29.3	(0.7)	21.1	(1.4)	22.7	(1.2)	25.4	(1.0)	28.7	(0.8)	32.2	(1.1)	35.5	(1.5)	37.6	(1.9)	20-35	F		85.4	(5.5)	F	
	19+	1060	31.0	(0.4)	25.8	(1.5)	27.0	(1.2)	28.9	(0.8)	31.1	(0.5)	33.4	(0.8)	35.5	(1.4)	36.8	(1.7)	20-35	<3		87.3	(6.7)	F	

Symbol Legend

- E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 2.8 Percentage of total energy intake from fats, by DRI age-sex group, household population, Saskatchewan, 2004¹

								Pe	rcentiles (an	d SE) of	usual intake					%		% within		%	
		n	Mean	(SE)	5th (S	E) 10	th (SE)	25th	(SE) 5	Oth (SE	75th (SE)	90t	h (SE)	95th (SE)	AMDR ²	below AMDR	(SE)	AMDR	(SE)	above AMDR	(SE)
Sex	Age (years)																				
Both																					
	1-3	129	31.8	(0.9)	24.0 (1	.7) 25.	7 (1.5)	28.7	(1.3) 32	.1 (1.2)	35.5 (1.4)	38.6	(1.7)	40.6 (2.0)	30-40	34.0	(9.6) ^E	59.8	(8.7)	F	
	4-8	213	31.7	(0.8)	27.8 (1	.8) 28.	6 (1.5)	30.1 (11.2) 31	.8 (0.9)	33.6 (1.0)	35.2	(1.4)	36.2 (1.7)	25-35	F		88.4	(9.6)	F	
Male																					
	9-13	122	31.5	(1.1)	25.4 (2	.0) 26.	7 (1.8)	28.8 ((1.4) 31	.4 (1.3)	34.0 (1.5)	36.2	(1.8)	37.6 (2.0)	25-35	F		79.0	(10.8)	F	
	14-18	150	31.2	(0.6)	27.0 (1	.0) 28.	0 (1.0)	29.6 (0.9) 31	.4 (0.9)	33.1 (0.9)	34.7	(1.0)	35.6 (1.0)	25-35	F		91.2	(5.4)	F	
	19-30	106	33.2	(1.3)	24.8 (3	.3) 26.	8 (2.7)	30.1 ((2.0) 33	3.6 (1.6)	37.1 (1.8)	40.2	(2.4)	42.1 (3.0)	20-35	F		59.9	(14.6) ^E	F	
	31-50	155	34.2	(1.3)	27.9 (2	.9) 29.	4 (2.4)	31.9 ((1.8) 3 4	1.6 (1.6)	37.2 (2.0)	39.7	(2.6)	41.2 (3.1)	20-35	<3		54.2	$(17.6)^{E}$	F	
	51-70	122	36.0	(1.3)	31.4 (1	.6) 32.	8 (1.6)	35.1 ((1.7) 37	1.5 (1.8)	40.0 (2.0)	42.2	(2.2)	43.5 (2.3)	20-35	0.0	(0.0)	F		75.4	$(16.0)^{E}$
	>70	88	33.4	(1.2)	24.9 (2	.4) 26.	7 (2.1)	29.7 (11.7) 33	3.1 (1.5)	36.4 (1.8)	39.4	(2.3)	41.2 (2.5)	20-35	<3		64.9	$(12.9)^{E}$	F	
	19+	471	34.3	(0.8)	26.5 (2	.0) 28.	4 (1.7)	31.6	(1.3) 3 4	1.9 (1.0)	38.3 (1.1)	41.4	(1.5)	43.3 (1.8)	20-35	<3		50.3	(8.5) ^E	49.4	(8.7) ^E
Female																					
	9-13	103	31.0	(1.1)	28.1 (2	.4) 28.	8 (2.1)	30.1 ((1.7) 31	.5 (1.5)	32.9 (1.8)	34.2	(2.3)	34.9 (2.7)	25-35	F		95.3	(17.2) ^E	F	
	14-18	142	29.6	(0.9)	24.7 (1	.9) 25.	5 (1.6)	27.0 ((1.3) 28	3.7 (1.4 ₂	30.4 (1.9)	32.0	(2.5)	33.0 (3.0)	25-35	F		92.3	(13.1)	F	
	19-30	111	31.7	(0.9)	29.1 (3	.6) 29.	7 (2.9)	30.7 ((1.8) 3 1	.8 (1.2)	33.0 (1.7)	34.0	(2.6)	34.5 (3.2)	20-35	<3		97.3	(17.4) ^E	F	
	31-50	146	31.7	(0.9)	23.7 (1	.8) 25.	3 (1.6)	27.9 ((1.2) 31	.1 (1.2)	34.5 (1.5)	37.7	(2.0)	39.6 (2.4)	20-35	<3		77.7	(9.3)	F	
	51-70	184	33.1	(0.8)	27.6 (1	.9) 28.	7 (1.7)	30.7	(1.3) 3 3	3.0 (1.2 ₎	35.3 (1.5)	37.5	(2.0)	38.8 (2.4)	20-35	<3		71.9	$(14.0)^{E}$	F	
	>70	143	29.6	(1.1)	22.5 (2	.7) 24.	2 (2.3)	26.9 ((1.7) 29	.9 (1.4)	32.8 (1.7)	35.7	(2.4)	37.6 (2.9)	20-35	F		85.8	(9.3)	F	
	19+	584	31.8	(0.5)	24.9 (1	.2) 26.	3 (1.0)	28.8 ((0.8) 31	.5 (0.7)	34.4 (0.8)	37.1	(1.1)	38.7 (1.3)	20-35	<3		78.8	(6.2)	21.0	$(6.2)^{E}$

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 2.9 Percentage of total energy intake from fats, by DRI age-sex group, household population, Alberta, 2004¹

						Percentile	es (and SE) of usu	ıal intake				%		%		%	
		n	Mean (SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	AMDR ²	below AMDR	(SE)	within AMDR	(SE)	above AMDR	(SE)
Sex	Age (years)																
Both																	
	1-3	169	30.3 (1.1)	22.0 (2.1)	23.5 (1.8)	26.4 (1.4)	29.8 (1.2)	33.6 (1.7)	37.1 (2.5)	39.2 (3.0)	30-40	51.2	$(11.6)^{E}$	45.0	$(10.7)^{E}$	F	
	4-8	281	30.1 (0.6)	25.8 (1.8)	26.8 (1.5)	28.4 (1.0)	30.2 (0.7)	32.0 (0.9)	33.7 (1.3)	34.6 (1.6)	25-35	F		93.8	(8.6)	F	
Male																	
	9-13	183	30.6 (0.7)	24.1 (2.1)	25.4 (1.8)	27.8 (1.3)	30.6 (0.9)	33.4 (1.1)	36.0 (1.7)	37.6 (2.1)	25-35	F		77.4	(10.7)	F	
	14-18	187	31.2 (0.9)	24.1 (2.5)	25.6 (2.1)	28.1 (1.4)	30.9 (1.0)	33.9 (1.4)	36.8 (2.1)	38.5 (2.5)	25-35	F		73.9	(12.2)	F	
	19-30	223	30.1 (0.9)	22.4 (2.3)	24.0 (2.0)	26.9 (1.4)	30.2 (1.1)	33.4 (1.6)	36.2 (2.3)	37.8 (2.8)	20-35	F		83.6	(10.1)	F	
	31-50	229	31.7 (1.4)	25.8 (3.0)	27.0 (2.5)	29.0 (1.8)	31.3 (1.6)	33.7 (2.2)	35.8 (3.1)	37.1 (3.8)	20-35	F		85.4	(14.8) ^E	F	
	51-70	197	30.1 (1.5)	23.3 (3.6)	24.9 (3.0)	27.5 (2.2)	30.4 (1.6)	33.3 (2.0)	35.9 (2.8)	37.6 (3.4)	20-35	F		84.7	(13.9)	F	
	>70	72	32.2 (2.1)	20.6 (4.5) ^E	22.9 (3.9) ^E	26.8 (3.0)	31.4 (2.2)	36.1 (2.7)	40.5 (3.8)	43.1 (4.6)	20-35	F		65.7	$(14.8)^{E}$	F	
	19+	721	31.0 (0.8)	21.2 (1.9)	23.2 (1.6)	26.8 (1.1)	30.9 (0.9)	35.0 (1.2)	38.7 (1.6)	40.9 (1.9)	20-35	F		71.7	(7.1)	25.1	(6.3) ^E
Female																	
	9-13	165	28.9 (0.8)	21.8 (1.7)	23.2 (1.5)	25.6 (1.2)	28.4 (1.0)	31.4 (1.2)	34.3 (1.6)	36.0 (2.0)	25-35	F		71.8	(9.9)	F	
	14-18	206	30.5 (0.7)	24.2 (2.0)	25.6 (1.7)	27.8 (1.2)	30.2 (0.9)	32.7 (1.2)	35.1 (1.7)	36.5 (2.1)	25-35	F		82.3	(10.2)	F	
	19-30	191	31.0 (1.4)	23.0 (3.0)	24.8 (2.5)	27.8 (1.9)	31.0 (1.6)	34.1 (1.8)	36.9 (2.3)	38.5 (2.8)	20-35	F		79.5	(12.1)	F	
	31-50	258	33.6 (1.0)	28.0 (2.7)	29.3 (2.3)	31.4 (1.6)	33.7 (1.3)	35.9 (1.5)	37.7 (1.9)	38.8 (2.3)	20-35	<3		65.5	(15.1) ^E	F	
	51-70	249	32.8 (0.9)		26.5 (2.5)	29.5 (1.9)	32.8 (1.0)	36.0 (2.2)	38.9 (3.7)	40.6 (4.6)	20-35	F			$(11.9)^{E}$	F	
	>70	128	29.4 (1.1)		23.8 (2.1)	26.4 (1.7)	29.2 (1.5)	32.0 (1.5)	34.6 (1.8)	36.1 (1.9)	20-35	F			(7.8)	F	
	19+	826	32.4 (0.6)	, ,		, ,	. ,	, ,	, ,	. ,	20-35	<3			(6.2)	20.5	(6.1) ^E
	19+	020	32.4 (0.0)	24.2 (1.4)	26.0 (1.2)	29.0 (0.9)	32.3 (0.7)	35.7 (0.9)	38.6 (1.1)	40.3 (1.3)	20-33	<3		09.8	(0.2)	49.5	(0.1)

Symbol Legend

- E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 2.10 Percentage of total energy intake from fats, by DRI age-sex group, household population, British Columbia, 2004¹

									F	Percentil	es (and S	E) of usu	ıal intake	:						%		% within		%	
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	(SE)	75th	(SE)	90th	(SE)	95th	(SE)	AMDR ²	below AMDR	(SE)		(SE)	above AMDR	(SE)
Sex	Age (years)																								
Both																									
	1-3	192	30.9	(1.1)	24.7	(2.1)	25.9	(1.9)	28.0	(1.6)	30.5	(1.5)	33.3	(1.6)	35.8	(2.0)	37.3	(2.3)	30-40	F		54.5	$(16.6)^{E}$	F	
	4-8	321	29.8	(0.6)	24.2	(0.8)	25.4	(0.8)	27.5	(0.9)	29.9	(0.9)	32.4	(1.0)	34.7	(1.0)	36.1	(1.1)	25-35	F		83.1	(2.8)	F	
Male																									
	9-13	226	31.9	(0.9)	26.6	(1.8)	27.9	(1.6)	29.9	(1.3)	32.2	(1.1)	34.5	(1.2)	36.5	(1.5)	37.8	(1.8)	25-35	F		77.9	(10.6)	F	
	14-18	262	31.9	(0.8)	30.5	(3.0)	30.8	(2.5)	31.4	(1.6)	32.0	(1.1)	32.7	(1.4)	33.2	(2.2)	33.6	(2.6)	25-35	F		100.0	(15.2)	F	
	19-30	197	31.3	(0.9)	26.0	(2.0)	27.2	(1.7)	29.1	(1.3)	31.3	(1.2)	33.5	(1.4)	35.5	(1.8)	36.7	(2.1)	20-35	<3		87.1	(9.5)	F	
	31-50	282	31.5	(0.8)	25.8	(2.2)	26.9	(1.8)	29.0	(1.3)	31.4	(1.1)	33.7	(1.4)	35.8	(1.9)	36.9	(2.3)	20-35	<3		85.2	(10.4)	F	
	51-70	234	32.1	(0.9)	25.0	(2.0)	26.5	(1.7)	29.2	(1.3)	32.3	(1.1)	35.5	(1.4)	38.5	(1.9)	40.3	(2.4)	20-35	<3		71.5	(10.0)	F	
	>70	119	30.4	(1.2)	21.4	(1.8)	23.2	(1.7)	26.4	(1.5)	30.3	(1.6)	34.3	(1.9)	37.9	(2.1)	40.1	(2.3)	20-35	F		76.0	(9.1)	F	
	19+	832	31.5	(0.5)	24.0	(1.0)	25.6	(0.9)	28.3	(0.8)	31.5	(0.6)	34.8	(0.7)	37.8	(0.9)	39.5	(1.0)	20-35	<3		75.5	(2.8)	24.0	(4.8) ^E
Female																									
	9-13	226	30.0	(0.6)	25.0	(1.4)	26.1	(1.2)	27.9	(0.9)	29.9	(0.8)	31.9	(1.0)	33.8	(1.4)	34.9	(1.7)	25-35	F		90.4	(6.9)	F	
	14-18	242	30.2	(0.9)	21.5	(2.1)	23.5	(1.8)	26.7	(1.3)	30.2	(1.1)	33.8	(1.3)	37.3	(1.8)	39.4	(2.2)	25-35	F		65.3	(10.0)	F	
	19-30	208	31.4	(1.1)	27.6	(3.0)	28.5	(2.6)	29.9	(1.9)	31.4	(1.4)	33.0	(1.5)	34.4	(2.1)	35.4	(2.5)	20-35	<3		93.3	(10.6)	F	
	31-50	263	31.4	(1.1)	23.8	(2.1)	25.6	(1.9)	28.8	(1.5)	32.3	(1.3)	35.7	(1.5)	38.7	(2.1)	40.5	(2.5)	20-35	F		69.9	(10.3)	F	
	51-70	322	30.2	(1.1)	19.6	(2.7)	21.9	(2.3)	25.8	(1.8)	30.2	(1.3)	34.6	(1.7)	38.7	(2.9)	41.1	(3.9)	20-35	F		71.1	(8.9)	23.2	(7.7) ^E
	>70	198	29.3	(0.8)	21.2	(1.5)	22.8	(1.3)	25.5	(1.1)	28.7	(1.0)	31.9	(1.3)	35.0	(1.7)	36.8	(2.0)	20-35	F		87.4	(6.2)	F	
	19+	991	30.8		22.3	. ,	24.2		27.2		30.8		34.7	, ,	38.1	, ,		(1.4)	20-35	F			$(23.5)^{E}$	23.2	(4.9) ^E

Symbol Legend

- E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 2.11 Percentage of total energy intake from fats, by DRI age-sex group, household population, Atlantic Region, 2004¹

						Percentile	es (and SE) of usi	ual intake				%		%		%	
		n	Mean (SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	AMDR ²	below AMDR	(SE)	within AMDR	(SE)	above AMDR	(SE)
Sex	Age (years)																
Both																	
	1-3	348	30.6 (0.6)	24.9 (1.2)	26.1 (1.0)	28.2 (0.8)	30.5 (0.8)	32.9 (0.9)	35.1 (1.0)	36.4 (1.2)	30-40	43.8	$(8.8)^{E}$	55.8	(8.7)	<3	
	4-8	554	30.4 (0.4)	26.6 (1.3)	27.4 (1.1)	28.9 (0.7)	30.4 (0.5)	32.0 (0.7)	33.5 (1.1)	34.4 (1.3)	25-35	F		96.0	(4.4)	F	
Male																	
	9-13	409	32.3 (1.1)	27.1 (1.8)	28.2 (1.6)	30.4 (1.3)	32.6 (1.3)	34.9 (1.8)	37.2 (2.4)	38.6 (2.8)	25-35	F		74.9	(13.9) ^E	F	
	14-18	414	32.5 (0.6)	27.1 (1.2)	28.3 (1.0)	30.4 (0.8)	32.6 (0.8)	34.8 (0.9)	36.8 (1.0)	38.0 (1.2)	25-35	F		75.3	(8.2)	F	
	19-30	311	32.1 (0.9)	26.3 (1.6)	27.6 (1.4)	29.9 (1.1)	32.5 (1.0)	35.0 (1.2)	37.3 (1.5)	38.7 (1.8)	20-35	<3		75.1	(10.2)	F	
	31-50	489	32.7 (0.6)	25.6 (1.2)	27.1 (1.1)	29.7 (0.9)	32.6 (0.8)	35.4 (1.0)	37.9 (1.2)	39.4 (1.3)	20-35	<3		71.4	(7.9)	28.4	(7.9) ^E
	51-70	575	31.4 (0.8)	23.3 (1.1)	24.9 (1.1)	27.7 (1.0)	31.1 (1.0)	34.4 (0.9)	37.5 (0.9)	39.3 (0.9)	20-35	<3		77.7	(5.2)	21.5	(5.6) ^E
	>70	239	30.7 (0.8)	22.9 (1.8)	24.7 (1.6)	27.7 (1.3)	30.9 (1.0)	34.2 (1.3)	37.2 (1.6)	38.9 (1.8)	20-35	F		78.1	(7.8)	F	
	19+	1614	32.0 (0.4)	24.8 (0.8)	26.4 (0.7)	29.0 (0.5)	31.9 (0.5)	34.9 (0.6)	37.6 (0.7)	39.2 (0.9)	20-35	<3		75.6	(4.2)	24.2	$(4.2)^{E}$
Female																	
	9-13	355	30.0 (0.8)	22.5 (2.0)	24.0 (1.7)	26.6 (1.3)	29.4 (1.0)	32.4 (0.9)	35.1 (1.1)	36.7 (1.3)	25-35	F		75.1	(7.9)	F	
	14-18	410	29.8 (0.8)	24.8 (2.0)	25.9 (1.6)	27.8 (1.2)	29.8 (1.0)	31.7 (1.2)	33.4 (1.7)	34.4 (2.0)	25-35	F		91.0	(7.8)	F	
	19-30	384	32.0 (1.0)	24.7 (1.9)	26.5 (1.6)	29.5 (1.3)	32.7 (1.1)	35.9 (1.3)	38.7 (1.5)	40.4 (1.7)	20-35	<3		68.1	(9.4)	31.3	(9.4) E
	31-50	585	32.9 (0.6)	25.6 (1.4)	27.2 (1.2)	29.8 (0.9)	32.7 (0.8)	35.6 (0.8)	38.1 (1.1)	39.6 (1.2)	20-35	<3		70.3	(6.9)	29.5	(6.9) E
	51-70	711	32.1 (0.6)	24.2 (1.1)	25.8 (1.0)	28.6 (0.8)	32.0 (0.8)	35.5 (0.9)	38.7 (1.1)	40.7 (1.2)	20-35	<3			(5.7)		(5.8) E
	>70	342	30.8 (1.0)	24.1 (1.5)	25.5 (1.4)	28.1 (1.4)	31.2 (1.4)	34.3 (1.5)	37.2 (1.7)	38.9 (1.8)	20-35	<3			(8.8)	20.0 F	
		2022		, ,	, ,	, ,		, ,							, í	20.0	(2.5)
	19+	2022	32.2 (0.4)	24.5 (0.7)	26.2 (0.6)	29.1 (0.5)	32.4 (0.5)	35.7 (0.5)	38.8 (0.6)	40.6 (0.7)	20-35	<3		09.7	(3.5)	29.8	(3.5)

Symbol Legend

- E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 2.12 Percentage of total energy intake from fats, by DRI age-sex group, household population, Prairie Region, 2004¹

								Percenti	les (and SE) of	usual intake				%		% within		% above	
		n	Mean	(SE)	5th (SE	10th (SE) 25	h (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	AMDR ²	below AMDR	(SE)	AMDR	(SE)	AMDR	(SE)
Sex	Age (years)																		
Both																			
	1-3	622	30.4	(0.7)	23.7 (1.3) 25.1 (1	.1) 27.	(0.9)	30.3 (0.8)	33.1 (1.0)	35.8 (1.4)	37.3 (1.7)	30-40	47.3	(8.6) ^E	51.4	(8.2)	F	
	4-8	919	30.3	(0.4)	25.1 (1.4	26.3 (1	.1) 28.2	2 (0.7)	30.4 (0.5)	32.7 (0.7)	34.7 (1.1)	35.9 (1.4)	25-35	F		86.8	(7.0)	F	
Male																			
	9-13	579	30.7	(0.5)	23.8 (0.9	25.2 (0	(a.8) 27. 8	(0.7)	30.7 (0.6)	33.7 (0.7)	36.5 (0.8)	38.3 (1.0)	25-35	F		74.0	(4.8)	17.0	(4.2) ^E
	14-18	634	31.4	(0.6)	26.4 (1.4	27.5 (1	.2) 29. .	(0.8)	31.3 (0.7)	33.4 (0.9)	35.3 (1.2)	36.5 (1.5)	25-35	F		86.6	(8.0)	F	
	19-30	578	31.1	(0.7)	23.2 (1.9	24.9 (1	.6) 27.8	3 (1.1)	31.2 (0.8)	34.5 (1.1)	37.6 (1.6)	39.5 (2.0)	20-35	<3		76.8	(8.0)	F	
	31-50	693	32.1	(0.9)	24.1 (2.4	25.7 (2	.0) 28.	(1.4)	31.8 (1.1)	35.1 (1.5)	38.2 (2.1)	40.0 (2.6)	20-35	F		73.6	(10.8)	F	
	51-70	596	31.5	(0.9)	25.3 (2.7	26.8 (2	(.2) 29.	2 (1.5)	31.9 (1.1)	34.7 (1.4)	37.1 (2.1)	38.6 (2.5)	20-35	F		77.3	(11.2)	F	
	>70	296	31.7	(1.1)	21.8 (2.2	23.7 (2	27.	(1.6)	31.0 (1.2)	35.0 (1.5)	38.8 (2.1)	41.1 (2.4)	20-35	F		72.6	(8.4)	25.0	(7.8) ^E
	19+	2163	31.7	(0.5)	22.6 (1.1	24.6 (0	(.9) 27. 9	(0.7)	31.7 (0.6)	35.5 (0.7)	38.9 (0.9)	41.0 (1.0)	20-35	F		70.3	(4.1)	28.1	(3.9)
Female																			
	9-13	533	29.4	(0.5)	24.9 (1.4	25.8 (1	.2) 27.	(0.8)	29.1 (0.7)	30.9 (0.9)	32.5 (1.3)	33.5 (1.6)	25-35	F		93.1	(6.6)	F	
	14-18	638	30.5	(0.5)	24.0 (1.3	25.4 (1	.1) 27.	(0.8)	30.2 (0.7)	32.8 (0.9)	35.2 (1.2)	36.6 (1.5)	25-35	F		80.9	(7.5)	F	
	19-30	499	30.8	(0.9)	24.3 (2.1) 25.7 (1	.8) 28.	(1.4)	30.8 (1.1)	33.5 (1.2)	35.9 (1.6)	37.4 (2.0)	20-35	<3		85.0	(8.5)	F	
	31-50	716	33.0	(0.6)	27.5 (2.0) 28.7 (1	.7) 30.	(1.2)	32.9 (0.9)	35.1 (1.1)	37.0 (1.6)	38.2 (1.9)	20-35	<3		74.0	(11.6)	F	
	51-70	745		(0.6)	26.6 (2.2			(1.5)	32.4 (0.7)		37.0 (2.9)	38.3 (3.7)	20-35	F			(10.6)	F	
	>70	510	29.4		21.5 (1.2			(0.9)	29.1 (0.8)		35.4 (1.1)	37.2 (1.2)	20-35	F			(4.7)	F	
	19+	2470		(0.4)	24.7 (0.9	,	,	(0.6)	31.9 (0.5)	, ,	37.6 (0.7)	39.2 (0.8)	20-35	<3			(4.1)	24.8	(4.1)
	1.7T	4470	34.0	(0.4)	47. 1 (0.9	<i>)</i> 20.3 (0	20.	(0.0)	31.9 (0.3)	33.0 (0.0)	37.0 (0.7)	33.4 (0.0)	20-33	\ \sigma		14.9	(4.1)	44.0	(4.1)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 2.13 Percentage of total energy intake from fats, by DRI age-sex group, household population, Canada excluding territories, 2004¹

						Percentile	es (and SE) of usi	ıal intake				%		%		%	
		n	Mean (SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	AMDR ²	below AMDR	(SE)	within AMDR	(SE)	above AMDR	(SE)
Sex	Age (years)																
Both																	
	1-3	2117	30.3 (0.3)	23.4 (0.6)	24.9 (0.5)	27.4 (0.4)	30.3 (0.4)	33.2 (0.4)	35.8 (0.5)	37.4 (0.6)	30-40	47.0	(3.4)	51.7	(3.3)	<3	
	4-8	3235	30.1 (0.2)	24.9 (0.6)	26.0 (0.5)	27.9 (0.3)	30.1 (0.2)	32.3 (0.3)	34.3 (0.5)	35.5 (0.6)	25-35	5.5	$(1.8)^{E}$	87.7	(3.4)	6.8	$(2.0)^{E}$
Male																	
	9-13	2080	31.0 (0.3)	25.7 (0.6)	26.9 (0.5)	28.8 (0.4)	30.9 (0.3)	33.1 (0.4)	35.1 (0.6)	36.4 (0.7)	25-35	F		86.3	(3.6)	10.8	$(3.0)^{E}$
	14-18	2288	31.5 (0.3)	26.2 (0.7)	27.3 (0.6)	29.2 (0.4)	31.3 (0.4)	33.5 (0.4)	35.6 (0.6)	36.9 (0.7)	25-35	F		84.4	(3.9)	13.4	$(3.4)^{E}$
	19-30	1804	31.2 (0.4)	24.5 (1.0)	25.9 (0.8)	28.4 (0.6)	31.2 (0.5)	34.0 (0.6)	36.6 (0.8)	38.1 (1.0)	20-35	<3		81.7	(4.5)	18.0	$(4.4)^E$
	31-50	2596	31.6 (0.4)	22.9 (0.7)	24.7 (0.7)	27.9 (0.5)	31.7 (0.5)	35.4 (0.5)	38.7 (0.7)	40.6 (0.8)	20-35	<3		71.2	(3.4)	27.5	(3.3)
	51-70	2550	31.5 (0.3)	23.5 (0.8)	25.2 (0.7)	28.1 (0.5)	31.4 (0.4)	34.7 (0.5)	37.7 (0.7)	39.5 (0.8)	20-35	<3		76.2	(3.3)	23.0	(3.2)
	>70	1520	30.7 (0.4)	21.2 (0.7)	23.2 (0.7)	26.6 (0.5)	30.5 (0.5)	34.5 (0.5)	38.1 (0.7)	40.2 (0.8)	20-35	3.1	$(1.0)^{E}$	74.6	(3.0)	22.3	(2.9)
	19+	8470	31.4 (0.2)	22.9 (0.4)	24.7 (0.4)	27.9 (0.3)	31.4 (0.3)	35.0 (0.3)	38.2 (0.4)	40.1 (0.4)	20-35	1.2	$(0.3)^{E}$	73.9	(1.8)	24.8	(1.8)
Female	:																
	9-13	1980	30.5 (0.3)	24.5 (0.6)	25.8 (0.5)	28.1 (0.4)	30.5 (0.4)	33.1 (0.4)	35.4 (0.6)	36.9 (0.7)	25-35	6.5	$(2.0)^{E}$	81.4	(3.7)	12.1	$(2.9)^{E}$
	14-18	2256	30.9 (0.3)	25.2 (0.9)	26.4 (0.7)	28.6 (0.5)	31.0 (0.4)	33.4 (0.5)	35.5 (0.8)	36.8 (0.9)	25-35	F		82.6	(5.3)	12.9	$(4.1)^{E}$
	19-30	1854	30.5 (0.4)	23.9 (0.9)	25.3 (0.8)	27.6 (0.6)	30.2 (0.5)	32.9 (0.6)	35.3 (0.8)	36.8 (1.0)	20-35	<3		88.4	(4.1)	F	
	31-50	2686	32.2 (0.3)	25.0 (0.8)	26.6 (0.7)	29.3 (0.5)	32.4 (0.4)	35.4 (0.5)	38.1 (0.6)	39.8 (0.7)	20-35	<3		71.7	(3.4)	28.0	(3.4)
	51-70	3200	31.3 (0.3)	23.6 (0.7)	25.3 (0.6)	28.2 (0.4)	31.3 (0.4)	34.7 (0.4)	37.8 (0.6)	39.6 (0.7)	20-35	<3			(2.9)		(2.8)
	>70	2610	30.3 (0.3)	22.8 (0.6)	24.4 (0.5)	27.2 (0.4)	30.3 (0.4)	33.5 (0.4)	36.5 (0.6)	38.4 (0.7)	20-35	<3			(2.6)		(2.5)
	19+				, ,	, ,		, ,	, ,		20-35		$(0.2)^{E}$				
	19+	10350	31.4 (0.2)	23.9 (0.4)	25.6 (0.3)	28.3 (0.2)	31.4 (0.2)	34.7 (0.3)	37.6 (0.3)	39.3 (0.4)	20-35	0.0	(0.2)	/0.5	(1.7)	22.8	(1.7)

Symbol Legend

- E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

3. Percentage of total energy intake from protein

Table 3.1 Percentage of total energy intake from protein, by DRI age-sex group, household population, Newfoundland and Labrador, 2004¹

									Percentil	es (and S.	E) of usu	al intake							%		%		%	
		n	Mean	(SE)	5th	(SE)	10th (S.	E) 2	25th (SE)	50th	(SE)	75th ((SE)	90th	(SE)	95th	(SE)	AMDR ²	below AMDR	(SE)	within AMDR	(SE)	above AMDR	(SE)
Sex	Age (years)																							
Both																								
	1-3	79	14.5	(0.8)	10.9	(0.9)	11.6 (0.5	9) 12	2.9 (1.0)	14.4	(1.0)	15.9 (1.1)	17.2	(1.1)	18.0	(1.2)	5-20	0.0	(0.0)	99.4	(1.8)	F	
	4-8	127	13.2	(0.6)	9.7	(0.6)	10.2 (0.0	5) 1 1	1.2 (0.6)	12.5	(0.7)	14.0 (0	0.9)	15.7	(1.3)	17.0	(1.7)	10-30	F		92.3	(5.0)	<3	
Male																								
	9-13	111	14.6	(0.9)	9.8	(1.0)	10.8 (0.9)	9) 12	2.4 (0.8)	14.4	(0.9)	16.7 (1.3)	19.1	(1.8)	20.7	(2.2)	10-30	F		94.3	(3.8)	<3	
	14-18	107	14.0	(0.6)	10.4	(0.9)	11.0 (0.0	8) 12	2.2 (0.7)	13.6	(0.7)	15.2 (0.8)	16.7	(1.1)	17.6	(1.3)	10-30	F		96.9	(4.0)	<3	
	19-30	77	17.0	(0.8)	12.4	(1.2)	13.3 (1	1) 15	5.0 (1.0)	16.8	(1.0)	18.9 (1.3)	21.4	(1.8)	23.0	(2.1)	10-35	<3		99.6	(0.8)	<3	
	31-50	145	17.2	(1.1)	14.0	(1.5)	14.6 (1	3) 15	5.5 (1.1)	16.6	(1.1)	17.7 (1.4)	18.9	(1.8)	19.6	(2.2)	10-35	<3		100.0	(1.1)	<3	
	51-70	182	17.2	(0.6)	13.2	(0.6)	13.9 (0.0	5) 15	5.2 (0.6)	16.7	(0.7)	18.3 (0.8)	19.9	(0.9)	21.0	(0.9)	10-35	<3		100.0	(0.0)	0.0	(0.0)
	>70	63	18.9	(1.2)	15.3	(1.7)	16.0 (1.1	7) 17	7.5 (1.6)	19.3	(1.6)	21.3 (1.8)	23.3	(2.3)	24.6	(2.6)	10-35	<3		100.0	(0.3)	<3	
	19+	467	17.3	(0.5)	13.6	(1.0)	14.3 (0.0	8) 15	5.5 (0.7)	17.0	(0.6)	18.5 (0.7)	20.0	(0.9)	21.0	(1.2)	10-35	<3		100.0	(0.3)	0.0	(0.0)
Female																								
	9-13	96	13.4	(0.8)	10.3	(1.2)	10.9 (1.	<i>l</i>) 1 1	1.8 (1.0)	13.0	(0.9)	14.3 (1.0)	15.6	(1.2)	16.5	(1.5)	10-30	F		96.9	(6.2)	<3	
	14-18	105	14.3	(0.7)	11.5	(1.5)	12.2 (1	3) 13	3.2 (1.0)	14.3	(0.8)	15.5 (6	0.9)	16.7	(1.3)	17.5	(1.7)	10-30	F		99.5	(4.3)	<3	
	19-30	91	14.5	(0.7)	12.4	(1.7)	12.7 (1	4) 13	3.3 (1.1)	13.9	(0.9)	14.6 (1.0)	15.2	(1.4)	15.5	(1.8)	10-35	F		100.0	(4.0)	0.0	(0.0)
	31-50	167	17.7	(0.9)	13.5	(1.3)	14.3 (1.3	2) 15	5.7 (1.1)	17.3	(1.1)	19.2	1.3)	21.1	(1.6)	22.3	(1.8)	10-35	<3		100.0	(0.4)	<3	
	51-70	198	19.6	(1.1)	14.2	(1.7)	15.1 (1	5) 10	5.6 (1.2)	18.6	(1.1)	21.0 (1.6)	23.6	(2.4)	25.4	(3.0)	10-35	<3		100.0	(0.9)	<3	
	>70	74	17.0	(0.8)	14.2	(0.8)	14.7 (0.0	8) 15	5.6 (0.9)	16.7	(1.0)	17.9 (1.1)	19.1	(1.3)	19.9	(1.4)	10-35	0.0	(0.0)	100.0	(0.0)	0.0	(0.0)
	19+	530	17.6	(0.5)	13.3	(0.8)	14.1 (0.1	7) 15	5.6 (0.6)	17.3	(0.5)	19.3 (6	0.7)	21.4	(1.0)	22.8	(1.3)	10-35	<3		100.0	(0.3)	<3	

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 3.2 Percentage of total energy intake from protein, by DRI age-sex group, household population, Prince Edward Island, 2004¹

•									F	Percentiles	s (and S	E) of usu	al intake	;						%		%		%	
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	(SE)	75th	(SE)	90th	(SE)	95th	(SE)	AMDR ²	below AMDR	(SE)	within AMDR	(SE)	above AMDR	(SE)
Sex	Age (years)																								
Both																									
	1-3	58	14.7	(0.6)	13.8	(2.0)	14.0	(1.7)	14.5	(1.3)	14.9	(0.9)	15.4	(0.9)	15.8	(1.2)	16.1	(1.5)	5-20	0.0	(0.0)	100.0	(0.8)	<3	
	4-8	110	13.7	(0.4)	12.2	(0.7)	12.5	(0.6)	13.0	(0.5)	13.5	(0.5)	14.1	(0.6)	14.7	(0.8)	15.1	(1.0)	10-30	<3		100.0	(0.4)	0.0	(0.0)
Male																									
	9-13	95	14.7	(0.5)	11.3	(1.0)	11.9	(0.9)	13.0	(0.8)	14.3	(0.8)	15.8	(0.8)	17.2	(1.0)	18.1	(1.2)	10-30	F		99.3	(1.6)	0.0	(0.0)
	14-18	87	15.5	(0.6)	11.1	(1.0)	11.8	(0.9)	13.2	(0.8)	15.0	(0.8)	17.1	(1.0)	19.4	(1.5)	20.9	(1.9)	10-30	F		98.8	(1.2)	<3	
	19-30	70	16.1	(0.7)	14.2	(1.3)	14.6	(1.2)	15.3	(1.0)	16.1	(0.9)	17.0	(0.9)	17.9	(1.2)	18.4	(1.5)	10-35	<3		100.0	(0.2)	0.0	(0.0)
	31-50	109	16.3	(0.8)	12.8	(1.2)	13.4	(1.2)	14.5	(1.1)	15.8	(1.1)	17.2	(1.2)	18.5	(1.4)	19.3	(1.6)	10-35	<3		100.0	(0.9)	0.0	(0.0)
	51-70	128	16.8	(0.7)	11.7	(1.1)	12.5	(1.0)	13.9	(0.9)	15.8	(0.9)	18.0	(1.2)	20.4	(1.8)	22.0	(2.4)	10-35	<3		99.6	(1.1)	<3	
	>70	65	15.6	(0.7)	11.9	(1.1)	12.5	(1.0)	13.5	(0.8)	14.8	(0.8)	16.2	(1.0)	17.8	(1.4)	18.8	(1.7)	10-35	<3		99.8	(1.2)	<3	
	19+	372	16.3	(0.5)	11.9	(0.6)	12.6	(0.6)	14.0	(0.6)	15.8	(0.6)	17.8	(0.7)	19.8	(1.0)	21.1	(1.1)	10-35	<3		99.6	(0.5)	0.0	(0.0)
Female																									
	9-13	75	14.6	(0.8)	9.8	(1.5)	10.8	(1.4)	12.4	(1.2)	14.2	(1.2)	16.1	(1.2)	17.9	(1.4)	18.9	(1.6)	10-30	F		94.3	(5.1)	<3	
	14-18	81	13.6	(0.6)	9.3	(1.2)	10.1	(1.0)	11.5	(0.9)	13.1	(0.8)	14.8	(1.0)	16.3	(1.3)	17.3	(1.6)	10-30	F		90.7	(6.9)	<3	
	19-30	101	15.6	(0.9)	11.5	(1.2)	12.3	(1.1)	13.7	(1.1)	15.4	(1.2)	17.0	(1.4)	18.6	(1.7)	19.6	(2.0)	10-35	F		99.0	(1.7)	0.0	(0.0)
	31-50	116	16.1	(0.7)	13.3	(0.9)	13.9	(0.9)	14.9	(0.9)	16.0	(0.8)	17.1	(0.8)	18.1	(0.8)	18.7	(0.9)	10-35	<3		100.0	(0.1)	0.0	(0.0)
	51-70	146	17.6	(0.6)	13.8	(1.2)	14.6	(1.1)	16.0	(0.9)	17.6	(0.8)	19.3	(0.9)	21.0	(1.2)	22.0	(1.5)	10-35	<3		100.0	(0.2)	<3	
	>70	94		(0.5)	12.9	(1.0)	13.5	(0.9)	14.6	(0.7)	15.8	(0.6)	17.1	(0.7)	18.4	(0.9)	19.3	(1.2)	10-35	<3		100.0	(0.3)	0.0	(0.0)
	19+	457	16.5	(0.4)	13.0	(0.6)	13.6	(0.6)	14.8	(0.5)	16.3	(0.5)	17.8	(0.6)	19.1	(0.8)	20.0		10-35	<3		100.0	(0.1)	0.0	(0.0)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 3.3 Percentage of total energy intake from protein, by DRI age-sex group, household population, Nova Scotia, 2004¹

							Percen	iles (and SE) of us	ual intake				%	% within		% above	
		n	Mean (SE)	5th (SE	10th	(SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	AMDR ²	below AMDR		(SE)	AMDR	(SE)
Sex	Age (years)																
Both																	
	1-3	112	15.2 (0.9)	11.7 (0.6	12.3	(0.7)	13.4 (0.8)	14.9 (1.0)	16.6 (1.4)	18.4 (1.9)	19.7 (2.3)	5-20	0.0	(0.0) 95.7	(5.4)	F	
	4-8	177	14.3 (0.4)	11.3 (0.8	11.8	(0.7)	12.9 (0.6)	14.2 (0.5)	15.6 (0.6)	17.0 (0.9)	17.9 (1.1)	10-30	F	99.3	(1.3)	<3	
Male																	
	9-13	111	14.9 (0.7)	9.9 (0.9	10.7	(0.9)	12.3 (0.8)	14.3 (0.8)	16.7 (1.0)	19.2 (1.3)	20.9 (1.6)	10-30	F	94.4	(3.4)	<3	
	14-18	113	14.4 (0.9)	11.7 (1.2	12.2	(1.1)	13.0 (1.1)	13.9 (1.1)	15.0 (1.4)	16.0 (1.8)	16.7 (2.1)	10-30	F	100.0	(2.1)	<3	
	19-30	91	15.5 (0.8)	11.7 (1.4	12.5	(1.3)	13.8 (1.1)	15.4 (1.0)	17.1 (1.2)	18.7 (1.7)	19.7 (2.0)	10-35	F	99.4	(2.4)	<3	
	31-50	101	15.4 (0.9)	10.7 (1.2	11.5	(1.1)	12.9 (1.0)	14.8 (1.0)	17.1 (1.4)	19.5 (2.0)	21.1 (2.6)	10-35	F	97.8	(2.5)	<3	
	51-70	134	17.7 (0.9)	13.2 (1.3	14.0	(1.1)	15.5 (0.9)	17.2 (0.9)	19.2 (1.2)	21.2 (1.8)	22.5 (2.2)	10-35	<3	99.9	(0.6)	<3	
	>70	56	16.8 (0.8)	13.8 (1.0	14.5	(1.0)	15.6 (1.0)	16.9 (1.0)	18.2 (1.0)	19.5 (1.1)	20.3 (1.1)	10-35	<3	100.0	(0.0)	0.0	(0.0)
	19+	382	16.2 (0.5)	11.9 (0.7	12.7	(0.7)	14.2 (0.6)	16.0 (0.5)	18.1 (0.7)	20.2 (1.1)	21.6 (1.4)	10-35	<3	99.4	(0.5)	<3	
Female																	
	9-13	105	14.1 (0.8)	11.4 (1.3	11.9	(1.2)	12.8 (1.0)	13.8 (0.9)	14.9 (1.2)	16.0 (1.6)	16.7 (2.0)	10-30	F	99.8	(4.5)	<3	
	14-18	120	13.2 (0.8)	10.0 (1.0	10.7	(1.0)	11.8 (0.9)	13.2 (0.9)	14.7 (1.0)	16.2 (1.2)	17.3 (1.3)	10-30	F	95.0	(5.2)	0.0	(0.0)
	19-30	91	14.8 (0.7)	14.2 (1.9	14.3	(1.6)	14.3 (1.1)	14.4 (0.7)	14.5 (0.7)	14.6 (1.1)	14.7 (1.4)	10-35	<3	100.0	(0.9)	0.0	(0.0)
	31-50	159	16.0 (0.6)	9.7 (0.9	10.9	(0.9)	12.9 (0.7)	15.2 (0.7)	18.0 (0.9)	21.5 (1.3)	24.1 (1.8)	10-35	F	93.6	(3.1)	<3	
	51-70	174	16.5 (0.6)	12.8 (1.2	13.5	(1.1)	14.8 (0.8)	16.3 (0.7)	18.0 (0.9)	19.6 (1.3)	20.7 (1.7)	10-35	<3	100.0	(0.9)	<3	
	>70	80	15.8 (0.9)	12.4 (1.3) 13.0	(1.1)	14.1 (1.0)	15.4 (1.0)	16.8 (1.2)	18.0 (1.5)	18.8 (1.7)	10-35	<3	100.0	(1.2)	0.0	(0.0)
	19+	504	15.9 (0.4)	11.1 (0.5		, ,	13.5 (0.4)	15.4 (0.4)	17.5 (0.5)	19.7 (0.7)	21.2 (0.9)	10-35	F		(1.0)		(0.0)
			()	. (***			()		()	(1.07)	. ()				,,		, ,

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 3.4 Percentage of total energy intake from protein, by DRI age-sex group, household population, New Brunswick, 2004¹

•									F	ercentiles	(and S	E) of usu	ıal intake	;						%		%		%	
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	(SE)	75th	(SE)	90th	(SE)	95th	(SE)	AMDR ²	below AMDR	(SE)	within AMDR	(SE)	above AMDR	(SE)
Sex	Age (years)																								
Both																									
	1-3	99	16.3	(0.7)	13.5	(1.3)	14.1	(1.1)	15.2	(0.9)	16.5	(0.8)	17.8	(1.1)	19.1	(1.6)	19.9	(2.1)	5-20	0.0	(0.0)	95.4	(7.6)	F	
	4-8	140	14.0	(0.5)	10.7	(1.0)	11.4	(0.9)	12.5	(0.7)	13.8	(0.6)	15.3	(0.6)	16.7	(0.8)	17.5	(1.0)	10-30	F		98.1	(2.7)	0.0	(0.0)
Male																									
	9-13	92	14.0	(0.4)	11.7	(0.9)	12.2	(0.7)	13.1	(0.6)	14.0	(0.5)	14.9	(0.6)	15.9	(0.8)	16.5	(1.0)	10-30	<3		99.7	(1.3)	0.0	(0.0)
	14-18	107	15.3	(0.6)	12.6	(0.7)	13.2	(0.7)	14.1	(0.8)	15.2	(0.8)	16.3	(0.9)	17.4	(0.9)	18.1	(1.0)	10-30	<3		100.0	(0.2)	0.0	(0.0)
	19-30	73	15.7	(1.0)	12.1	(1.2)	12.9	(1.1)	14.1	(1.0)	15.7	(1.1)	17.4	(1.5)	19.2	(2.2)	20.4	(2.9)	10-35	F		99.7	(1.7)	<3	
	31-50	134	15.7	(0.8)	12.4	(0.9)	13.1	(0.9)	14.3	(1.0)	15.7	(1.0)	17.1	(1.0)	18.5	(1.0)	19.3	(1.0)	10-35	<3		99.9	(0.3)	0.0	(0.0)
	51-70	131	16.7	(0.8)	13.3	(1.3)	13.9	(1.1)	14.9	(0.9)	16.1	(0.8)	17.4	(1.0)	18.7	(1.5)	19.6	(2.0)	10-35	<3		100.0	(1.4)	<3	
	>70	55	16.1	(1.3)	11.4	(1.7)	12.1	(1.6)	13.5	(1.5)	15.3	(1.5)	17.4	(1.8)	19.6	(2.4)	21.0	(2.9)	10-35	F		99.2	(4.8)	<3	
	19+	393	16.0	(0.4)	12.5	(1.0)	13.1	(0.8)	14.3	(0.6)	15.7	(0.5)	17.2	(0.8)	18.7	(1.2)	19.7	(1.6)	10-35	<3		100.0	(0.6)	<3	
Female																									
	9-13	79	14.1	(0.6)	12.0	(1.1)	12.4	(1.0)	13.2	(0.9)	14.1	(0.8)	15.1	(1.0)	16.0	(1.5)	16.6	(1.8)	10-30	F		100.0	(2.3)	<3	
	14-18	104	14.5	(0.5)	11.0	(1.2)	11.6	(1.1)	12.7	(0.9)	13.8	(0.8)	15.1	(0.7)	16.1	(0.8)	16.8	(0.8)	10-30	F		98.6	(4.3)	0.0	(0.0)
	19-30	101	16.8	(1.2)	13.0	(1.6)	13.8	(1.5)	15.3	(1.3)	17.1	(1.4)	19.1	(1.7)	21.1	(2.1)	22.3	(2.5)	10-35	<3		99.8	(1.3)	<3	
	31-50	143	15.6	(0.5)	12.3	(0.6)	12.9	(0.6)	13.9	(0.6)	15.0	(0.6)	16.1	(0.6)	17.1	(0.6)	17.8	(0.7)	10-35	<3		99.8	(0.4)	0.0	(0.0)
	51-70	193	16.5	(0.6)	12.9	(0.6)	13.6	(0.6)	14.8	(0.7)	16.3	(0.8)	18.0	(1.0)	19.7	(1.2)	20.7	(1.3)	10-35	<3		100.0	(0.1)	0.0	(0.0)
	>70	94	16.6	(0.8)	13.1	(1.3)	14.0	(1.2)	15.3	(1.0)	16.9	(1.1)	18.5	(1.3)	20.1	(1.7)	21.1	(2.0)	10-35	<3		100.0	(0.9)	<3	
	19+	531	16.2	(0.4)	13.0	(0.8)	13.7	(0.7)	14.8	(0.5)	16.0	(0.4)	17.4	(0.6)	18.7	(0.9)	19.6	(1.2)	10-35	<3		100.0	(0.2)	0.0	(0.0)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 3.5 Percentage of total energy intake from protein, by DRI age-sex group, household population, Quebec, 2004¹

									Po	ercentiles	s (and SI	E) of usua	al intake							%		%		%	
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	(SE)	75th	(SE)	90th	(SE)	95th ((SE)	AMDR ²	below AMDR	(SE)	within AMDR	(SE)	above AMDR	(SE)
Sex	Age (years)																								
Both																									
	1-3	311	15.6	(0.5)	11.5	(0.7)	12.3	(0.7)	13.7	(0.6)	15.3	(0.5)	17.0	(0.7)	18.7	(1.0)	19.8	(1.2)	5-20	0.0	(0.0)	95.5	(3.1)	F	
	4-8	485	14.8	(0.3)	12.6	(0.8)	13.0	(0.7)	13.7	(0.5)	14.6	(0.4)	15.6	(0.5)	16.5	(0.8)	17.0	(1.0)	10-30	<3		100.0	(0.1)	0.0	(0.0)
Male																									
	9-13	277	15.0	(0.7)	11.2	(0.9)	11.9	(0.9)	13.2	(0.8)	14.7	(0.8)	16.4	(0.9)	18.3	(1.3)	19.5	(1.5)	10-30	F		99.0	(1.5)	<3	
	14-18	339	14.5	(0.5)	10.5	(0.7)	11.2	(0.6)	12.5	(0.6)	14.2	(0.6)	16.4	(0.8)	18.8	(1.3)	20.5	(1.7)	10-30	F		97.0	(2.2)	<3	
	19-30	237	14.2	(0.6)	10.8	(0.5)	11.5	(0.5)	12.6	(0.6)	14.0	(0.7)	15.6	(0.8)	17.3	(1.0)	18.3	(1.1)	10-35	F		98.4	(1.5)	0.0	(0.0)
	31-50	423	16.1	(0.4)	12.8	(1.1)	13.5	(1.0)	14.6	(0.7)	16.0	(0.6)	17.5	(0.7)	19.0	(1.0)	20.0	(1.3)	10-35	<3		100.0	(0.5)	0.0	(0.0)
	51-70	387	15.9	(0.4)	12.7	(0.3)	13.3	(0.4)	14.4	(0.4)	15.7	(0.4)	17.1	(0.5)	18.7	(0.6)	19.7	(0.7)	10-35	<3		100.0	(0.0)	0.0	(0.0)
	>70	132	15.9	(0.7)	11.7	(1.2)	12.4	(1.1)	13.7	(1.0)	15.4	(1.0)	17.3	(1.2)	19.3	(1.5)	20.5	(1.8)	10-35	F		99.5	(1.6)	<3	
	19+	1179	15.6	(0.3)	12.5	(0.6)	13.1	(0.5)	14.2	(0.4)	15.5	(0.3)	17.0	(0.4)	18.4	(0.6)	19.3	(0.8)	10-35	<3		100.0	(0.2)	0.0	(0.0)
Female																									
	9-13	281	13.9	(0.4)	10.6	(0.4)	11.2	(0.4)	12.4	(0.4)	13.7	(0.5)	15.1	(0.5)	16.5	(0.6)	17.4	(0.6)	10-30	F		97.6	(1.3)	0.0	(0.0)
	14-18	321	14.4	(0.5)	11.0	(0.8)	11.7	(0.7)	12.7	(0.6)	14.0	(0.6)	15.5	(0.7)	17.0	(0.9)	18.0	(1.1)	10-30	F		98.9	(1.5)	0.0	(0.0)
	19-30	249	15.1	(0.6)	12.3	(1.1)	12.9	(0.9)	13.9	(0.7)	15.1	(0.7)	16.3	(0.8)	17.4	(1.2)	18.1	(1.5)	10-35	F		100.0	(1.7)	<3	
	31-50	364	16.9	(0.8)	13.0	(1.4)	13.8	(1.3)	15.1	(1.1)	16.7	(0.9)	18.4	(1.4)	20.0	(1.7)	21.1	(1.9)	10-35	F		100.0	(3.4)	<3	
	51-70	467	16.6	(0.4)	13.3	(1.0)	14.0	(0.9)	15.1	(0.6)	16.4	(0.4)	17.9	(0.6)	19.3	(1.0)	20.2	(1.3)	10-35	<3		100.0	(0.2)	0.0	(0.0)
	>70	215	16.4	(0.4)	14.4	(0.9)	14.8	(0.8)	15.6	(0.6)	16.5	(0.6)	17.5	(0.8)	18.4	(1.0)	19.0	(1.2)	10-35	<3		100.0	(0.0)	0.0	(0.0)
	19+	1295		(0.3)	12.9	,	13.6	, ,	14.8	, ,	16.3	. ,	17.9	,	19.4	, ,	20.4		10-35	<3		100.0			(0.0)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 3.6 Percentage of total energy intake from protein, by DRI age-sex group, household population, Ontario, 2004¹

									P	ercentile	s (and S	E) of usu	al intake							%		%		%	
		n	Mean	(SE)	5th	(SE)	10th	n (SE)	25th	(SE)	50th	(SE)	75th	(SE)	90th	(SE)	95th (SE)	AMDR ²	below AMDR	(SE)	within AMDR	(SE)	above AMDR	(SE)
Sex	Age (years)																								
Both																									
	1-3	644	15.1	(0.2)	11.8	(0.8)	12.6	(0.7)	13.8	(0.4)	15.2	(0.3)	16.6	(0.5)	18.0	(0.8)	18.8	(1.0)	5-20	0.0	(0.0)	98.2	(2.0)	F	
	4-8	956	14.1	(0.2)	10.1	(0.4)	10.8	(0.4)	12.2	(0.3)	13.8	(0.2)	15.6	(0.3)	17.3	(0.4)	18.5	(0.6)	10-30	F		95.3	(1.8)	0.0	(0.0)
Male																									
	9-13	589	14.4	(0.2)	12.4	(0.8)	12.8	(0.7)	13.5	(0.4)	14.2	(0.2)	15.0	(0.4)	15.8	(0.8)	16.3	(1.1)	10-30	<3		100.0	(0.4)	0.0	(0.0)
	14-18	639	15.5	(0.3)	11.1	(0.7)	11.9	(0.6)	13.3	(0.5)	15.1	(0.3)	17.1	(0.5)	19.1	(0.8)	20.4	(1.0)	10-30	F		98.4	(1.2)	<3	
	19-30	481	16.2	(0.4)	11.7	(1.2)	12.5	(1.1)	14.0	(0.7)	15.8	(0.5)	17.7	(0.7)	19.6	(1.2)	20.8	(1.6)	10-35	F		99.3	(1.2)	<3	
	31-50	709	17.8	(0.4)	13.4	(1.3)	14.2	(1.1)	15.6	(0.8)	17.5	(0.5)	19.7	(0.7)	21.9	(1.4)	23.3	(1.9)	10-35	<3		100.0	(0.3)	<3	
	51-70	758	17.1	(0.3)	13.4	(0.3)	14.1	(0.3)	15.4	(0.3)	16.8	(0.4)	18.4	(0.4)	20.1	(0.5)	21.1	(0.5)	10-35	<3		100.0	(0.0)	0.0	(0.0)
	>70	734	16.2	(0.3)	13.9	(1.0)	14.4	(0.8)	15.2	(0.6)	16.1	(0.3)	17.1	(0.5)	18.1	(0.9)	18.7	(1.2)	10-35	<3		100.0	(0.1)	0.0	(0.0)
	19+	2682	17.1	(0.2)	13.5	(0.9)	14.2	(0.8)	15.4	(0.5)	16.9	(0.2)	18.6	(0.5)	20.2	(0.9)	21.2	(1.2)	10-35	<3		100.0	(0.1)	0.0	(0.0)
Female																									
	9-13	585	14.1	(0.3)	11.6	(0.8)	12.0	(0.7)	12.8	(0.5)	13.8	(0.3)	14.8	(0.4)	15.8	(0.7)	16.5	(0.9)	10-30	<3		99.9	(0.7)	0.0	(0.0)
	14-18	645	14.3	(0.3)	9.3	(0.5)	10.2	(0.5)	11.9	(0.4)	14.0	(0.3)	16.2	(0.4)	18.6	(0.6)	20.1	(0.8)	10-30	8.6	$(2.6)^{E}$	91.4	(2.7)	<3	
	19-30	514	15.9	(0.4)	12.4	(1.2)	13.1	(1.0)	14.3	(0.7)	15.7	(0.4)	17.3	(0.7)	18.9	(1.2)	20.0	(1.6)	10-35	<3		99.9	(1.1)	<3	
	31-50	758	16.5	(0.4)	12.1	(1.0)	12.9	(0.9)	14.5	(0.6)	16.4	(0.4)	18.5	(0.6)	20.6	(1.1)	21.9	(1.5)	10-35	<3		99.6	(0.6)	0.0	(0.0)
	51-70	955	17.0	(0.3)	13.2	(1.0)	13.9	(0.8)	15.2	(0.6)	16.7	(0.3)	18.3	(0.5)	19.8	(0.9)	20.8	(1.2)	10-35	<3		100.0	(0.3)	0.0	(0.0)
	>70	1345	16.2	(0.3)	11.6	(0.7)	12.4	(0.6)	14.0	(0.4)	15.9	(0.3)	17.9	(0.4)	20.1	(0.6)	21.5	(0.8)	10-35	<3		99.0	(0.8)	0.0	(0.0)
	19+	3572	16.5	(0.2)	12.1	(0.5)	12.9	(0.4)	14.4	(0.3)	16.2	(0.2)	18.3	(0.3)	20.3	(0.6)	21.7	(0.8)	10-35	<3		99.5	(0.4)	0.0	(0.0)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 3.7 Percentage of total energy intake from protein, by DRI age-sex group, household population, Manitoba, 2004¹

									P	ercentiles	s (and S.	E) of usu	al intake							%		%		%	
		n	Mean	(SE)	5th	(SE)	10th	n (SE)	25th	(SE)	50th	(SE)	75th	(SE)	90th	(SE)	95th ((SE)	AMDR ²	below AMDR	(SE)	within AMDR	(SE)	above AMDR	(SE)
Sex	Age (years)																								
Both																									
	1-3	324	14.7	(0.3)	11.4	(0.8)	12.1	(0.7)	13.3	(0.4)	14.8	(0.4)	16.2	(0.6)	17.5	(0.9)	18.3	(1.0)	5-20	0.0	(0.0)	99.3	(1.3)	F	
	4-8	425	14.1	(0.4)	11.3	(1.1)	11.8	(0.9)	12.9	(0.6)	14.0	(0.4)	15.2	(0.6)	16.3	(1.2)	17.1	(1.6)	10-30	F		99.5	(3.0)	<3	
Male																									
	9-13	274	14.6	(0.4)	12.3	(1.5)	12.7	(1.2)	13.5	(0.9)	14.5	(0.5)	15.6	(0.8)	16.6	(1.5)	17.3	(1.9)	10-30	F		100.0	(2.9)	<3	
	14-18	297	15.1	(0.4)	12.6	(1.0)	13.0	(0.8)	13.8	(0.6)	14.7	(0.6)	15.7	(0.7)	16.6	(1.1)	17.2	(1.3)	10-30	<3		100.0	(0.8)	0.0	(0.0)
	19-30	249	16.1	(0.5)	10.7	(1.2)	11.8	(1.0)	13.6	(0.6)	15.5	(0.5)	17.6	(0.7)	19.9	(1.2)	21.4	(1.6)	10-35	F		97.2	(2.1)	<3	
	31-50	309	17.2	(0.9)	11.3	(1.5)	12.1	(1.4)	13.8	(1.2)	15.9	(1.0)	18.6	(1.5)	21.5	(2.2)	23.5	(2.8)	10-35	F		98.7	(3.2)	<3	
	51-70	277	17.8	(0.5)	12.2	(0.9)	13.3	(0.8)	15.3	(0.6)	17.6	(0.5)	20.2	(0.7)	22.6	(1.1)	24.1	(1.3)	10-35	<3		99.2	(0.7)	<3	
	>70	136	17.4	(0.7)	12.7	(1.5)	13.6	(1.4)	15.2	(1.0)	17.2	(0.8)	19.4	(0.9)	21.5	(1.4)	22.9	(1.8)	10-35	<3		99.8	(1.4)	<3	
	19+	971	17.1	(0.4)	11.5	(0.6)	12.5	(0.5)	14.2	(0.5)	16.4	(0.5)	18.9	(0.6)	21.6	(0.8)	23.5	(1.1)	10-35	<3		98.7	(0.7)	<3	
Female																									
	9-13	265	14.1	(0.6)	10.9	(1.2)	11.6	(1.1)	12.8	(0.9)	14.2	(0.7)	15.8	(0.7)	17.3	(0.9)	18.2	(1.1)	10-30	F		98.3	(3.2)	0.0	(0.0)
	14-18	290	13.8	(0.4)	10.7	(1.0)	11.3	(0.8)	12.3	(0.6)	13.4	(0.5)	14.6	(0.8)	15.8	(1.1)	16.5	(1.4)	10-30	F		98.1	(3.5)	0.0	(0.0)
	19-30	197	15.8	(1.3)	12.8	(2.1)	13.3	(1.9)	14.3	(1.6)	15.4	(1.3)	16.6	(1.2)	17.8	(1.6)	18.5	(2.0)	10-35	F		100.0	(3.7)	<3	
	31-50	312	17.1	(0.6)	12.9	(1.2)	13.6	(1.0)	15.0	(0.8)	16.6	(0.7)	18.3	(0.8)	19.9	(1.2)	20.9	(1.5)	10-35	<3		100.0	(0.5)	0.0	(0.0)
	51-70	312	17.5	(0.6)	15.9	(1.8)	16.2	(1.6)	16.8	(1.1)	17.5	(0.7)	18.3	(1.0)	19.0	(1.8)	19.4	(2.4)	10-35	<3		100.0	(0.1)	<3	
	>70	239	16.1	(0.4)	11.5	(0.9)	12.4	(0.8)	14.0	(0.6)	15.9	(0.5)	18.1	(0.6)	20.3	(1.0)	21.8	(1.2)	10-35	<3		99.1	(0.7)	<3	
	19+	1060		(0.4)		(0.8)		(0.7)	14.5		16.4		18.6	. ,	20.7		22.1	` ′	10-35	<3			(0.4)		(0.0)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 3.8 Percentage of total energy intake from protein, by DRI age-sex group, household population, Saskatchewan, 2004¹

							Percentile	s (and SE) of usu	al intake				%		%		%	
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	AMDR ²	below AMDR	(SE)	within AMDR	(SE)	above AMDR	(SE)
Sex	Age (years)																	
Both																		
	1-3	129	14.6	(0.6)	10.4 (0.7)	11.2 (0.7)	12.5 (0.6)	14.2 (0.7)	15.9 (0.8)	17.7 (1.1)	18.8 (1.2)	5-20	0.0	(0.0)	97.9	(2.2)	F	
	4-8	213	13.6	(0.3)	10.8 (0.3)	11.3 (0.3)	12.2 (0.3)	13.4 (0.3)	14.6 (0.4)	15.7 (0.5)	16.5 (0.5)	10-30	F		98.6	(1.1)	0.0	(0.0)
Male																		
	9-13	122	14.7	(0.7)	11.4 (1.0)	12.0 (1.0)	13.1 (0.9)	14.3 (0.9)	15.6 (1.1)	16.8 (1.3)	17.6 (1.6)	10-30	<3		99.5	(1.2)	0.0	(0.0)
	14-18	150	15.5	(0.5)	11.9 (1.0)	12.6 (0.9)	13.8 (0.7)	15.1 (0.6)	16.7 (0.8)	18.3 (1.3)	19.4 (1.7)	10-30	<3		99.7	(1.4)	<3	
	19-30	106	15.7	(0.6)	9.6 (1.1)	10.6 (1.0)	12.5 (0.8)	15.1 (0.8)	18.1 (1.0)	21.2 (1.5)	23.3 (1.9)	10-35	F		93.2	(4.0)	<3	
	31-50	155	15.4	(0.6)	11.4 (1.2)	12.2 (1.0)	13.5 (0.8)	15.0 (0.6)	16.8 (0.7)	18.5 (1.1)	19.6 (1.4)	10-35	F		98.8	(2.6)	<3	
	51-70	122	17.1	(0.7)	14.1 (1.1)	14.7 (1.0)	15.7 (0.8)	16.9 (0.7)	18.1 (0.9)	19.3 (1.2)	20.1 (1.5)	10-35	<3		100.0	(0.3)	0.0	(0.0)
	>70	88	16.7	(0.5)	13.4 (1.1)	14.0 (1.0)	15.1 (0.8)	16.5 (0.7)	18.2 (0.8)	19.8 (1.2)	20.9 (1.6)	10-35	<3		100.0	(0.1)	<3	
	19+	471	16.0	(0.3)	11.4 (0.6)	12.3 (0.5)	13.8 (0.4)	15.6 (0.3)	17.7 (0.4)	19.7 (0.6)	21.2 (0.8)	10-35	F		98.6	(1.0)	0.0	(0.0)
Female																		
	9-13	103	13.8	(0.5)	10.2 (0.8)	10.8 (0.7)	12.0 (0.7)	13.4 (0.7)	15.0 (1.0)	16.7 (1.4)	17.7 (1.6)	10-30	F		96.1	(3.2)	0.0	(0.0)
	14-18	142	13.8	(0.5)	11.0 (1.0)	11.4 (0.9)	12.2 (0.8)	13.1 (0.8)	14.2 (1.0)	15.2 (1.5)	15.9 (1.9)	10-30	F		99.4	(4.0)	<3	
	19-30	111	14.9	(0.6)	10.0 (1.0)	11.0 (0.8)	12.5 (0.7)	14.3 (0.7)	16.3 (1.0)	18.4 (1.4)	19.9 (1.7)	10-35	F		95.0	(3.3)	<3	
	31-50	146	17.1	(0.9)	11.2 (1.2)	12.1 (1.1)	13.8 (1.1)	16.1 (1.1)	18.7 (1.3)	21.3 (1.7)	22.8 (2.0)	10-35	F		98.4	(2.1)	<3	
	51-70	184	16.6	(0.5)	14.3 (1.5)	14.7 (1.3)	15.5 (0.9)	16.3 (0.6)	17.3 (0.9)	18.1 (1.6)	18.7 (2.0)	10-35	<3		100.0	(0.9)	<3	
	>70	143	17.1	(0.7)	12.7 (1.3)	13.6 (1.2)	15.2 (1.0)	17.2 (0.9)	19.5 (1.2)	22.0 (1.8)	23.6 (2.3)	10-35	<3		100.0	(0.8)	<3	
	19+	584	16.5	(0.4)	11.2 (0.5)	12.1 (0.5)	13.8 (0.5)	15.9 (0.5)	18.3 (0.6)	20.8 (0.8)	22.5 (1.0)	10-35	F		98.5	(1.0)	<3	

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>

Footnotes

F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 3.9 Percentage of total energy intake from protein, by DRI age-sex group, household population, Alberta, 2004¹

									Percentile	es (and S	E) of usu	al intake						%		%		%	
		n	Mean	(SE)	5th	(SE)	10th (SE) 25	th (SE)	50th	(SE)	75th	(SE)	90th	(SE)	95th (SE	AMD	below AMDI	(SE)	within AMDR	(SE)	above AMDR	(SE)
Sex	Age (years)																						
Both																							
	1-3	169	14.6	(0.4)	10.3	(1.1)	11.2 (0.9	12.	7 (0.6)	14.5	(0.5)	16.5	(0.7)	18.3	(1.1)	19.5 (1	5-	20 <	3	96.4	(2.7)	F	
	4-8	281	14.4	(0.3)	13.6	(1.6)	13.7 (1.4	14.	1 (0.9)	14.4	(0.4)	14.7	(0.8)	15.1	(1.5)	15.2 (2.0	10-	30	F	100.0	(2.5)	<3	
Male																							
	9-13	183	14.7	(0.5)	11.1	(1.0)	11.9 (0.9	13.	2 (0.7)	14.8	(0.6)	16.4	(0.7)	18.1	(1.0)	19.3 (1.4)) 10-	30	F	98.8	(2.4)	<3	
	14-18	187	15.5	(0.5)	11.0	(1.2)	11.8 (1.1	13.	3 (0.9)	15.2	(0.7)	17.6	(0.8)	20.1	(1.4)	21.8 (1.	10-	30	F	98.5	(1.8)	<3	
	19-30	223	16.7	(0.7)	12,2	(1.4)	13.1 (1.3	14.	6 (1.0)	16.3	(0.8)	18.3	(1.3)	20.5	(2.0)	22.0 (2	10-	35	F	99.5	(2.9)	<3	
	31-50	229	16.8	(0.8)	12.4	(1.3)	13.1 (1.2	14.	5 (1.0)	16.2	(0.9)	18.1	(1.1)	20.1	(1.5)	21.4 (2.6	10.	35 <	3	99.9	(1.0)	<3	
	51-70	197	17.5	(0.7)	15.6	(2.4)	16.0 (2.0	16.	5 (1.4)	17.2	(0.8)	17.8	(2.1)	18.4	$(4.8)^{E}$	F	10-	35	F	100.0	(4.5)	F	
	>70	72	18.1	(1.3)	14.9	(1.8)	15.4 (1.6	16.	3 (1.4)	17.4	(1.3)	18.5	(1.5)	19.6	(2.2)	20.3 (2.0	10-	35 <	3	100.0	(0.8)	<3	
	19+	721	17.0	(0.4)	13.0	(0.9)	13.7 (0.8	15.	1 (0.6)	16.7	(0.5)	18.5	(0.7)	20.2	(1.1)	21.4 (1.4)) 10-	35 <	3	100.0	(0.5)	<3	
Female																							
	9-13	165	13.9	(0.5)	9.8	(1.0)	10.5 (0.9	11.	8 (0.7)	13.4	(0.6)	15.1	(0.8)	16.8	(1.2)	17.8 (1	10-	30	F	94.0	(4.4)	<3	
	14-18	206	14.8	(0.7)	10.2	(1.1)	11.1 (1.0	12.	6 (0.8)	14.3	(0.7)	16.4	(0.9)	18.4	(1.3)	19.7 (1.6	10.	30	F	95.8	(3.4)	<3	
	19-30	191	15.3	(0.7)	10.7	(1.2)	11.6 (1.1	13.	0 (0.9)	14.9	(0.8)	17.1	(1.0)	19.5	(1.4)	21.1 (1.) 10-	35	F	97.7	(3.0)	<3	
	31-50	258	16.7	(0.6)	12.1	(1.6)	13.0 (1.4	14.	7 (1.1)	16.6	(0.8)	18.6	(0.9)	20.5	(1.3)	21.8 (1.)	10-	35	F	99.4	(1.2)	<3	
	51-70	249	16.7	(0.4)	13.3	(1.1)	13.9 (1.0	15.	0 (0.8)	16.3	(0.6)	17.8	(0.7)	19.3	(1.1)	20.3 (1) 10-	35 <	3	100.0	(0.3)	0.0	(0.0)
	>70	128	20.1	(1.1)	14.9	(1.5)	15.9 (1.4	17.	7 (1.3)	19.9	(1.3)	22.6	(1.4)	25.2	(1.7)	26.9 (2.0) 10-	35 <	3	100.0	(0.2)	<3	
	19+	826	16.8	(0.3)	11.9	(0.6)	12.8 (0.6	14.	5 (0.5)	16.5	(0.4)	18.8	(0.5)	21.0	(0.7)	22.4 (0.	10-	35 <	3	99.3	(0.5)	<3	

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 3.10 Percentage of total energy intake from protein, by DRI age-sex group, household population, British Columbia, 2004¹

•								Percentile	es (and SE) of usu	ıal intake				%		%		%	
		n	Mean (S.	E)	5th	(SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	AMDR ²	below AMDR	(SE)	within AMDR	(SE)	above AMDR	(SE)
Sex	Age (years)																		
Both																			
	1-3	192	15.8 (0.	.5)	12.0	(0.9)	12.8 (0.8)	14.1 (0.7)	15.8 (0.6)	17.5 (0.8)	19.2 (1.2)	20.4 (1.5)	5-20	0.0	(0.0)	93.6	(4.5)	F	
	4-8	321	14.4 (0.	.3)	10.7	(0.8)	11.4 (0.7)	12.6 (0.6)	14.1 (0.4)	15.7 (1.0)	17.3 (1.8)	18.3 (2.4)	10-30	F		97.8	(3.8)	<3	
Male																			
	9-13	226	14.2 (0.	.3)	11.4	(0.6)	11.9 (0.5)	12.8 (0.5)	13.9 (0.4)	15.0 (0.5)	16.2 (0.7)	16.9 (0.9)	10-30	<3		99.5	(0.7)	0.0	(0.0)
	14-18	262	15.2 (0.	.4)	10.6	(0.7)	11.4 (0.6)	12.9 (0.5)	14.8 (0.5)	16.8 (0.6)	18.7 (0.9)	20.0 (1.1)	10-30	F		97.0	(2.0)	<3	
	19-30	197	15.4 (0.	.6)	12.6	(1.1)	13.1 (1.0)	14.0 (0.8)	15.0 (0.7)	16.2 (1.0)	17.3 (1.4)	18.1 (1.7)	10-35	<3		100.0	(1.0)	<3	
	31-50	282	16.6 (0.	.6)	13.7	(1.2)	14.3 (1.0)	15.3 (0.8)	16.6 (0.7)	17.9 (0.8)	19.2 (1.2)	20.0 (1.5)	10-35	<3		100.0	(0.4)	0.0	(0.0)
	51-70	234	17.2 (0.	.5)	12.7	(0.9)	13.5 (0.8)	15.0 (0.6)	16.7 (0.6)	18.5 (0.7)	20.3 (1.0)	21.4 (1.2)	10-35	<3		99.8	(0.5)	0.0	(0.0)
	>70	119	15.8 (0.	.6)	11.5	(1.0)	12.2 (0.9)	13.6 (0.8)	15.2 (0.7)	17.1 (1.0)	19.0 (1.3)	20.3 (1.5)	10-35	F		99.4	(1.9)	0.0	(0.0)
	19+	832	16.4 (0.	.3)	12.3	(0.5)	13.0 (0.5)	14.4 (0.4)	16.1 (0.4)	17.9 (0.4)	19.8 (0.6)	21.0 (0.7)	10-35	<3		99.7	(0.3)	0.0	(0.0)
Female																			
	9-13	226	14.1 (0.	.4)	10.8	(0.6)	11.4 (0.6)	12.3 (0.5)	13.6 (0.5)	15.1 (0.7)	16.6 (0.9)	17.5 (1.0)	10-30	F		98.6	(1.7)	0.0	(0.0)
	14-18	242	14.8 (0.	.4)	11.6	(0.9)	12.3 (0.7)	13.3 (0.6)	14.5 (0.5)	15.8 (0.7)	17.1 (0.9)	17.9 (1.1)	10-30	<3		99.5	(1.1)	0.0	(0.0)
	19-30	208	15.5 (0.	.5)	10.3	(0.8)	11.3 (0.8)	13.0 (0.7)	15.2 (0.7)	17.5 (0.9)	20.0 (1.3)	21.6 (1.6)	10-35	F		96.2	(2.2)	<3	
	31-50	263	16.6 (0.	.6)	11.2	(0.8)	12.2 (0.7)	13.9 (0.6)	16.2 (0.7)	18.7 (0.9)	21.2 (1.3)	22.8 (1.6)	10-35	F		98.5	(1.6)	<3	
	51-70	322	17.7 (0.	.6)	12.7	(1.1)	13.6 (1.0)	15.2 (0.8)	17.3 (0.7)	19.7 (0.9)	22.1 (1.3)	23.8 (1.7)	10-35	<3		99.7	(0.4)	<3	
	>70	198	16.8 (0.	.7)	13.3	(1.0)	14.0 (1.0)	15.3 (0.9)	16.9 (0.9)	18.7 (1.0)	20.4 (1.2)	21.5 (1.4)	10-35	<3		100.0		<3	
	19+	991	16.8 (0.		11.5		12.4 (0.4)	14.2 (0.3)	16.4 (0.4)	19.0 (0.5)	21.6 (0.7)	23.3 (0.8)	10-35	<3			(0.5)	<3	

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>

Footnotes

Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 3.11 Percentage of total energy intake from protein, by DRI age-sex group, household population, Atlantic Region, 2004¹

]	Percentil	es (and S	SE) of us	ıal intake							%		%		%	
		n	Mean	(SE)	5th	(SE)	10th	n (SE)	25th	(SE)	50th	n (SE)	75th	(SE)	90th	(SE)	95th	(SE)	AMDR ²	below AMDR	(SE)	within AMDR	(SE)	above AMDR	(SE)
Sex	Age (years)																								
Both																									
	1-3	348	15.4	(0.4)	11.7	(0.4)	12.4	(0.4)	13.8	(0.5)	15.5	(0.6)	17.4	(0.7)	19.1	(0.8)	20.2	(1.0)	5-20	0.0	(0.0)	94.3	(3.0)	F	
	4-8	554	13.9	(0.3)	11.0	(0.5)	11.5	(0.4)	12.5	(0.4)	13.7	(0.3)	15.0	(0.4)	16.3	(0.6)	17.2	(0.7)	10-30	F		98.9	(1.1)	0.0	(0.0)
Male																									
	9-13	409	14.6	(0.4)	10.3	(0.5)	11.1	(0.5)	12.5	(0.4)	14.2	(0.4)	16.1	(0.5)	18.0	(0.7)	19.3	(0.9)	10-30	F		96.4	(1.7)	<3	
	14-18	414	14.7	(0.4)	11.3	(0.7)	11.9	(0.6)	13.0	(0.6)	14.3	(0.5)	15.7	(0.6)	17.0	(0.8)	17.9	(1.0)	10-30	<3		99.4	(0.9)	0.0	(0.0)
	19-30	311	15.9	(0.5)	11.6	(0.7)	12.4	(0.7)	13.8	(0.6)	15.7	(0.6)	17.8	(0.8)	19.9	(1.2)	21.3	(1.5)	10-35	<3		99.3	(0.9)	<3	
	31-50	489	16.0	(0.5)	12.4	(0.9)	13.1	(0.8)	14.3	(0.6)	15.8	(0.6)	17.3	(0.8)	18.8	(1.1)	19.8	(1.3)	10-35	<3		99.9	(0.5)	0.0	(0.0)
	51-70	575	17.2	(0.4)	13.1	(0.8)	13.9	(0.7)	15.2	(0.6)	16.8	(0.5)	18.5	(0.6)	20.2	(0.9)	21.3	(1.1)	10-35	<3		100.0	(0.2)	0.0	(0.0)
	>70	239	17.0	(0.6)	12.8	(0.9)	13.6	(0.8)	15.0	(0.7)	16.7	(0.7)	18.7	(0.9)	20.6	(1.2)	21.9	(1.5)	10-35	<3		100.0	(0.4)	<3	
	19+	1614	16.4	(0.3)	12.2	(0.4)	13.0	(0.4)	14.4	(0.3)	16.1	(0.3)	18.0	(0.4)	19.9	(0.6)	21.2	(0.7)	10-35	<3		99.7	(0.3)	0.0	(0.0)
Female																									
	9-13	355	14.0	(0.4)	10.6	(0.6)	11.2	(0.5)	12.3	(0.5)	13.7	(0.5)	15.2	(0.6)	16.9	(0.9)	17.9	(1.1)	10-30	F		97.6	(1.9)	0.0	(0.0)
	14-18	410	13.9	(0.4)	10.6	(0.9)	11.2	(0.8)	12.4	(0.6)	13.8	(0.7)	15.3	(1.1)	16.8	(1.9)	17.7	(2.7)	10-30	F		97.5	(2.8)	F	
	19-30	384	15.4	(0.5)	12.5	(0.8)	13.1	(0.7)	14.1	(0.6)	15.2	(0.6)	16.5	(0.7)	17.8	(0.9)	18.5	(1.0)	10-35	<3		100.0	(0.5)	0.0	(0.0)
	31-50	585	16.3	(0.4)	11.7	(0.7)	12.5	(0.6)	14.1	(0.5)	15.8	(0.4)	17.7	(0.6)	19.7	(0.9)	21.1	(1.1)	10-35	<3		99.0	(0.8)	0.0	(0.0)
	51-70	711	17.3	(0.4)	13.2	(0.8)	14.0	(0.7)	15.3	(0.5)	17.0	(0.5)	19.0	(0.6)	20.9	(0.9)	22.2	(1.2)	10-35	<3		100.0	(0.3)	<3	
	>70	342	16.3	(0.5)	13.2	(0.9)	13.8	(0.8)	14.9	(0.7)	16.1	(0.7)	17.4	(0.8)	18.6	(1.0)	19.4	(1.2)	10-35	<3		100.0	(0.1)	0.0	(0.0)
	19+	2022	16.4	(0.2)	12.4	(0.3)	13.1	(0.3)	14.5	(0.3)	16.1	(0.3)	17.9	(0.3)	19.7	(0.4)	20.9	(0.5)	10-35	<3		99.7	(0.2)	0.0	(0.0)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 3.12 Percentage of total energy intake from protein, by DRI age-sex group, household population, Prairie Region, 2004¹

,									Po	ercentiles	s (and SI	E) of usua	al intake							%		%		%	
		n	Mean	(SE)	5th	(SE)	10th	n (SE)	25th	(SE)	50th	(SE)	75th	(SE)	90th	(SE)	95th ((SE)	AMDR ²	below AMDR	(SE)	within AMDR	(SE)	above AMDR	(SE)
Sex	Age (years)																								
Both																									
	1-3	622	14.6	(0.3)	10.6	(0.5)	11.4	(0.5)	12.8	(0.4)	14.5	(0.3)	16.3	(0.4)	18.0	(0.6)	19.1	(0.7)	5-20	0.0	(0.0)	97.3	(1.5)	F	
	4-8	919	14.1	(0.2)	11.2	(0.2)	11.8	(0.2)	12.8	(0.2)	14.1	(0.2)	15.4	(0.3)	16.7	(0.3)	17.6	(0.3)	10-30	<3		99.2	(0.4)	0.0	(0.0)
Male																									
	9-13	579	14.7	(0.3)	11.2	(0.8)	11.9	(0.7)	13.2	(0.5)	14.6	(0.4)	16.2	(0.5)	17.7	(0.8)	18.7	(1.0)	10-30	F		99.1	(1.2)	0.0	(0.0)
	14-18	634	15.4	(0.3)	11.7	(0.7)	12.4	(0.6)	13.6	(0.5)	15.1	(0.4)	17.0	(0.6)	18.7	(0.8)	19.8	(1.1)	10-30	<3		99.4	(0.7)	<3	
	19-30	578	16.4	(0.5)	10.8	(0.7)	11.8	(0.7)	13.7	(0.5)	15.9	(0.5)	18.3	(0.7)	21.0	(1.2)	23.0	(1.5)	10-35	F		97.5	(1.5)	<3	
	31-50	693	16.7	(0.5)	11.4	(1.0)	12.3	(0.9)	13.9	(0.7)	16.0	(0.6)	18.5	(0.7)	21.1	(1.2)	22.9	(1.6)	10-35	F		98.7	(1.0)	<3	
	51-70	596	17.5	(0.4)	12.9	(0.8)	13.8	(0.7)	15.3	(0.5)	17.1	(0.5)	19.1	(0.6)	21.1	(0.9)	22.3	(1.1)	10-35	<3		99.8	(0.4)	<3	
	>70	296	17.6	(0.7)	12.9	(1.0)	13.7	(0.9)	15.3	(0.8)	17.2	(0.7)	19.4	(1.0)	21.7	(1.3)	23.1	(1.6)	10-35	<3		99.9	(0.2)	0.0	(0.0)
	19+	2163	16.9	(0.3)	11.8	(0.4)	12.8	(0.3)	14.4	(0.3)	16.5	(0.3)	18.7	(0.4)	21.0	(0.6)	22.6	(0.7)	10-35	<3		99.2	(0.4)	0.0	(0.0)
Female																									
	9-13	533	13.9	(0.3)	10.0	(0.5)	10.7	(0.5)	12.0	(0.4)	13.6	(0.4)	15.3	(0.5)	16.9	(0.7)	18.0	(0.8)	10-30	F		95.1	(2.4)	0.0	(0.0)
	14-18	638	14.4	(0.4)	10.7	(0.8)	11.4	(0.7)	12.6	(0.5)	14.0	(0.5)	15.5	(0.6)	17.0	(0.8)	18.0	(1.0)	10-30	F		97.9	(1.9)	0.0	(0.0)
	19-30	499	15.3	(0.5)	10.6	(0.9)	11.4	(0.8)	12.9	(0.7)	14.8	(0.6)	17.0	(0.6)	19.4	(0.9)	21.1	(1.1)	10-35	F		97.3	(2.1)	<3	
	31-50	716	16.9	(0.4)	12.0	(0.9)	13.0	(0.8)	14.6	(0.7)	16.6	(0.5)	18.6	(0.6)	20.6	(0.8)	22.0	(1.1)	10-35	<3		99.4	(0.8)	0.0	(0.0)
	51-70	745	16.9	(0.3)	12.4	(1.0)	13.1	(1.0)	14.3	(0.9)	15.8	(0.9)	17.4	(0.9)	18.9	(0.8)	20.0	(0.9)	10-35	<3		100.0	(0.8)	0.0	(0.0)
	>70	510	18.3	(0.6)	13.2	(0.7)	14.2	(0.7)	15.9	(0.6)	18.2	(0.7)	20.7	(0.8)	23.4	(1.0)	25.1	(1.2)	10-35	<3		99.8	(0.2)	<3	
	19+	2470	16.7	(0.2)	11.9	(0.4)	12.8	(0.4)	14.4	(0.3)	16.4	(0.3)	18.6	(0.3)	20.8	(0.4)	22.3	(0.6)	10-35	<3		99.4	(0.4)	0.0	(0.0)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 3.13 Percentage of total energy intake from protein, by DRI age-sex group, household population, Canada excluding territories, 2004¹

						Percentile	es (and SE) of usu	ıal intake				%		% within		% above	
		n	Mean (SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	AMDR ²	below AMDR	(SE)		(SE)	AMDR	(SE)
Sex	Age (years)																
Both	Q ,																
	1-3	2117	15.2 (0.2)	11.5 (0.3)	12.2 (0.3)	13.6 (0.2)	15.2 (0.2)	16.9 (0.3)	18.5 (0.4)	19.5 (0.5)	5-20	0.0	(0.0)	96.4	(1.2)	F	
	4-8	3235	14.3 (0.1)	11.2 (0.2)	11.8 (0.2)	12.8 (0.2)	14.1 (0.1)	15.4 (0.2)	16.7 (0.3)	17.6 (0.3)	10-30	<3		99.2	(0.4)	0.0	(0.0)
Male																	
	9-13	2080	14.6 (0.2)	11.2 (0.3)	11.8 (0.3)	12.9 (0.2)	14.3 (0.2)	15.8 (0.3)	17.3 (0.4)	18.4 (0.4)	10-30	<3		99.1	(0.5)	0.0	(0.0)
	14-18	2288	15.2 (0.2)	11.1 (0.3)	11.9 (0.3)	13.2 (0.2)	14.8 (0.2)	16.7 (0.3)	18.7 (0.4)	20.0 (0.6)	10-30	<3		98.8	(0.6)	<3	
	19-30	1804	15.6 (0.2)	11.5 (0.4)	12.3 (0.4)	13.7 (0.3)	15.4 (0.3)	17.3 (0.4)	19.3 (0.5)	20.7 (0.7)	10-35	<3		99.1	(0.6)	0.0	(0.0)
	31-50	2596	16.9 (0.2)	12.7 (0.5)	13.6 (0.4)	15.0 (0.4)	16.7 (0.3)	18.7 (0.3)	20.8 (0.5)	22.2 (0.7)	10-35	<3		99.8	(0.2)	0.0	(0.0)
	51-70	2550	16.9 (0.2)	13.2 (0.5)	13.9 (0.4)	15.1 (0.3)	16.6 (0.2)	18.2 (0.3)	19.9 (0.5)	20.9 (0.7)	10-35	<3		100.0	(0.1)	0.0	(0.0)
	>70	1520	16.4 (0.2)	12.7 (0.4)	13.3 (0.4)	14.5 (0.3)	16.0 (0.3)	17.7 (0.4)	19.4 (0.5)	20.4 (0.6)	10-35	<3		100.0	(0.1)	0.0	(0.0)
	19+	8470	16.6 (0.1)	12.5 (0.2)	13.2 (0.2)	14.6 (0.2)	16.3 (0.2)	18.3 (0.2)	20.2 (0.3)	21.5 (0.4)	10-35	<3		99.8	(0.1)	0.0	(0.0)
Female																	
	9-13	1980	14.0 (0.2)	10.6 (0.3)	11.2 (0.2)	12.3 (0.2)	13.7 (0.2)	15.1 (0.2)	16.6 (0.3)	17.6 (0.4)	10-30	F		97.8	(0.9)	0.0	(0.0)
	14-18	2256	14.4 (0.2)	10.3 (0.3)	11.0 (0.3)	12.4 (0.2)	14.0 (0.2)	15.9 (0.3)	17.7 (0.3)	18.9 (0.4)	10-30	3.9	$(1.1)^{E}$	96.1	(1.1)	0.0	(0.0)
	19-30	1854	15.5 (0.2)	11.6 (0.4)	12.3 (0.3)	13.6 (0.3)	15.3 (0.3)	17.2 (0.3)	19.0 (0.5)	20.3 (0.6)	10-35	<3		99.2	(0.5)	<3	
	31-50	2686	16.6 (0.3)	11.8 (0.4)	12.7 (0.4)	14.3 (0.3)	16.4 (0.3)	18.6 (0.4)	20.9 (0.5)	22.4 (0.6)	10-35	<3		99.3	(0.4)	0.0	(0.0)
	51-70	3200	17.0 (0.2)	13.2 (0.4)	13.9 (0.4)	15.2 (0.3)	16.7 (0.2)	18.4 (0.3)	20.0 (0.4)	21.1 (0.6)	10-35	<3		100.0	(0.1)	0.0	(0.0)
	>70	2610	16.7 (0.2)	12.6 (0.3)	13.4 (0.3)	14.8 (0.3)	16.5 (0.3)	18.4 (0.3)	20.3 (0.4)	21.5 (0.5)	10-35	<3		99.8	(0.1)	0.0	(0.0)
	19+	10350	16.5 (0.1)	12.2 (0.2)	13.0 (0.2)	14.5 (0.2)	16.3 (0.2)	18.3 (0.2)	20.3 (0.3)	21.6 (0.3)	10-35	<3		99.6	(0.1)	0.0	(0.0)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

4. F	Percentage o	of total energ	jy intake fr	om carbohy	ydrates	

Table 4.1 Percentage of total energy intake from carbohydrates, by DRI age-sex group, household population, Newfoundland and Labrador, 2004¹

									P	ercentile	es (and S	SE) of us	ual intak	e						%		% within		% above	
		n	Mean	(SE)	5tl	h (SE)	101	th (SE)	25th	(SE)	50t	h (SE)	75th	n (SE)	90tl	h (SE)	95th	(SE)	AMDR ²	below AMDR	(SE)	AMDR	(SE)	AMDR	(SE)
Sex	Age (years)																								
Both																									
	1-3	79	55.1	(1.7)	47.9	(3.3)	49.5	(2.8)	52.0	(2.2)	54.6	(1.9)	57.4	(2.1)	60.0	(2.7)	61.6	(3.1)	45-65	F		97.9	(5.2)	F	
	4-8	127	54.9	(1.2)	44.8	(3.1)	47.1	(2.7)	51.2	(2.1)	55.6	(1.6)	59.2	(1.5)	62.1	(1.8)	63.7	(1.9)	45-65	F		92.2	(4.6)	F	
Male																									
	9-13	111	53.1	(1.8)	47.1	(3.9)	48.3	(3.3)	50.2	(2.5)	52.2	(2.1)	54.2	(2.2)	55.9	(2.8)	57.0	(3.2)	45-65	F		98.8	(9.2)	F	
	14-18	107	54.6	(1.4)	48.6	(2.3)	49.9	(2.1)	52.4	(1.7)	55.2	(1.5)	57.9	(1.7)	60.4	(2.1)	61.9	(2.5)	45-65	<3		98.7	(3.4)	F	
	19-30	77	49.0	(1.4)	41.5	(2.5)	43.4	(2.1)	46.4	(1.7)	49.4	(1.5)	52.1	(1.7)	55.1	(2.3)	57.2	(2.8)	45-65	F		83.0	(10.3)	<3	
	31-50	145	45.2	(1.8)	34.9	(3.2)	37.5	(2.9)	41.6	(2.5)	45.5	(2.2)	49.2	(2.0)	52.6	(2.0)	54.6	(2.1)	45-65	46.4	$(15.2)^{E}$	53.6	$(15.6)^{E}$	<3	
	51-70	182	48.8	(1.3)	43.8	(1.5)	45.0	(1.5)	47.0	(1.5)	49.2	(1.5)	51.5	(1.5)	53.7	(1.6)	54.9	(1.6)	45-65	F		89.8	(8.3)	0.0	(0.0)
	>70	63	49.1	(2.1)	37.9	(2.5)	39.8	(2.4)	43.2	(2.2)	47.1	(2.5)	51.4	(3.3)	55.7	(4.4)	58.4	(5.1)	45-65	F		63.3	$(14.7)^{E}$	F	
	19+	467	47.4	(0.9)	40.5	(2.2)	42.1	(1.8)	44.7	(1.3)	47.5	(1.1)	50.2	(1.3)	52.6	(1.7)	54.1	(2.0)	45-65	F		72.7	(10.6)	<3	
Female																									
	9-13	96	55.9	(1.3)	47.6	(3.0)	49.7	(2.5)	53.1	(1.9)	56.7	(1.5)	60.0	(1.6)	62.8	(1.8)	64.3	(2.0)	45-65	F		94.5	(4.5)	F	
	14-18	105	54.3	(1.2)	49.9	(1.6)	51.1	(1.6)	53.0	(1.7)	55.1	(1.8)	57.2	(2.0)	59.2	(2.2)	60.4	(2.3)	45-65	<3		99.6	(1.0)	<3	
	19-30	91	51.1	(1.4)	44.1	(2.1)	45.7	(1.9)	48.3	(1.8)	50.9	(1.7)	53.6	(1.8)	56.1	(1.8)	57.7	(1.8)	45-65	F		92.6	(7.3)	<3	
	31-50	167	47.1	(1.5)	37.6	(2.7)	40.1	(2.2)	44.1	(1.9)	48.5	(2.0)	52.5	(2.4)	56.3	(3.0)	58.7	(3.6)	45-65	F		70.1	$(11.9)^{E}$	<3	
	51-70	198	50.0	(1.6)	39.8	(2.7)	42.2	(2.4)	46.0	(2.0)	50.1	(1.7)	54.1	(1.4)	57.6	(1.3)	59.7	(1.3)	45-65	F		79.7	(9.0)	<3	
	>70	74	53.0	(1.6)	42.5	(3.9)	44.8	(3.4)	48.5	(2.7)	52.4	(2.0)	56.1	(1.8)	59.6	(2.2)	61.6	(2.5)	45-65	F		88.3	(9.3)	F	
	19+	530	49.3	(0.9)	40.0	(2.0)	42.2	(1.7)	45.9	(1.3)	49.7	(1.1)	53.5	(1.2)	56.8	(1.5)	58.7	(1.7)	45-65	20.6	(6.7) ^E	79.1	(6.7)	<3	

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 4.2 Percentage of total energy intake from carbohydrates, by DRI age-sex group, household population, Prince Edward Island, 2004¹

								Per	rcentile	es (and SE) of usi	ıal intake				%		%		%	
		n	Mean	(SE)	5tl	n (SE)	10th (SE)	25th ((SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	AMDR ²	below AMDR	(SE)	within AMDR	(SE)	above AMDR	(SE
Sex	Age (years)																			
Both																				
	1-3	58	55.4	(1.6)	49.1	(2.5)	50.5 (2.3)	53.0 (2.	2.2)	56.0 (2.3)	59.1 (2.7)	62.1 (3.3)	64.0 (3.7)	45-65	F		96.4	(6.4)	F	
	4-8	110	55.0	(0.9)	51.3	(2.0)	52.1 (1.7)	53.5 (1.	(.4)	55.1 (1.3)	56.7 (1.5)	58.1 (1.8)	58.9 (2.1)	45-65	<3		100.0	(0.9)	<3	
Male																				
	9-13	95	54.2	(1.4)	47.5	(2.5)	48.9 (2.2)	51.1 (1.	(.9)	53.6 (1.8)	55.9 (2.0)	57.8 (2.3)	58.9 (2.5)	45-65	F		98.9	(3.4)	<3	
	14-18	87	50.6	(1.2)	44.4	(1.5)	45.9 (1.5)	48.4 (1.	(.5)	51.3 (1.6)	54.3 (1.8)	56.9 (1.9)	58.6 (2.0)	45-65	F		93.2	(6.0)	<3	
	19-30	70	46.1	(1.4)	35.5	(2.8)	37.5 (2.3)	40.9 (1.	'.8)	44.5 (1.6)	48.1 (1.9)	51.3 (2.4)	53.2 (2.7)	45-65	53.8	$(14.5)^{E}$	46.2	(14.5) ^E	<3	
	31-50	109	46.8	(1.3)	40.8	(2.2)	41.9 (2.0)	43.9 (1.	'. <i>7</i>)	46.2 (1.7)	48.7 (2.0)	51.1 (2.5)	52.6 (3.0)	45-65	F		63.9	$(19.0)^{E}$	<3	
	51-70	128	47.5	(1.6)	40.1	(2.9)	41.6 (2.4)	44.1 (2.	2.0)	47.2 (2.1)	50.9 (2.9)	54.5 (3.8)	56.8 (4.5)	45-65	F		67.9	(15.1) ^E	<3	
	>70	65	50.7	(1.1)	45.2	(3.0)	47.1 (2.4)	49.8 (1.	(.9)	52.3 (1.7)	54.6 (1.9)	56.5 (2.2)	57.7 (2.5)	45-65	F		95.4	(6.1)	<3	
	19+	372	47.3	(0.7)	38.8	(1.4)	40.7 (1.2)	43.5 (0.).9)	46.5 (1.0)	50.1 (1.2)	53.3 (1.6)	55.0 (1.8)	45-65	37.0	$(8.0)^{E}$	63.0	(7.9)	<3	
Female																				
	9-13	75	54.5	(1.3)	50.2	(2.0)	51.1 (1.8)	52.6 (1.	'.5)	54.3 (1.3)	55.9 (1.5)	57.4 (1.8)	58.3 (2.0)	45-65	<3		100.0	(0.7)	<3	
	14-18	81	54.3	(1.4)	48.6	(2.4)	49.9 (2.1)	52.1 (1.	'.8)	54.5 (2.0)	57.0 (2.6)	59.4 (3.4)	60.9 (3.9)	45-65	F		98.9	(6.2)	F	
	19-30	101	53.1	(1.6)	45.3	(2.9)	47.0 (2.8)	49.8 (2.	2.5)	52.8 (2.2)	55.9 (2.2)	58.8 (2.4)	60.5 (2.6)	45-65	F		95.3	(6.6)	F	
	31-50	116	50.9	(1.5)	41.5	(2.7)	43.5 (2.4)	47.0 (2.	2.0)	50.7 (1.9)	54.5 (2.3)	57.9 (2.9)	60.0 (3.3)	45-65	F		84.1	(8.9)	F	
	51-70	146	49.4	(1.3)	40.5	(3.6)	42.6 (3.0)	46.0 (2.	2.2)	49.7 (1.7)	53.4 (1.9)	56.7 (2.5)	58.6 (3.0)	45-65	F		80.0	(12.0)	<3	
	>70	94	49.6	(1.2)	43.4	(2.5)	44.7 (2.2)	46.8 (1.	'. <i>7</i>)	49.0 (1.6)	51.3 (1.8)	53.2 (2.3)	54.4 (2.6)	45-65	F		88.3	(10.2)	<3	
	19+	457	50.7	(0.8)	41.4	(1.6)	43.5 (1.4)	46.9 (1.	(.2)	50.6 (1.1)	54.2 (1.2)	57.4 (1.3)	59.4 (1.5)	45-65	F		84.1	(5.4)	<3	

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 4.3 Percentage of total energy intake from carbohydrates, by DRI age-sex group, household population, Nova Scotia, 2004¹

									J	Percentil	es (and	SE) of us	sual intak	e						%		%		%	
		n	Mean	(SE)	5tl	h (SE)	10th	(SE)	25tl	h (SE)	501	th (SE)	75th	(SE)	90th	(SE)	95th	(SE)	AMDR ²	below AMDR	(SE)	within AMDR	(SE)	above AMDR	(SE)
Sex	Age (years)										•														
Both																									
	1-3	112	55.1	(1.4)	53.3	(4.7)	53.7	(3.9)	54.4	(2.8)	55.1	(1.8)	55.8	(3.3)	56.4 ((5.3)	56.8	(6.7)	45-65	F		100.0	(7.0)	F	
	4-8	177	56.3	(0.7)	52.3	(2.9)	53.1	(2.3)	54.4	(1.4)	55.9	(0.9)	57.3	(1.2)	58.6 (1.9)	59.3	(2.4)	45-65	<3		100.0	(2.8)	F	
I ale																									
	9-13	111	54.4	(1.0)	48.1	(1.8)	49.6	(1.5)	52.1	(1.3)	54.9	(1.3)	57.7	(1.6)	60.2 ((2.0)	61.8	(2.3)	45-65	F		98.3	(2.3)	F	
	14-18	113	51.6	(1.1)	42.5	(2.4)	44.6	(2.1)	48.0	(1.8)	51.8	(1.5)	55.2	(1.9)	58.0 ((2.6)	59.9	(3.2)	45-65	F		88.2	(7.6)	F	
	19-30	91	50.0	(2.0)	39.1	(4.4)	41.5	(3.8)	45.4	(2.8)	49.6	(2.4)	53.5	(2.6)	56.9 ((3.3)	58.9	(3.7)	45-65	F		76.7	(13.7) ^E	<3	
	31-50	101	46.9	(1.5)	37.0	(3.3)	39.4	(2.8)	43.2	(2.1)	47.3	(1.8)	51.6	(2.1)	55.6 (2.9)	58.1	(3.4)	45-65	F		64.2	(12.7) ^E	<3	
	51-70	134	47.7	(2.0)	41.3	(2.2)	42.6	(2.3)	44.9	(2.3)	47.5	(2.4)	50.1	(2.5)	52.4 ((2.6)	53.7	(2.6)	45-65	F		74.2	(18.6) ^E	0.0	(0.0)
	>70	56	51.3	(1.8)	46.0	(3.6)	47.2	(3.1)	49.2	(2.3)	51.4	(2.0)	53.6	(2.4)	55.6 ((3.4)	56.8	(4.0)	45-65	F		97.5	(11.4)	F	
	19+	382	48.2	(0.9)	40.4	(2.9)	42.1	(2.4)	45.0	(1.6)	48.2	(1.1)	51.4	(1.4)	54.4 ((2.0)	56.1	(2.5)	45-65	F		74.9	(10.6)	<3	
emale																									
	9-13	105	55.6	(1.3)	44.8	(2.5)	47.2	(2.2)	51.4	(1.9)	56.0	(1.7)	60.2	(1.7)	63.6 ((2.0)	65.4	(2.2)	45-65	F		88.6	(5.6)	F	
	14-18	120	58.3	(2.2)	49.3	(3.2)	51.3	(2.8)	54.5	(2.4)	57.9	(2.2)	61.7	(2.7)	65.7 ((3.6)	68.4	(4.5)	45-65	F		87.3	(9.3)	F	
	19-30	91	50.9	(2.1)	45.2	(4.1)	47.1	(4.0)	50.0	(3.7)	52.4	(3.1)	53.9	(2.7)	55.0 (3.5)	55.9	(4.3)	45-65	F		95.3	(16.6) ^E	F	
	31-50	159	48.1	(1.4)	39.0	(2.7)	41.0	(2.3)	44.2	(1.8)	47.7	(1.6)	51.3	(1.9)	54.6 ((2.5)	56.6	(2.9)	45-65	F		69.8	(12.0) ^E	<3	
	51-70	174	48.7	(1.3)	41.6	(3.4)	43.2	(2.7)	45.8	(1.9)	48.6	(1.6)	51.4	(2.0)	53.9 ((2.6)	55.4	(3.1)	45-65	F		80.4	(11.5)	<3	
	>70	80	51.6	(2.0)	45.5	(2.9)	46.6	(2.8)	48.6	(2.6)	50.8	(2.6)	53.1	(2.9)	55.2 (3.5)	56.5	(3.9)	45-65	F		96.4	(9.4)	<3	
	19+	504	49.2	(0.8)	39.1	(2.0)	41.3	(1.6)	44.9	(1.2)	48.9	(1.0)	52.8	(1.3)	56.3 ((1.7)	58.4		45-65	25.4	$(6.6)^{E}$	74.3	(6.7)	<3	

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

 $^{^{1}}$ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 4.4 Percentage of total energy intake from carbohydrates, by DRI age-sex group, household population, New Brunswick, 2004¹

									Percenti	les (and SE) of u	sual intake				%		%		%	
		n	Mean	(SE)	5tl	n (SE)	10th (S	(E)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	AMDR ²	below AMDR	(SE)	within AMDR	(SE)	above AMDR	(SE)
Sex	Age (years)																			
Both																				
	1-3	99	51.6	(1.4)	42.3	(3.1)	44.5 (2.6	<i>(</i>) 48	.1 (2.0)	51.9 (1.7)	55.5 (1.9)	58.6 (2.3)	60.5 (2.6)	45-65	F		88.0	(7.5)	<3	
	4-8	140	55.8	(0.9)	49.8	(1.4)	51.1 (1.3	3) 53	.2 (1.2)	55.5 (1.1)	57.8 (1.2)	60.0 (1.2)	61.3 (1.3)	45-65	<3		99.3	(0.7)	<3	
Male																				
	9-13	92	51.5	(3.2)	38.9	$(6.8)^{E}$	41.9 (5.7)	7) 46	.5 (4.4)	51.2 (3.5)	55.9 (3.3)	60.3 (3.7)	63.2 (4.3)	45-65	F		78.0	$(17.1)^{E}$	F	
	14-18	107	52.0	(1.3)	45.5	(2.2)	46.8 (2.0)) 49	.2 (1.7)	51.8 (1.7)	54.5 (1.9)	56.9 (2.4)	58.4 (2.7)	45-65	F		96.1	(4.1)	<3	
	19-30	73	50.3	(2.1)	41.4	(4.2)	43.3 (3.7)	7) 46	.4 (3.0)	49.7 (2.7)	53.0 (2.9)	55.9 (3.5)	57.7 (4.0)	45-65	F		82.7	(14.9) ^E	F	
	31-50	134	48.0	(1.3)	37.4	(2.8)	39.6 (2.3	3) 43	.1 (1.8)	46.9 (1.6)	50.9 (1.9)	54.4 (2.5)	56.5 (3.0)	45-65	F		62.9	$(12.3)^{E}$	<3	
	51-70	131	46.0	(1.2)	39.9	(2.7)	41.3 (2.3	3) 43	.6 (1.8)	46.2 (1.5)	48.9 (1.8)	51.2 (2.4)	52.7 (2.9)	45-65	F		62.2	$(16.7)^{E}$	<3	
	>70	55	50.1	(1.8)	36.9	(5.1)	40.1 (4.2	2) 45	.3 (2.8)	50.7 (2.1)	55.7 (2.5)	60.0 (3.3)	62.4 (3.9)	45-65	F		74.0	$(12.6)^{E}$	F	
	19+	393	48.1	(0.8)	36.9	(1.5)	39.2 (1.3	3) 43	.2 (1.0)	47.6 (0.9)	52.1 (1.1)	56.0 (1.3)	58.3 (1.5)	45-65	34.6	(5.6)	65.0	(5.6)	<3	
Female																				
	9-13	79	56.9	(2.8)	50.1	(4.1)	51.7 (3.6	5) 54	.4 (3.2)	57.4 (3.1)	60.6 (3.5)	63.5 (4.1)	65.2 (4.5)	45-65	F		94.2	(11.3)	F	
	14-18	104	54.9	(1.2)	49.0	(4.0)	50.1 (3.5	5) 51	.8 (2.9)	53.8 (2.4)	55.8 (2.2)	57.6 (2.1)	58.7 (2.0)	45-65	F		99.9	(8.7)	<3	
	19-30	101	50.9	(1.4)	43.3	(3.1)	44.6 (2.7	⁷) 46	.9 (2.1)	49.5 (1.8)	52.1 (2.1)	54.4 (2.8)	55.8 (3.3)	45-65	F		88.2	(12.2)	<3	
	31-50	143	53.0	(1.1)	51.5	(5.2)	52.0 (4.2	2) 52	.7 (2.7)	53.5 (1.4)	54.3 (1.8)	55.0 (3.3)	55.5 (4.4)	45-65	F		100.0	(5.4)	<3	
	51-70	193	50.6	(1.0)	43.1	(2.4)	44.9 (1.9	9) 47	.7 (1.4)	50.6 (1.2)	53.4 (1.5)	55.9 (2.0)	57.4 (2.3)	45-65	F		89.6	(7.0)	<3	
	>70	94	52.2	(1.2)	43.1	(3.2)	45.2 (2.7	7) 48	.6 (2.0)	52.0 (1.7)	55.2 (1.7)	57.9 (2.1)	59.5 (2.4)	45-65	F		90.2	(7.2)	<3	
	19+	531	51.8	(0.7)	43.3	(1.5)	45.1 (1.2	2) 48	.2 (0.9)	51.6 (0.8)	54.9 (1.0)	58.0 (1.3)	59.9 (1.6)	45-65	F		90.0	(4.4)	<3	

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 4.5 Percentage of total energy intake from carbohydrates, by DRI age-sex group, household population, Quebec, 2004¹

										Percentile	es (and	SE) of us	ual intak	æ					%		%		%	
		n	Mean	(SE)	5tl	h (SE)	10t	h (SE)	251	th (SE)	50	th (SE)	75tl	n (SE)	90t	h (SE)	95th (SE)	AMDR ²	below AMDR	(SE)	within AMDR	(SE)	above AMDR	(SE)
Sex	Age (years)																							
Both																								
	1-3	311	52.9	(0.9)	45.1	(1.7)	46.9	(1.5)	49.9	(1.1)	53.0	(1.0)	55.9	(1.2)	58.5	(1.5)	60.1 (1.7)	45-65	F		95.0	(3.1)	<3	
	4-8	485	53.2	(0.5)	48.0	(1.5)	49.3	(1.2)	51.4	(0.8)	53.8	(0.6)	56.1	(0.8)	58.2	(1.1)	59.5 (1.4)	45-65	<3		99.4	(1.4)	<3	
Male																								
	9-13	277	53.1	(0.8)	47.0	(2.0)	48.3	(1.7)	50.6	(1.3)	53.1	(1.1)	55.5	(1.3)	57.6	(1.6)	58.9 (1.9)	45-65	F		98.5	(2.8)	<3	
	14-18	339	52.0	(0.9)	41.0	(1.9)	43.6	(1.6)	47.8	(1.3)	52.0	(1.2)	56.3	(1.4)	60.1	(1.7)	62.1 (1.8)	45-65	F		85.0	(4.8)	F	
	19-30	237	48.9	(1.2)	37.9	(2.7)	40.3	(2.2)	44.4	(1.7)	48.9	(1.5)	53.3	(1.8)	57.1	(2.3)	59.4 (2.7)	45-65	27.8	(8.8) ^E	71.6	(8.8)	<3	
	31-50	423	48.5	(1.3)	40.0	(3.0)	41.8	(2.6)	44.9	(1.9)	48.7	(1.5)	52.5	(1.8)	55.7	(2.5)	57.7 (3.0)	45-65	F		74.4	(11.4)	<3	
	51-70	387	47.0	(0.8)	38.0	(1.3)	39.9	(1.1)	43.1	(0.9)	46.7	(1.0)	50.3	(1.2)	53.6	(1.6)	55.5 (1.8)	45-65	37.2	$(7.2)^{E}$	62.8	(7.2)	<3	
	>70	132	48.0	(1.5)	37.7	(3.0)	39.9	(2.8)	43.7	(2.4)	48.0	(2.1)	52.2	(2.1)	55.9	(2.3)	58.0 (2.6)	45-65	F		67.7	$(12.8)^{E}$	<3	
	19+	1179	48.2	(0.6)	37.5	(1.3)	39.8	(1.0)	43.7	(0.8)	48.1	(0.7)	52.5	(0.8)	56.3	(1.0)	58.6 (1.2)	45-65	31.7	(4.3)	67.9	(4.3)	<3	
Female																								
	9-13	281	54.1	(0.9)	45.4	(2.3)	47.3	(2.0)	50.4	(1.5)	53.9	(1.2)	57.5	(1.6)	60.8	(2.4)	62.8 (3.1)	45-65	F		93.7	(6.1)	F	
	14-18	321	52.7	(1.0)	48.0	(2.1)	49.0	(1.9)	50.6	(1.5)	52.5	(1.3)	54.3	(1.5)	56.1	(2.0)	57.1 (2.3)	45-65	F		99.7	(3.3)	<3	
	19-30	249	52.2	(1.1)	44.0	(2.5)	46.1	(2.1)	49.3	(1.5)	52.6	(1.3)	55.7	(1.7)	58.6	(2.3)	60.3 (2.7)	45-65	F		92.4	(5.5)	F	
	31-50	364	47.5	(1.0)	38.1	(2.3)	40.2	(1.9)	43.5	(1.5)	47.0	(1.3)	51.4	(1.6)	55.3	(2.1)	57.4 (2.5)	45-65	35.3	$(10.0)^{E}$	64.5	(10.1)	<3	
	51-70	467	49.2	(0.6)	39.5	(1.4)	41.6	(1.1)	45.1	(0.8)	48.9	(0.8)	52.7	(1.0)	56.4	(1.4)	58.8 (1.7)	45-65	24.6	(5.0) ^E	74.8	(5.1)	<3	
	>70	215	51.4	(0.8)	43.1	(1.1)	44.8	(1.1)	47.7	(1.1)	50.9	(1.1)	54.2	(1.2)	57.2	(1.2)	59.0 (1.3)	45-65	F		88.9	(4.5)	<3	
	19+	1295	49.4	(0.5)	40.2	(1.1)	42.1	(0.9)		(0.7)	49.1	(0.6)	52.9	(0.7)	56.4	(0.9)	58.4 (1.0)	45-65	22.8	$(4.2)^{E}$	76.9	(4.2)	<3	

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 4.6 Percentage of total energy intake from carbohydrates, by DRI age-sex group, household population, Ontario, 2004¹

•										Percentile	es (and	SE) of usi	ıal intak	te						%		%		%	
		n	Mean	(SE)	5tl	h (SE)	10t	h (SE)	25	th (SE)	50	th (SE)	75t	h (SE)	90t	h (SE)	95th (S	SE)	AMDR ²	below AMDR	(SE)	within AMDR	(SE)	above AMDR	(SE)
Sex	Age (years)						,				•														
Both																									
	1-3	644	55.6	(0.6)	44.8	(1.6)	47.2	(1.3)	51.1	(0.9)	55.3	(0.7)	59.5	(0.8)	63.5	(1.3)	66.0 (1	.6)	45-65	F		88.0	(4.3)	F	
	4-8	956	56.7	(0.4)	47.9	(1.0)	49.9	(0.8)	53.2	(0.6)	56.8	(0.5)	60.4	(0.6)	63.5	(0.8)	65.4 (0	0.9)	45-65	F		92.7	(2.4)	5.8	(1.9) ^E
Male																									
	9-13	589	55.6	(0.4)	51.8	(1.8)	52.6	(1.4)	54.1	(0.9)	55.6	(0.5)	57.2	(0.9)	58.6	(1.4)	59.4 (1	.7)	45-65	<3		100.0	(0.8)	<3	
	14-18	639	53.5	(0.6)	47.7	(2.2)	49.0	(1.7)	51.3	(1.1)	53.8	(0.7)	56.2	(1.0)	58.5	(1.7)	59.8 (2	2.1)	45-65	F		98.9	(3.1)	<3	
	19-30	481	50.1	(0.8)	39.9	(2.3)	42.2	(1.8)	46.0	(1.2)	50.2	(0.9)	54.4	(1.3)	58.2	(2.0)	60.6 (2	2.5)	45-65	20.1	$(6.4)^{E}$	78.7	(7.0)	F	
	31-50	709	47.6	(0.8)	37.5	(2.7)	39.6	(2.2)	43.1	(1.3)	47.1	(0.9)	51.1	(1.4)	54.6	(2.3)	56.6 (2	2.8)	45-65	36.1	$(9.1)^{E}$	63.9	(9.1)	<3	
	51-70	758	47.5	(0.6)	38.3	(2.3)	40.4	(1.8)	43.9	(1.1)	47.6	(0.7)	51.3	(1.2)	54.5	(1.9)	56.4 (2	2.3)	45-65	31.7	(7.3) ^E	68.3	(7.4)	<3	
	>70	734	51.3	(0.6)	39.8	(1.2)	42.4	(1.0)	46.6	(0.8)	51.3	(0.6)	55.9	(0.8)	60.1	(1.1)	62.6 (1)	.3)	45-65	18.3	(3.4) ^E	79.4	(3.8)	F	
	19+	2682	48.5	(0.4)	36.9	(1.0)	39.4	(0.8)	43.7	(0.6)	48.4	(0.5)	53.0	(0.6)	57.0	(0.8)	59.3 (1	.0)	45-65	31.3	(2.8)	68.0	(2.9)	<3	
Female																									
	9-13	585	55.5	(0.5)	50.9	(2.1)	52.0	(1.6)	53.7	(1.0)	55.6	(0.6)	57.5	(1.0)	59.1	(1.6)	60.1 (2	2.0)	45-65	<3		100.0	(1.9)	<3	
	14-18	645	54.7	(0.6)	47.8	(0.7)	49.4	(0.7)	52.0	(0.7)	54.8	(0.7)	57.6	(0.7)	60.1	(0.7)	61.7 (0	0.7)	45-65	<3		98.1	(0.6)	<3	
	19-30	514	52.6	(0.8)	45.5	(2.6)	47.1	(2.0)	49.8	(1.3)	52.7	(0.9)	55.5	(1.4)	58.0	(2.0)	59.4 (2	2.5)	45-65	F		95.9	(5.2)	<3	
	31-50	758	49.5	(0.7)	39.8	(2.4)	42.0	(1.9)	45.6	(1.2)	49.5	(0.8)	53.4	(1.3)	56.9	(1.9)	58.9 (2	2.4)	45-65	22.0	(7.3) ^E	77.7	(7.5)	<3	
	51-70	955	50.2	(0.6)	40.2	(1.9)	42.4	(1.5)	46.1	(1.0)	50.3	(0.7)	54.3	(1.1)	57.8	(1.6)	60.0 (2	2.0)	45-65	19.5	(5.6) ^E	79.7	(5.9)	<3	
	>70	1345	51.9	(0.4)	41.4	(1.1)	43.8	(0.9)	47.7	(0.7)	51.9	(0.5)	56.1	(0.6)	59.9	(0.9)	62.2 (1	.0)	45-65	13.8	$(2.8)^{E}$	84.4	(3.3)	F	
	19+	3572	50.6	(0.4)	40.2	(1.0)	42.6	(0.8)	46.4	(0.6)	50.5	(0.4)	54.7	(0.6)	58.4	(0.9)	60.6 (1	.0)	45-65	18.6	(2.8)	80.5	(3.0)	<3	

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 4.7 Percentage of total energy intake from carbohydrates, by DRI age-sex group, household population, Manitoba, 2004¹

]	Percentile	es (and	SE) of usu	ıal intak	e						%		% within		%	
		n	Mean	(SE)	5tł	h (SE)	10t	h (SE)	251	th (SE)	50	th (SE)	75th	n (SE)	90t	h (SE)	95th	(SE)	AMDR ²	below AMDR	(SE)	AMDR	(SE)	above AMDR	(SE)
Sex	Age (years)										•		*												
Both																									
	1-3	324	55.5	(0.7)	50.6	(1.9)	51.7	(1.5)	53.4	(1.0)	55.4	(0.7)	57.4	(1.0)	59.2	(1.5)	60.3	(1.9)	45-65	<3		100.0	(1.5)	<3	
	4-8	425	56.0	(0.4)	47.0	(2.2)	48.9	(1.8)	52.0	(1.0)	55.7	(0.5)	59.3	(1.1)	62.6	(1.9)	64.7	(2.4)	45-65	F		93.6	(4.4)	F	
Male																									
	9-13	274	54.9	(0.7)	45.3	(2.5)	47.3	(2.0)	50.8	(1.2)	54.5	(0.7)	58.2	(1.1)	61.4	(1.8)	63.4	(2.3)	45-65	F		92.8	(4.6)	F	
	14-18	297	52.3	(0.8)	44.3	(2.0)	46.0	(1.7)	48.9	(1.2)	52.1	(1.0)	55.4	(1.1)	58.7	(1.6)	60.8	(2.1)	45-65	F		92.2	(4.7)	F	
	19-30	249	48.0	(1.0)	39.5	(2.9)	41.4	(2.3)	44.6	(1.5)	47.9	(1.2)	51.2	(1.7)	54.3	(2.5)	56.1	(3.1)	45-65	F		72.2	(11.4)	<3	
	31-50	309	47.4	(1.2)	38.6	(3.0)	40.6	(2.7)	44.0	(2.0)	47.8	(1.4)	51.5	(2.0)	54.8	(2.4)	56.7	(2.8)	45-65	F		69.0	(11.0)	F	
	51-70	277	47.7	(0.9)	37.6	(2.6)	39.9	(2.1)	43.6	(1.4)	47.5	(1.0)	51.3	(1.4)	54.8	(2.1)	56.9	(2.5)	45-65	33.1	(8.3) ^E	66.7	(8.4)	<3	
	>70	136	51.7	(0.9)	43.2	(1.0)	45.3	(1.0)	48.6	(0.9)	52.0	(0.9)	55.4	(1.0)	58.4	(1.1)	60.1	(1.2)	45-65	F		90.6	(3.0)	<3	
	19+	971	48.0	(0.6)	38.6	(1.4)	40.7	(1.1)	44.3	(0.8)	48.3	(0.7)	52.1	(1.0)	55.4	(1.3)	57.3	(1.5)	45-65	28.8	(4.8)	71.0	(4.8)	<3	
Female																									
	9-13	265	56.5	(0.9)	51.0	(0.8)	52.3	(0.9)	54.3	(0.9)	56.6	(1.0)	59.0	(1.2)	61.1	(1.3)	62.4	(1.4)	45-65	<3		99.1	(1.8)	F	
	14-18	290	53.9	(1.2)	46.6	(2.3)	48.1	(2.0)	50.6	(1.5)	53.4	(1.3)	56.4	(1.5)	59.0	(2.0)	60.6	(2.4)	45-65	F		97.4	(3.5)	F	
	19-30	197	53.3	(1.6)	46.6	(2.1)	48.2	(2.0)	50.8	(1.9)	53.5	(1.7)	56.2	(1.6)	58.6	(1.5)	60.1	(1.5)	45-65	F		97.4	(4.1)	<3	
	31-50	312	48.0	(1.1)	38.5	(1.5)	40.8	(1.4)	44.4	(1.3)	48.2	(1.2)	52.0	(1.2)	55.6	(1.3)	57.8	(1.3)	45-65	28.3	(7.1) ^E	71.4	(7.0)	<3	
	51-70	312	49.3	(1.1)	42.6	(3.4)	44.0	(2.9)	46.4	(2.0)	49.0	(1.4)	51.8	(1.8)	54.3	(2.7)	55.8	(3.3)	45-65	F		84.8	(12.5)	<3	
	>70	239	53.8	(0.9)	42.4	(2.2)	45.1	(1.8)	49.6	(1.3)	54.2	(1.1)	58.5	(1.2)	62.0	(1.5)	64.0	(1.7)	45-65	F		86.9	(4.9)	F	
	19+	1060	50.3	(0.6)	41.5	(2.1)	43.4	(1.7)	46.7	(1.1)	50.2	(0.7)	53.7		56.8	(1.5)	58.7	(1.9)	45-65	F		83.8	(6.3)	<3	

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 4.8 Percentage of total energy intake from carbohydrates, by DRI age-sex group, household population, Saskatchewan, 2004¹

								I	Percentile	es (and SE) of usua	l intake							%		%		%	
		n	Mean	(SE)	5th	(SE)	10th (SE)	25tl	h (SE)	50th	(SE)	75th ((SE)	90th	(SE)	95th	(SE)	AMDR ²	below AMDR	(SE)	within AMDR	(SE)	above AMDR	(SE
Sex	Age (years)																							
Both																								
	1-3	129	53.7	(1.2)	43.6	(2.2)	45.7 (2.0)	49.2	(1.7)	53.3 (1	(.6)	57.4 (1	(8.	61.1 (2	2.1)	63.4 (2.3)	45-65	F		89.0	(5.3)	F	
	4-8	213	54.8	(0.9)	50.8	(2.3)	51.6 (1.8)	53.1	(1.2)	54.7 (1)	(.0)	56.2 (1	1.5)	57.6 (2	2.0)	58.4 (2.4)	45-65	<3		100.0	(1.6)	<3	
Male																								
	9-13	122	53.8	(1.0)	47.6	(2.2)	48.9 (1.9)	51.3	(1.5)	54.1 (1	(.3)	57.0 (1	(.6)	59.6 (2	2.0)	61.2 (2.4)	45-65	F		98.4	(2.7)	F	
	14-18	150	52.6	(0.9)	46.2	(1.3)	47.7 (1.2)	50.1	(1.1)	52.7 (1)	(.1)	55.2 (1	(.1)	57.6 (1)	1.2)	59.0 (1.3)	45-65	F		97.1	(2.3)	<3	
	19-30	106	47.8	(1.9)	34.8	(3.3)	37.7 (2.9)	42.5	(2.4)	47.9 (2	2.3)	53.2 (2	2.7)	58.0 (3	3.4)	60.9 (3.9)	45-65	36.0	$(12.0)^{E}$	62.5	$(11.6)^{E}$	F	
	31-50	155	47.1	(1.4)	34.8	(3.0)	37.6 (2.5)	42.0	(1.8)	46.6 (1	(.6)	51.4 (1	(.8)	56.4 (2	2.7)	59.8 (3.6)	45-65	40.8	(9.7) ^E	57.6	(9.8) ^E	F	
	51-70	122	43.5	(1.5)	34.2	(2.3)	36.0 (2.2)	38.9	(2.1)	42.1 (2	2.1)	45.3 (2	2.1)	48.1 (2	2.1)	49.8 (2.1)	45-65	73.2	$(12.8)^{E}$	F		<3	
	>70	88	48.4	(1.4)	36.9	(2.3)	39.1 (2.1)	43.2	(1.9)	48.1 (1	(.9)	53.0 (2	2.3)	57.3 (2	2.7)	59.6 (2.9)	45-65	33.5	$(10.5)^{E}$	65.9	(10.2)	<3	
	19+	471	46.5	(0.9)	34.0	(1.6)	36.7 (1.3)	41.1	(1.1)	45.9 (1	(.0)	50.8 (1	(.1)	55.4 (1	1.5)	58.3 (1.9)	45-65	44.8	(5.5)	54.3	(5.4)	<3	
emale																								
	9-13	103	55.2	(1.0)	50.2	(1.3)	51.3 (1.3)	53.1	(1.3)	55.0 (1)	(.3)	57.0 (1	(.3)	58.8 (1)	1.3)	59.9 (1.4)	45-65	<3		100.0	(0.6)	<3	Į.
	14-18	142	54.6	(1.1)	50.7	(3.4)	51.9 (2.9)	53.9	(2.2)	56.0 (1	.8)	58.1 (1	(.8)	60.0 (2	2.1)	61.1 (2.5)	45-65	F		99.8	(4.5)	F	
	19-30	111	52.1	(1.1)	44.7	(2.5)	46.3 (2.1)	49.0	(1.7)	52.1 (1	(.6)	55.3 (2	2.1)	58.1 (2	2.7)	59.8 (3.2)	45-65	F		93.8	(6.7)	F	
	31-50	146	48.7	(1.3)	38.5	(2.8)	41.0 (2.3)	45.1	(1.8)	49.6	(.6)	54.0 (1	(.9)	57.7 (2	2.4)	59.9 (2.8)	45-65	F		74.9	(9.3)	<3	,
	51-70	184	48.7	(1.2)	41.4	(2.8)	43.0 (2.4)	45.8	(1.9)	48.9 (1	(.6)	51.9 (1	(8.	54.6 (2	2.2)	56.2 (2.6)	45-65	F		80.1	(12.0)	<3	
	>70	143	52.9	(1.2)	43.0	(3.3)	45.0 (2.7)	48.4	(1.9)	52.3 (1	'.5)	56.0 (2	2.0)	59.2 (2	2.8)	61.1 (3.2)	45-65	F		89.4	(7.1)	<3	
	19+	584	50.1	(0.7)	40.5	(1.3)	42.6 (1.2)	46.2	(1.0)	50.2 (0		54.2 (1	(.0)	57.7 (1	1.3)	59.9 (1.4)	45-65	18.9	$(4.9)^{E}$	80.5	(4.9)	<3	

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 4.9 Percentage of total energy intake from carbohydrates, by DRI age-sex group, household population, Alberta, 2004¹

									Per	centiles	s (and SE) of usi	ual intake				%		% within		% above	
		n	Mean	(SE)	5tl	h (SE)	10th	(SE)	25th ((SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	AMDR ²	below AMDR	(SE)		(SE)	AMDR	(SE)
Sex	Age (years)								•												
Both																					
	1-3	169	55.1	(1.2)	45.5	(3.2)	47.7 (.	3.4)	51.4 (2.	.3)	55.5 (1.4)	59.3 (1.8)	62.6 (2.3)	64.4 (2.7)	45-65	F		91.9	(7.1)	F	
	4-8	281	55.5	(0.7)	49.8	(0.8)	51.0 (0	0.8)	53.0 (0.	.8)	55.3 (0.8)	57.6 (0.8)	59.7 (0.9)	61.0 (0.9)	45-65	<3		99.6	(0.3)	<3	
I ale																					
	9-13	183	54.6	(1.0)	46.0	(2.4)	48.0 (1.9)	51.1 (1.	.3)	54.5 (1.3)	57.7 (1.7)	60.4 (2.3)	61.9 (2.6)	45-65	F		95.7	(4.2)	F	
	14-18	187	52.5	(1.0)	40.9	(2.8)	43.6	2.2)	18.0 (1.	.5)	52.5 (1.2)	56.9 (1.7)	60.9 (2.6)	63.4 (3.2)	45-65	F		83.3	(7.3)	F	
	19-30	223	49.7	(1.1)	41.4	(3.1)	43.3 (2	2.5)	16.4 (1.	.7)	49.8 (1.3)	53.1 (1.6)	56.1 (2.4)	57.8 (2.9)	45-65	F		82.9	(9.8)	<3	
	31-50	229	47.7	(1.6)	39.2	(3.9)	41.3 (3.2)	14.8 (2.	.3)	48.6 (1.8)	52.3 (2.3)	55.5 (3.0)	57.4 (3.6)	45-65	F		73.9	$(13.2)^{E}$	<3	
	51-70	197	49.3	(2.0)	39.4	(3.5)	41.4 (2	2.9)	14.7 (2.	.2)	48.6 (2.0)	52.8 (2.7)	56.9 (3.8)	59.4 (4.5)	45-65	F		72.6	$(12.7)^{E}$	F	
	>70	72	48.7	(2.5)	38.2	(4.4)	40.8 (.	3.8)	14.9 (2.	.8)	49.5 (2.5)	54.5 (3.4)	59.7 (5.0)	62.9 (6.1)	45-65	F		71.8	(13.9) ^E	F	
	19+	721	48.7	(0.9)	37.0	(2.1)	39.6 (1.8)	14.0 (1.	.2)	48.9 (1.0)	53.8 (1.4)	58.3 (2.0)	61.1 (2.5)	45-65	29.5	$(6.3)^{E}$	68.9	(6.5)	F	
male																					
	9-13	165	57.1	(0.9)	49.4	(2.2)	51.4 (.	1.8)	54.6 (1.	.3)	58.0 (1.1)	61.3 (1.3)	64.1 (1.8)	65.8 (2.1)	45-65	<3		92.2	(5.3)	F	
	14-18	206	54.2	(1.0)	48.6	(3.3)	50.1 (2	2.8)	52.4 (1.	.9)	54.8 (1.3)	57.0 (1.5)	58.8 (2.3)	59.9 (3.0)	45-65	F		99.4	(6.2)	F	
	19-30	191	51.7	(1.7)	42.1	(3.9)	44.1 (.	3.3)	17.5 (2.	.5)	51.3 (2.1)	55.3 (2.5)	59.0 (3.4)	61.3 (4.0)	45-65	F		85.7	(11.0)	F	
	31-50	258	46.5	(1.1)	39.5	(3.1)	41.0 (2	2.4)	13.5 (1.	.7)	46.1 (1.3)	48.8 (1.8)	51.3 (2.6)	52.9 (3.3)	45-65	F		61.3	(13.6) ^E	<3	,
	51-70	249	48.7	(1.2)	40.7	(3.0)	42.5 (2	2.5)	45.4 (1.	.7)	48.8 (1.4)	52.1 (1.8)	55.0 (2.6)	56.8 (3.1)	45-65	F		77.8	(11.3)	<3	
	>70	128	49.7	(1.3)	39.7	(3.2)	41.8 (2	2.8)	15.4 (2.	.2)	49.3 (1.8)	53.3 (2.1)	57.0 (2.7)	59.1 (3.1)	45-65	F		76.5	(11.8)	<3	,
	19+	826	48.5	(0.6)	38.9	(1.6)	41.0 (1.3)	14.5 (0.	1.9)	48.3 (0.7)	52.2 (1.0)	55.8 (1.5)	58.0 (1.9)	45-65	27.8	$(5.5)^{E}$	71.9	(5.9)	<3	

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 4.10 Percentage of total energy intake from carbohydrates, by DRI age-sex group, household population, British Columbia, 2004¹

									Percen	tiles (and S	SE) of u	sual intake					%		%		%	
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th (SE)	50th	(SE)	75th (SE)	90th (SE)	95th (SE)	AMDR ²	below AMDR	(SE)	within AMDR	(SE)	above AMDR	(SE)
Sex	Age (years)																					
Both																						
	1-3	192	53.3	(1.2)	46.4	(2.4)	47.9	(2.1)	50.3 (1.7	53.1	(1.6)	55.8 (1.9)	58.2 ((2.3)	59.6 (2.6)	45-65	F		97.5	(4.1)	<3	
	4-8	321	55.8	(0.8)	50.6	(2.0)	51.7	(1.7)	53.6 (1.3	55.7	(1.0)	57.8 (1.3)	59.7 ((1.7)	60.8 (2.0)	45-65	<3		99.9	(1.8)	<3	
Male																						
	9-13	226	53.9	(0.9)	48.5	(1.9)	49.7	(1.6)	51.7 (1.3	54.0	(1.2)	56.2 (1.4)	58.2 ((1.8)	59.4 (2.0)	45-65	F		99.6	(2.0)	<3	
	14-18	262	52.3	(1.0)	48.8	(2.3)	49.5	(2.0)	50.8 (1.5	52.2	(1.3)	53.6 (1.6)	54.9 ((2.1)	55.7 (2.5)	45-65	F		100.0	(2.9)	<3	
	19-30	197	49.8	(1.0)	41.8	(2.6)	43.5	(2.2)	46.4 (1.6	49.6	(1.3)	53.0 (1.5)	56.1 ((2.0)	57.9 (2.4)	45-65	F		83.4	(8.9)	<3	
	31-50	282	47.5	(1.1)	37.6	(3.3)	39.9	(2.8)	43.6 (2.2	47.6	(1.3)	51.5 (2.3)	54.9 ((3.5)	56.9 (4.2)	45-65	33.2	$(10.9)^{E}$	66.8	$(11.2)^{E}$	F	
	51-70	234	46.6	(1.0)	32.3	(2.3)	35.9	(1.9)	41.6 (1.5	47.5	(1.3)	52.8 (1.5)	57.2 ((1.7)	59.5 (1.8)	45-65	38.6	(6.3)	60.9	(6.2)	<3	
	>70	119	50.4	(1.6)	40.6	(2.3)	42.9	(2.1)	46.6 (2.0	50.8	(2.0)	54.9 (2.1)	58.4 ((2.5)	60.5 (2.8)	45-65	F		81.8	(8.0)	F	
	19+	832	48.1	(0.6)	35.8	(1.2)	38.7	(1.0)	43.4 (0.8	48.4	(0.8)	53.2 (0.9)	57.2 ((1.0)	59.5 (1.1)	45-65	32.4	(3.9)	67.1	(3.9)	<3	
Female																						
	9-13	226	55.9	(0.9)	49.5	(2.1)	51.1	(1.8)	53.7 (1.4	56.5	(1.1)	59.1 (1.2)	61.5 ((1.5)	62.9 (1.7)	45-65	<3		98.1	(2.7)	F	
	14-18	242	54.8	(1.0)	44.3	(2.3)	46.9	(1.9)	51.1 (1.4	55.2	(1.2)	59.2 (1.5)	62.8 ((1.9)	65.1 (2.3)	45-65	F		88.8	(5.0)	F	
	19-30	208	49.6	(1.2)	42.4	(2.6)	43.9	(2.2)	46.4 (1.8	49.2	(1.6)	51.9 (2.0)	54.4 ((2.5)	55.9 (2.9)	45-65	F		84.5	(10.6)	<3	
	31-50	263	48.9	(1.5)	33.7	(3.0)	36.8	(3.1)	41.9 (2.5	47.7	(1.7)	53.8 (2.3)	59.2 ((2.7)	62.2 (2.9)	45-65	37.9	(8.2) E	59.9	(8.7)	F	
	51-70	322	49.3	(1.3)	38.2	(2.9)	40.6	(2.5)	44.7 (1.9	9) 49.4	(1.5)	54.0 (2.1)	58.0 ((2.9)	60.3 (3.5)	45-65	F		73.0	(9.4)	F	
	>70	198	52.2	(0.9)	43.0	(1.8)	44.9	(1.6)	48.3 (1.3	52.1	(1.2)	56.2 (1.5)	60.0 ((2.0)	62.3 (2.3)	45-65	F		87.7	(5.5)	F	
	19+	991	49.6	(0.7)	37.9	(1.4)	40.3	(1.2)	44.4 (0.9) 49.0	(0.8)	53.7 (1.0)	57.8 ((1.3)	60.2 (1.5)	45-65	27.6	(4.5)	71.5	(4.6)	<3	

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 4.11 Percentage of total energy intake from carbohydrates, by DRI age-sex group, household population, Atlantic Region, 2004¹

										Percentil	les (and	SE) of us	sual intal	ke						% h -1		% :41-:		%	
		n	Mean	(SE)	5tl	h (SE)	101	h (SE)	251	th (SE)	50tl	n (SE)	75th	(SE)	90th	(SE)	95th	(SE)	AMDR ²	below AMDR	(SE)	within AMDR	(SE)	above AMDR	(SE)
Sex	Age (years)																								
Both																									
	1-3	348	54.0	(0.8)	46.9	(1.8)	48.5	(1.5)	51.1	(1.1)	53.9	(1.0)	56.7	(1.2)	59.2	(1.5)	60.6	(1.8)	45-65	F		97.7	(2.6)	<3	3
	4-8	554	55.7	(0.5)	49.5	(1.3)	51.0	(1.1)	53.3	(0.8)	55.7	(0.6)	58.1	(0.8)	60.2	(1.1)	61.5	(1.3)	45-65	<3		99.2	(1.2)	<3	3
I ale																									
	9-13	409	53.2	(1.2)	46.0	(3.1)	47.6	(2.6)	50.1	(1.8)	52.8	(1.4)	55.5	(1.6)	58.1	(2.0)	59.5	(2.2)	45-65	F		97.0	(5.2)	<3	3
	14-18	414	52.4	(0.7)	45.6	(1.5)	47.2	(1.3)	49.8	(1.0)	52.6	(0.9)	55.4	(1.0)	57.8	(1.3)	59.3	(1.5)	45-65	F		96.1	(2.8)	<3	3
	19-30	311	49.6	(1.1)	40.6	(2.2)	42.6	(1.9)	45.7	(1.5)	49.2	(1.3)	52.7	(1.4)	56.0	(1.7)	58.0	(2.0)	45-65	F		79.0	(8.2)	<3	3
	31-50	489	46.9	(0.8)	37.6	(1.9)	39.7	(1.6)	43.1	(1.2)	46.8	(1.1)	50.3	(1.2)	53.5	(1.5)	55.5	(1.7)	45-65	37.1	(8.3) ^E	62.9	(8.3)	<3	3
	51-70	575	47.4	(0.9)	41.4	(2.3)	42.7	(1.9)	45.0	(1.3)	47.6	(1.1)	50.1	(1.5)	52.3	(2.1)	53.5	(2.5)	45-65	F		74.9	(11.3)	<3	3
	>70	239	50.4	(1.0)	40.3	(1.9)	42.5	(1.7)	46.2	(1.4)	50.3	(1.2)	54.4	(1.3)	58.0	(1.6)	60.2	(1.8)	45-65	F		80.2	(6.6)	<3	3
	19+	1614	47.9	(0.5)	38.4	(1.0)	40.5	(0.9)	43.9	(0.7)	47.7	(0.6)	51.5	(0.7)	54.9	(0.8)	56.9	(0.9)	45-65	31.3	(4.2)	68.7	(4.1)	<3	3
emale																									
	9-13	355	56.0	(1.0)	47.1	(1.6)	49.3	(1.4)	52.7	(1.2)	56.5	(1.2)	60.2	(1.5)	63.7	(1.9)	65.9	(2.3)	45-65	F		91.1	(4.4)	F	7
	14-18	410	56.1	(1.0)	50.1	(1.9)	51.5	(1.6)	53.8	(1.3)	56.1	(1.3)	58.7	(1.7)	61.2	(2.3)	62.8	(2.8)	45-65	<3		98.4	(2.5)	F	7
	19-30	384	51.1	(1.0)	42.3	(2.0)	44.2	(1.7)	47.2	(1.4)	50.6	(1.4)	54.0	(1.5)	56.9	(1.9)	58.7	(2.1)	45-65	F		86.7	(7.1)	<3	3
	31-50	585	49.5	(0.8)	40.8	(1.4)	42.8	(1.2)	46.2	(1.0)	50.0	(1.0)	53.8	(1.2)	57.2	(1.5)	59.3	(1.7)	45-65	18.5	(5.1) ^E	80.9	(5.2)	<3	3
	51-70	711	49.6	(0.7)	40.0	(1.6)	42.2	(1.3)	45.8	(1.0)	49.7	(0.9)	53.4	(1.1)	56.7	(1.3)	58.6	(1.5)	45-65	20.7	(5.3) ^E	79.2	(5.3)	<3	3
	>70	342	51.9	(1.0)	44.0	(2.0)	45.7	(1.8)	48.5	(1.5)	51.5	(1.3)	54.3	(1.3)	56.9	(1.5)	58.3	(1.7)	45-65	F		92.4	(5.1)	<3	3
	19+	2022	50.2	(0.4)	40.6	(0.9)		(0.8)		(0.6)	50.1	(0.6)	53.9	(0.6)		(0.7)	59.1	(0.8)	45-65	18.5	(3.0)	81.1	(3.0)	<3	3

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 4.12 Percentage of total energy intake from carbohydrates, by DRI age-sex group, household population, Prairie Region, 2004¹

									F	ercentiles	s (and SE) of u	sual intake				%		%		%	
		n	Mean	(SE)	5tl	h (SE)	10t	h (SE)	25t	h (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	AMDR ²	below AMDR	(SE)	within AMDR	(SE)	above AMDR	(SE)
Sex	Age (years)																				
Both																					
	1-3	622	54.9	(0.8)	46.9	(1.9)	48.7	(1.6)	51.7	(1.2)	55.0 (1.0)	58.3 (1.1)	61.1 (1.4)	62.7 (1.6)	45-65	F		96.4	(2.6)	F	
	4-8	919	55.5	(0.5)	49.3	(1.6)	50.6	(1.3)	52.8	(0.8)	55.2 (0.5)	57.7 (0.9)	60.0 (1.4)	61.3 (1.7)	45-65	<3		99.3	(1.1)	<3	
Male																					
	9-13	579	54.5	(0.7)	45.8	(1.4)	47.7	(1.2)	51.0	(0.9)	54.5 (0.9)	57.9 (1.0)	60.8 (1.2)	62.5 (1.4)	45-65	F		94.9	(2.8)	F	
	14-18	634	52.4	(0.6)	45.0	(1.7)	46.7	(1.4)	49.5	(0.9)	52.5 (0.8)	55.4 (1.0)	58.1 (1.4)	59.7 (1.7)	45-65	F		94.8	(3.6)	<3	
	19-30	578	49.0	(0.8)	38.6	(2.0)	41.0	(1.7)	45.0	(1.2)	49.2 (1.0)	53.3 (1.1)	57.0 (1.4)	59.2 (1.7)	45-65	25.1	(6.4) ^E	74.3	(6.5)	<3	
	31-50	693	47.6	(1.1)	36.3	(2.7)	38.9	(2.2)	43.3	(1.5)	48.1 (1.2)	52.9 (1.7)	57.1 (2.4)	59.5 (2.8)	45-65	33.4	(8.1) ^E	66.0	(8.2)	<3	
	51-70	596	47.9	(1.2)	36.9	(2.3)	39.1	(1.9)	42.9	(1.4)	47.1 (1.2)	51.5 (1.7)	55.7 (2.5)	58.5 (3.1)	45-65	36.7	(8.6) ^E	62.4	(8.6)	<3	
	>70	296	49.3	(1.3)	38.9	(2.6)	41.4	(2.2)	45.3	(1.5)	49.9 (1.3)	54.6 (2.0)	58.7 (2.9)	61.3 (3.5)	45-65	23.5	(7.5) ^E	75.0	(8.0)	F	
	19+	2163	48.1	(0.6)	36.1	(1.1)	38.8	(0.9)	43.3	(0.7)	48.2 (0.7)	53.2 (0.8)	57.8 (1.1)	60.6 (1.3)	45-65	33.1	(3.5)	65.5	(3.5)	<3	
Female																					
	9-13	533	56.7	(0.6)	51.5	(1.7)	52.8	(1.4)	54.9	(0.9)	57.2 (0.7)	59.5 (0.9)	61.5 (1.4)	62.8 (1.7)	45-65	<3		98.9	(1.6)	F	
	14-18	638	54.2	(0.7)	46.7	(1.7)	48.5	(1.4)	51.4	(1.0)	54.6 (0.8)	57.6 (1.1)	60.4 (1.5)	62.1 (1.8)	45-65	F		96.6	(2.6)	F	
	19-30	499	52.1	(1.1)	44.8	(2.5)	46.4	(2.0)	49.0	(1.5)	52.0 (1.3)	55.0 (1.7)	57.7 (2.4)	59.4 (2.8)	45-65	F		94.3	(6.4)	<3	
	31-50	716	47.2	(0.7)	37.5	(1.1)	39.7	(1.0)	43.1	(1.0)	46.9 (0.9)	51.0 (1.0)	54.8 (1.0)	57.1 (1.1)	45-65	36.7	(6.1)	63.0	(5.9)	<3	
	51-70	745	48.8	(0.7)	40.6	(2.5)	42.4	(2.0)	45.4	(1.3)	48.8 (0.9)	52.2 (1.3)	55.2 (2.1)	57.1 (2.6)	45-65	F		77.7	(8.7)	<3	
	>70	510	51.5	(0.8)	40.6	(1.8)	43.0	(1.5)	47.1	(1.2)	51.4 (1.0)	55.7 (1.1)	59.5 (1.3)	61.8 (1.5)	45-65	16.1	(4.9) ^E	82.3	(5.1)	F	
	19+	2470	49.2	(0.4)	39.5	(0.9)	41.7	(0.8)	45.2	(0.6)	49.0 (0.5)	53.0 (0.6)	56.6 (0.8)	58.8 (1.0)	45-65	24.0	(3.2)	75.5	(3.3)	<3	

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

Table 4.13 Percentage of total energy intake from carbohydrates, by DRI age-sex group, household population, Canada excluding territories, 2004¹

•								P	ercentile	es (and SE) of us	sual intake					%		%		%	
		n	Mean	(SE)	5th (SI	E) 10th	(SE)	25th (SE)	50th (SE)	75th (S.	E)	90th (SE)	95th (SE)	AMDR ²	below AMDR	(SE)	within AMDR	(SE)	above AMDR	(SE)
Sex	Age (years)				•			·			·			·							
Both																					
	1-3	2117	54.5	(0.4)	46.2 (0.8	48.1	(0.7)	51.1	(0.5)	54.5 (0.5)	57.9 (0	0.5)	60.9 (0.7	62.7 (0.8)	45-65	F		95.4	(1.6)	F	
	4-8	3235	55.6	(0.2)	49.0 (0.6	50.5	(0.5)	52.9	(0.4)	55.7 (0.3)	58.4 (0	0.4)	60.9 (0.3	62.4 (0.6)	45-65	<3		98.5	(0.8)	<3	
Male																					
	9-13	2080	54.5	(0.3)	48.1 (0.8	49.6	(0.6)	52.0	(0.5)	54.6 (0.4)	57.2 (0	0.5)	59.4 (0.0	60.8 (0.7)	45-65	<3		99.0	(0.8)	<3	
	14-18	2288	52.7	(0.4)	45.4 (0.8	() 47. 1	(0.7)	49.8	(0.5)	52.9 (0.4)	55.8 (0	0.5)	58.5 (0.7)	60.1 (0.8)	45-65	F		95.5	(1.7)	<3	
	19-30	1804	49.6	(0.5)	39.1 (1.0) 41.5	(0.8)	45.5	(0.6)	49.7 (0.6)	53.9 (0	0.6)	57.6 (0.7)	59.9 (0.9)	45-65	22.8	(3.2)	76.4	(3.2)	<3	
	31-50	2596	47.8	(0.5)	36.4 (1.1) 38.9	(0.9)	43.0	(0.7)	47.6 (0.6)	52.3 (0	0.7)	56.4 (0.9	58.8 (1.0)	45-65	35.0	(3.4)	64.6	(3.4)	<3	
	51-70	2550	47.3	(0.4)	37.1 (0.8	39.3	(0.7)	43.0	(0.5)	47.3 (0.5)	51.5 (6	0.6)	55.2 (0.8	57.4 (1.0)	45-65	35.9	(3.0)	63.8	(3.0)	<3	
	>70	1520	50.0	(0.5)	39.0 (0.9) 41.5	(0.8)	45.7	(0.7)	50.3 (0.6)	54.8 (0	0.7)	58.8 (0.9	61.2 (1.0)	45-65	21.7	(2.9)	76.9	(3.0)	<3	
	19+	8470	48.2	(0.3)	36.9 (0.5	39.4	(0.4)	43.6	(0.3)	48.2 (0.3)	52.8 (0	0.3)	56.9 (0.4	59.3 (0.5)	45-65	31.8	(1.7)	67.6	(1.7)	0.6	$(0.2)^{E}$
Female																					
	9-13	1980	55.5	(0.3)	47.9 (0.8	49.6	(0.7)	52.5	(0.5)	55.7 (0.4)	58.8 (0	0.5)	61.6 (0.7	7) 63.3 (0.8)	45-65	<3		96.4	(1.4)	F	
	14-18	2256	54.3	(0.4)	47.0 (1.0) 48.6	(0.8)	51.4	(0.6)	54.5 (0.5)	57.6 (0	0.6)	60.3 (0.8	61.9 (1.0)	45-65	F		97.1	(1.5)	<3	
	19-30	1854	52.0	(0.5)	43.5 (1.1) 45.5	(0.9)	48.6	(0.7)	52.0 (0.6)	55.4 (0	0.7)	58.4 (0.9	9) 60.2 (1.1)	45-65	8.5	$(2.7)^{E}$	90.9	(2.9)	<3	
	31-50	2686	48.6	(0.5)	38.3 (0.9) 40.5	(0.7)	44.2	(0.6)	48.4 (0.5)	52.6 (0	0.6)	56.4 (0.8	58.7 (1.0)	45-65	29.2	(3.2)	70.3	(3.2)	<3	
	51-70	3200	49.6	(0.4)	39.8 (0.8	42.0	(0.7)	45.6	(0.5)	49.6 (0.4)	53.6 (0	0.5)	57.1 (0.7	59.2 (0.8)	45-65	22.0	(2.6)	77.5	(2.6)	<3	
	>70	2610	51.8	(0.3)	42.6 (0.7	') 44. 6	(0.6)	47.9	(0.5)	51.6 (0.4)	55.3 (0	0.5)	58.5 (0.0	60.5 (0.7)	45-65	11.3	$(2.0)^{E}$	88.1	(2.1)	<3	
	19+	10350	49.9	(0.2)	39.8 (0.5	42.0	(0.4)	45.7	(0.3)	49.8 (0.3)	53.8 (0	0.3)	57.5 (0.4	59.7 (0.5)	45-65	21.5	(1.5)	77.9	(1.6)	0.6	$(0.2)^{E}$

Symbol Legend

- E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AMDR is the Acceptable Macronutrient Distribution Range. For additional detail, see footnote 8 in Appendix A.

<u>5.</u>	Percentage of total energy intake from saturated fats

Table 5.1 Percentage of total energy intake from saturated fats, by DRI age-sex group, household population, Newfoundland and Labrador, 2004^{1,2}

						Percer	ntiles (and SE) of usu	al intake		
		n	Mean (SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)
Sex	Age (years)				·	·	•	·		
Both										
	1-3	79	12.5 (0.8)	9.1 (1.2)	9.9 (1.1)	11.2 (0.9)	12.7 (0.9)	14.2 (1.1)	15.6 (1.4)	16.4 (1.7)
	4-8	127	11.5 (0.5)	8.9 (0.7)	9.4 (0.7)	10.3 (0.5)	11.5 (0.6)	12.7 (0.8)	14.0 (1.2)	14.9 (1.5)
Male										
	9-13	111	10.5 (0.5)	8.6 (0.9)	9.0 (0.8)	9.7 (0.7)	10.6 (0.6)	11.5 (0.8)	12.4 (1.2)	13.1 (1.5)
	14-18	107	9.6 (0.4)	7.9 (0.8)	8.2 (0.7)	8.7 (0.6)	9.3 (0.6)	9.9 (0.7)	10.5 (0.9)	10.8 (1.1)
	19-30	77	10.4 (0.7)	8.0 (0.9)	8.5 (0.9)	9.4 (0.8)	10.4 (0.8)	11.4 (0.8)	12.3 (0.9)	12.8 (0.9)
	31-50	145	9.7 (0.6)	7.4 (0.6)	7.8 (0.6)	8.6 (0.7)	9.4 (0.7)	10.3 (0.8)	11.2 (0.9)	11.8 (0.9)
	51-70	182	9.5 (0.4)	8.8 (1.6) ^E	8.9 (1.3)	9.1 (0.8)	9.3 (0.5)	9.6 (0.8)	9.8 (1.4)	9.9 (1.9) ^E
	>70	63	9.1 (0.7)	5.7 (1.3) ^E	6.4 (1.2) ^E	7.6 (1.0)	9.0 (0.9)	10.5 (0.9)	11.9 (1.1)	12.7 (1.3)
	19+	467	9.7 (0.3)	7.7 (0.6)	8.1 (0.5)	8.8 (0.4)	9.6 (0.3)	10.5 (0.4)	11.3 (0.6)	11.8 (0.7)
Female	:									
	9-13	96	10.2 (0.4)	6.9 (0.8)	7.5 (0.7)	8.5 (0.6)	9.6 (0.6)	10.9 (0.8)	12.0 (1.0)	12.7 (1.2)
	14-18	105	10.0 (0.4)	7.8 (1.0)	8.2 (0.9)	8.9 (0.7)	9.7 (0.6)	10.5 (0.8)	11.3 (1.2)	11.8 (1.6)
	19-30	91	10.5 (0.6)	8.4 (1.0)	8.8 (0.9)	9.6 (0.8)	10.5 (0.8)	11.5 (0.9)	12.5 (1.1)	13.1 (1.3)
	31-50	167	10.9 (0.7)	7.8 (0.9)	8.4 (0.9)	9.3 (0.8)	10.3 (0.8)	11.6 (0.9)	12.8 (1.1)	13.7 (1.3)
	51-70	198	8.9 (0.6)	5.4 (0.9)	6.1 (0.8)	7.3 (0.6)	8.8 (0.6)	10.4 (0.9)	12.0 (1.3)	13.1 (1.6)
	>70	74	9.4 (1.0)	6.3 (1.0)	6.9 (0.9)	8.0 (0.9)	9.5 (1.1)	11.2 (1.6)	13.0 (2.2) ^E	14.3 (2.7) ^E
	19+	530	10.1 (0.4)	7.4 (0.7)	7.9 (0.6)	8.8 (0.5)	9.8 (0.4)	11.0 (0.5)	12.1 (0.7)	12.9 (0.9)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² No DRIs have been established for percentage of total energy intake from saturated fats.

Table 5.2 Percentage of total energy intake from saturated fats, by DRI age-sex group, household population, Prince Edward Island, 2004^{1,2}

										Percen	ntiles (and	SE) of usi	ual intake					
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	n (SE)	75th	(SE)	90th	(SE)	95t	th (SE)
Sex	Age (years)								•		•				•			
Both																		
	1-3	58	12.4	(0.8)	7.4	(1.2)	8.4	(1.1)	10.2	(1.1)	12.3	(1.2)	14.5	(1.4)	16.4	(1.7)	17.7	(1.9)
	4-8	110	12.0	(0.5)	10.0	(1.0)	10.5	(0.9)	11.2	(0.8)	12.1	(0.7)	13.0	(0.7)	13.8	(0.9)	14.3	(1.0)
Male																		
	9-13	95	11.2	(0.6)	8.7	(0.9)	9.3	(0.9)	10.3	(0.8)	11.6	(0.8)	13.0	(0.9)	14.5	(1.2)	15.4	(1.5)
	14-18	87	11.6	(0.4)	9.9	(0.8)	10.3	(0.7)	11.0	(0.6)	11.9	(0.6)	12.7	(0.8)	13.5	(1.1)	14.0	(1.3)
	19-30	70	12.6	(0.9)	9.4	(1.3)	10.3	(1.2)	11.8	(1.1)	13.1	(1.0)	14.6	(1.4)	16.7	(1.6)	18.2	(1.8)
	31-50	109	10.7	(0.7)	8.0	(1.1)	8.6	(1.0)	9.6	(0.8)	10.9	(0.8)	12.2	(0.9)	13.5	(1.1)	14.3	(1.3)
	51-70	128	9.7	(0.5)	7.8	(1.0)	8.2	(0.9)	8.8	(0.7)	9.6	(0.6)	10.4	(0.6)	11.1	(0.8)	11.5	(0.9)
	>70	65	10.6	(0.5)	7.0	(0.8)	7.7	(0.8)	8.9	(0.7)	10.5	(0.6)	12.2	(0.8)	13.9	(1.1)	15.0	(1.3)
	19+	372	10.8	(0.4)	7.5	(0.5)	8.2	(0.5)	9.4	(0.5)	11.0	(0.5)	12.7	(0.5)	14.4	(0.7)	15.4	(0.8)
Female	:																	
	9-13	75	10.4	(0.4)	9.6	(0.9)	9.8	(0.8)	10.2	(0.6)	10.5	(0.4)	10.9	(0.6)	11.3	(0.9)	11.6	(1.2)
	14-18	81	10.4	(0.6)	7.5	(1.1)	8.1	(1.0)	9.2	(0.9)	10.6	(0.8)	12.0	(1.1)	13.3	(1.4)	14.1	(1.6)
	19-30	101	9.7	(0.5)	8.1	(0.6)	8.5	(0.6)	9.3	(0.6)	10.2	(0.6)	11.0	(0.6)	11.8	(0.6)	12.3	(0.7)
	31-50	116	10.1	(0.5)	9.1	(1.1)	9.3	(1.0)	9.6	(0.8)	10.1	(0.7)	10.5	(0.8)	10.9	(1.0)	11.1	(1.2)
	51-70	146	11.0	(0.6)	6.4	(0.7)	7.4	(0.7)	9.0	(0.6)	10.9	(0.7)	13.0	(0.9)	15.0	(1.1)	16.3	(1.2)
	>70	94	10.8	(0.4)	7.7	(0.6)	8.4	(0.5)	9.7	(0.5)	11.0	(0.5)	12.4	(0.6)	13.8	(0.9)	14.8	(1.1)
	19+	457	10.4	(0.3)	7.5	(0.5)	8.2	(0.5)	9.4	(0.5)	11.0	(0.5)	12.7	(0.5)	14.4	(0.7)	15.4	(0.8)

Symbol Legend

- E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² No DRIs have been established for percentage of total energy intake from saturated fats.

Table 5.3 Percentage of total energy intake from saturated fats, by DRI age-sex group, household population, Nova Scotia, 2004^{1,2}

										Percen	tiles (and	SE) of usu	ıal intake					
		n	Mean	(SE)	5th (5	SE)	10th	(SE)	25th	(SE)	50th	n (SE)	75th	(SE)	90th	(SE)	95t	h (SE)
Sex	Age (years)					•	٠		•		,		•		•			•
Both																		
	1-3	112	11.7	(0.5)	8.3 (1	(.3)	9.0 (1.0)	10.3	(0.7)	11.8	(0.6)	13.3	(0.8)	14.6	(1.1)	15.4	(1.4)
	4-8	177	10.8	(0.3)	9.3 (0	0.8)	9.6 (0.7)	10.1	(0.5)	10.7	(0.4)	11.3	(0.6)	11.9	(0.9)	12.3	(1.0)
Male																		
	9-13	111	10.6	(0.3)	8.4 (0	0.8)	8.8 (9.7)	9.6	(0.5)	10.5	(0.4)	11.4	(0.4)	12.2	(0.6)	12.7	(0.8)
	14-18	113	10.8	(0.5)	7.9 (0	0.9)	8.6	0.8)	9.7	(0.7)	10.8	(0.6)	11.9	(0.7)	12.9	(0.9)	13.6	(1.0)
	19-30	91	10.5	(0.6)	8.9 (1	(.0)	9.3 (0.9)	10.1	(0.8)	11.0	(0.7)	12.0	(0.8)	13.0	(1.1)	13.6	(1.3)
	31-50	101	10.9	(0.4)	9.3 (1	(.3)	9.6 (.	1.1)	10.1	(0.8)	10.6	(0.7)	11.2	(0.8)	11.7	(1.1)	11.9	(1.4)
	51-70	134	9.6	(0.6)	6.0 (0	0.9)	6.6	0.8)	7.7	(0.7)	9.2	(0.7)	10.9	(0.9)	12.7	(1.3)	13.9	(1.8)
	>70	56	10.0	(0.6)	7.9 (1	(.6) ^E	8.5 (1.4)	9.2	(1.0)	10.0	(0.7)	10.7	(0.7)	11.4	(1.0)	11.9	(1.2)
	19+	382	10.3	(0.3)	7.2 (2	$(2.1)^E$	8.0 (2	$(2.0)^{E}$	9.6	$(1.9)^{E}$	11.6	(1.9)	13.8	(2.0)	15.7	(2.1)	16.8	(2.2)
Female	•																	
	9-13	105	10.3	(0.4)	8.5 (0	0.8)	8.8 (9.7)	9.4	(0.6)	10.1	(0.5)	10.8	(0.6)	11.6	(0.9)	12.1	(1.2)
	14-18	120	9.5	(0.6)	7.2 (1	$(.5)^E$	7.8 (.	1.3) ^E	8.7	(1.0)	9.7	(0.7)	10.7	(0.8)	11.6	(1.2)	12.1	(1.6)
	19-30	91	10.5	(0.7)	7.1 (1	(.2)	8.0 (.	1.0)	9.2	(0.9)	10.4	(0.9)	11.9	(1.1)	13.5	(1.3)	14.4	(1.5)
	31-50	159	11.3	(0.5)	6.2 (1	$(.1)^E$	7.3 (.	1.0)	9.1	(0.8)	11.3	(0.7)	13.5	(0.9)	15.6	(1.4)	16.9	(1.7)
	51-70	174	10.0	(0.4)	6.8 (1	(.0)	7.4 (0.8)	8.4	(0.6)	9.7	(0.4)	11.2	(0.6)	12.8	(1.1)	13.8	(1.4)
	>70	80	11.4	(1.7)	7.2 (2	$(2.1)^E$	8.0 (2	2.0) ^E	9.6	$(1.9)^{E}$	11.6	(1.9)	13.8	(2.0)	15.7	(2.1)	16.8	(2.2)
	19+	504	10.8	(0.4)	7.2 (2	2.1) ^E	8.0 (2	2.0) ^E	9.6	$(1.9)^{E}$	11.6	(1.9)	13.8	(2.0)	15.7	(2.1)	16.8	(2.2)

Symbol Legend

- E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² No DRIs have been established for percentage of total energy intake from saturated fats.

Table 5.4 Percentage of total energy intake from saturated fats, by DRI age-sex group, household population, New Brunswick, 2004^{1,2}

							Percen	tiles (and SE) of usu	al intake		
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)
Sex	Age (years)						·	•		•	•
Both											
	1-3	99	12.8	(0.5)	8.7 (1.1)	9.4 (0.9)	10.7 (0.7)	12.4 (0.6)	14.3 (0.9)	16.2 (1.3)	17.5 (1.6)
	4-8	140	11.2	(0.4)	9.4 (1.0)	9.8 (0.8)	10.5 (0.6)	11.3 (0.5)	12.2 (0.6)	13.0 (0.8)	13.5 (1.0)
Male											
	9-13	92	10.9	(0.7)	6.8 (1.6) ^E	7.8 (1.3) ^E	9.3 (1.0)	10.8 (0.8)	12.3 (0.8)	13.5 (1.0)	14.2 (1.1)
	14-18	107	11.2	(0.6)	10.2 (1.6)	10.5 (1.4)	10.9 (1.1)	11.4 (0.7)	11.9 (0.8)	12.3 (1.3)	12.6 (1.8)
	19-30	73	10.4	(0.7)	8.9 (1.3)	9.2 (1.2)	9.8 (1.0)	10.4 (0.9)	11.0 (1.0)	11.7 (1.5)	12.1 (1.8)
	31-50	134	11.0	(0.6)	7.3 (1.0)	8.0 (0.9)	9.3 (0.8)	11.1 (0.8)	13.1 (1.0)	15.0 (1.3)	16.1 (1.6)
	51-70	131	10.4	(0.5)	9.0 (1.1)	9.3 (1.0)	9.8 (0.7)	10.3 (0.6)	10.8 (0.8)	11.3 (1.1)	11.6 (1.4)
	>70	55	10.2	(0.7)	5.7 (1.1) ^E	6.5 (1.0)	8.0 (0.8)	9.9 (0.8)	12.0 (1.0)	14.0 (1.5)	15.3 (1.9)
	19+	393	10.6	(0.3)	8.3 (1.0)	8.6 (0.8)	9.2 (0.7)	9.8 (0.6)	10.5 (0.8)	11.2 (1.2)	11.6 (1.5)
Female	:										
	9-13	79	9.5	(0.8)	6.1 (1.4) ^E	6.8 (1.3) ^E	8.0 (1.1)	9.2 (1.0)	10.4 (1.0)	11.6 (1.3)	12.4 (1.5)
	14-18	104	10.6	(0.6)	8.7 (0.7)	9.2 (0.7)	10.1 (0.7)	11.1 (0.8)	12.2 (0.8)	13.3 (0.9)	13.9 (0.9)
	19-30	101	9.1	(0.6)	5.6 (1.3) ^E	6.4 (1.1) ^E	7.6 (0.9)	9.0 (0.6)	10.5 (0.6)	11.9 (0.8)	12.8 (1.0)
	31-50	143	10.0	(0.5)	6.6 (1.1)	7.3 (0.9)	8.4 (0.7)	9.8 (0.5)	11.3 (0.8)	12.8 (1.2)	13.7 (1.5)
	51-70	193	9.7	(0.4)	7.4 (0.9)	7.8 (0.8)	8.7 (0.7)	9.7 (0.5)	10.7 (0.6)	11.6 (0.8)	12.2 (1.0)
	>70	94	10.1	(0.5)	8.3 (1.0)	8.6 (0.8)	9.2 (0.7)	9.8 (0.6)	10.5 (0.8)	11.2 (1.2)	11.6 (1.5)
	19+	531	9.7	(0.3)	8.3 (1.0)	8.6 (0.8)	9.2 (0.7)	9.8 (0.6)	10.5 (0.8)	11.2 (1.2)	11.6 (1.5)

Symbol Legend

- E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² No DRIs have been established for percentage of total energy intake from saturated fats.

Table 5.5 Percentage of total energy intake from saturated fats, by DRI age-sex group, household population, Quebec, 2004^{1,2}

							Percen	tiles (and SE) of usua	al intake		
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)
Sex	Age (years)										
Both											
	1-3	311	13.2	(0.4)	7.7 (0.6)	8.9 (0.5)	11.0 (0.5)	13.3 (0.5)	15.7 (0.6)	18.0 (0.7)	19.5 (0.8)
	4-8	485	11.9	(0.3)	8.6 (0.5)	9.2 (0.4)	10.3 (0.3)	11.5 (0.3)	12.8 (0.4)	14.1 (0.6)	15.0 (0.7)
Male											
	9-13	277	11.2	(0.3)	8.2 (0.5)	8.7 (0.5)	9.7 (0.4)	10.9 (0.4)	12.1 (0.5)	13.3 (0.7)	14.0 (0.8)
	14-18	339	11.5	(0.4)	8.1 (0.7)	8.7 (0.6)	9.9 (0.5)	11.3 (0.5)	12.9 (0.6)	14.6 (0.8)	15.7 (1.0)
	19-30	237	10.3	(0.4)	7.2 (0.7)	7.8 (0.7)	8.7 (0.6)	9.8 (0.5)	11.1 (0.6)	12.4 (0.9)	13.3 (1.1)
	31-50	423	11.6	(0.5)	8.0 (0.9)	8.6 (0.8)	9.8 (0.7)	11.3 (0.6)	12.9 (0.7)	14.4 (0.9)	15.3 (1.1)
	51-70	387	11.0	(0.4)	6.7 (0.6)	7.4 (0.6)	8.8 (0.5)	10.5 (0.5)	12.6 (0.6)	14.7 (0.9)	16.1 (1.1)
	>70	132	10.8	(0.6)	6.3 (0.9)	7.2 (0.8)	8.6 (0.7)	10.4 (0.7)	12.5 (0.9)	14.4 (1.2)	15.7 (1.3)
	19+	1179	11.1	(0.3)	8.4 (0.9)	8.8 (0.8)	9.7 (0.7)	10.8 (0.6)	12.0 (0.7)	13.2 (1.0)	13.9 (1.2)
Female	!										
	9-13	281	11.5	(0.4)	8.2 (0.7)	9.0 (0.6)	10.2 (0.5)	11.6 (0.5)	12.9 (0.5)	14.2 (0.6)	15.0 (0.7)
	14-18	321	10.9	(0.5)	8.8 (1.0)	9.2 (0.9)	9.9 (0.7)	10.8 (0.6)	11.7 (0.6)	12.6 (0.8)	13.1 (1.0)
	19-30	249	10.7	(0.5)	7.0 (0.9)	7.7 (0.8)	9.0 (0.7)	10.5 (0.6)	12.2 (0.7)	13.8 (1.0)	14.8 (1.3)
	31-50	364	11.0	(0.4)	9.2 (1.0)	9.6 (0.9)	10.4 (0.7)	11.2 (0.6)	12.0 (0.6)	12.8 (0.9)	13.4 (1.1)
	51-70	467	10.5	(0.3)	6.6 (0.5)	7.4 (0.5)	8.7 (0.4)	10.3 (0.3)	12.1 (0.4)	13.9 (0.6)	15.1 (0.8)
	>70	215	10.7	(0.4)	8.4 (0.9)	8.8 (0.8)	9.7 (0.7)	10.8 (0.6)	12.0 (0.7)	13.2 (1.0)	13.9 (1.2)
	19+	1295	10.7	(0.2)	8.4 (0.9)	8.8 (0.8)	9.7 (0.7)	10.8 (0.6)	12.0 (0.7)	13.2 (1.0)	13.9 (1.2)

Symbol Legend

- E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² No DRIs have been established for percentage of total energy intake from saturated fats.

Table 5.6 Percentage of total energy intake from saturated fats, by DRI age-sex group, household population, Ontario, 2004^{1,2}

							Percen	tiles (and SE) of usu	al intake		
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)
Sex	Age (years)					•		•	•		•
Both											
	1-3	644	11.6	(0.3)	6.5 (0.3)	7.7 (0.3)	9.5 (0.3)	11.5 (0.3)	13.9 (0.4)	16.2 (0.5)	17.4 (0.5)
	4-8	956	10.7	(0.1)	7.8 (0.5)	8.4 (0.4)	9.5 (0.3)	10.7 (0.2)	11.9 (0.2)	13.2 (0.4)	13.9 (0.6)
Male											
	9-13	589	10.6	(0.2)	8.1 (0.6)	8.6 (0.5)	9.5 (0.4)	10.5 (0.2)	11.7 (0.3)	12.8 (0.6)	13.5 (0.8)
	14-18	639	10.3	(0.2)	8.4 (0.7)	8.8 (0.5)	9.5 (0.3)	10.4 (0.2)	11.2 (0.4)	12.0 (0.6)	12.5 (0.8)
	19-30	481	9.7	(0.3)	6.1 (0.9)	6.8 (0.8)	8.0 (0.6)	9.5 (0.3)	11.1 (0.7)	12.7 (1.2)	13.7 (1.6)
	31-50	709	9.7	(0.2)	6.2 (0.5)	6.9 (0.5)	8.2 (0.3)	9.9 (0.3)	11.6 (0.4)	13.3 (0.6)	14.5 (0.8)
	51-70	758	9.4	(0.2)	6.9 (0.8)	7.4 (0.7)	8.3 (0.5)	9.3 (0.3)	10.4 (0.4)	11.5 (0.8)	12.2 (1.0)
	>70	734	9.5	(0.2)	5.8 (0.5)	6.5 (0.4)	7.7 (0.3)	9.3 (0.3)	11.0 (0.4)	12.8 (0.6)	13.9 (0.8)
	19+	2682	9.6	(0.1)	6.1 (0.4)	6.8 (0.4)	8.1 (0.3)	9.7 (0.2)	11.6 (0.3)	13.4 (0.5)	14.6 (0.6)
Female)										
	9-13	585	10.4	(0.2)	7.5 (0.6)	8.1 (0.5)	9.1 (0.4)	10.2 (0.2)	11.5 (0.4)	12.7 (0.6)	13.4 (0.8)
	14-18	645	10.3	(0.2)	7.7 (0.2)	8.3 (0.2)	9.2 (0.2)	10.3 (0.3)	11.5 (0.3)	12.6 (0.3)	13.3 (0.4)
	19-30	514	9.6	(0.3)	6.4 (0.8)	7.0 (0.7)	8.1 (0.5)	9.4 (0.3)	10.8 (0.5)	12.1 (0.8)	12.9 (1.0)
	31-50	758	10.3	(0.2)	6.9 (0.6)	7.6 (0.5)	8.8 (0.4)	10.2 (0.3)	11.7 (0.4)	13.2 (0.6)	14.2 (0.8)
	51-70	955	9.7	(0.2)	6.4 (0.7)	7.1 (0.6)	8.2 (0.4)	9.6 (0.3)	11.1 (0.4)	12.5 (0.6)	13.4 (0.9)
	>70	1345	9.8	(0.2)	6.1 (0.4)	6.8 (0.4)	8.1 (0.3)	9.7 (0.2)	11.6 (0.3)	13.4 (0.5)	14.6 (0.6)
	19+	3572	9.9	(0.1)	6.1 (0.4)	6.8 (0.4)	8.1 (0.3)	9.7 (0.2)	11.6 (0.3)	13.4 (0.5)	14.6 (0.6)

Symbol Legend

- E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² No DRIs have been established for percentage of total energy intake from saturated fats.

Table 5.7 Percentage of total energy intake from saturated fats, by DRI age-sex group, household population, Manitoba, 2004^{1,2}

							Percen	tiles (and SE) of usua	al intake		
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)
Sex	Age (years)					·					
Both											
	1-3	324	11.8	(0.4)	8.1 (0.9)	8.9 (0.8)	10.2 (0.6)	11.9 (0.4)	13.5 (0.5)	15.0 (0.8)	15.9 (1.0)
	4-8	425	10.8	(0.3)	7.1 (0.8)	7.9 (0.6)	9.2 (0.4)	10.7 (0.3)	12.4 (0.4)	14.0 (0.7)	15.0 (0.9)
Male											
	9-13	274	10.6	(0.4)	8.0 (0.4)	8.6 (0.4)	9.5 (0.4)	10.6 (0.4)	11.8 (0.5)	12.9 (0.5)	13.5 (0.5)
	14-18	297	11.4	(0.4)	8.2 (0.9)	8.9 (0.8)	10.0 (0.7)	11.3 (0.5)	12.8 (0.6)	14.2 (0.9)	15.2 (1.1)
	19-30	249	10.2	(0.5)	6.8 (0.9)	7.5 (0.7)	8.6 (0.6)	10.0 (0.5)	11.6 (0.6)	13.2 (1.0)	14.3 (1.3)
	31-50	309	10.3	(0.4)	7.8 (0.9)	8.4 (0.8)	9.4 (0.6)	10.4 (0.5)	11.4 (0.6)	12.3 (0.9)	12.9 (1.0)
	51-70	277	9.9	(0.3)	6.4 (0.4)	7.1 (0.4)	8.3 (0.4)	9.9 (0.4)	11.5 (0.4)	13.1 (0.5)	14.1 (0.5)
	>70	136	8.9	(0.4)	6.0 (0.4)	6.5 (0.4)	7.4 (0.4)	8.6 (0.5)	10.0 (0.5)	11.3 (0.5)	12.2 (0.6)
	19+	971	10.0	(0.2)	5.8 (0.3)	6.4 (0.3)	7.6 (0.3)	9.1 (0.4)	11.0 (0.5)	13.1 (0.7)	14.6 (0.9)
Female	;										
	9-13	265	10.0	(0.3)	8.2 (0.4)	8.5 (0.4)	9.2 (0.4)	9.9 (0.4)	10.7 (0.4)	11.4 (0.4)	11.9 (0.4)
	14-18	290	10.8	(0.4)	8.8 (1.1)	9.2 (1.0)	10.1 (0.7)	11.1 (0.6)	12.2 (0.7)	13.3 (1.0)	13.9 (1.2)
	19-30	197	9.9	(0.5)	6.5 (1.3) ^E	7.2 (1.2)	8.4 (0.8)	9.9 (0.6)	11.5 (0.8)	13.0 (1.2)	14.0 (1.6)
	31-50	312	10.5	(0.3)	8.9 (0.3)	9.2 (0.4)	9.7 (0.4)	10.3 (0.4)	11.0 (0.4)	11.6 (0.4)	11.9 (0.4)
	51-70	312	10.3	(0.5)	7.8 (1.0)	8.4 (0.9)	9.3 (0.7)	10.5 (0.6)	11.7 (0.7)	12.8 (1.0)	13.6 (1.3)
	>70	239	9.5	(0.4)	5.8 (0.3)	6.4 (0.3)	7.6 (0.3)	9.1 (0.4)	11.0 (0.5)	13.1 (0.7)	14.6 (0.9)
	19+	1060	10.2	(0.2)	5.8 (0.3)	6.4 (0.3)	7.6 (0.3)	9.1 (0.4)	11.0 (0.5)	13.1 (0.7)	14.6 (0.9)

Symbol Legend

- E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² No DRIs have been established for percentage of total energy intake from saturated fats.

Table 5.8 Percentage of total energy intake from saturated fats, by DRI age-sex group, household population, Saskatchewan, 2004^{1,2}

										Percer	ntiles (and	SE) of usi	ual intake					
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	n (SE)	75th	(SE)	90th	(SE)	95t	h (SE)
Sex	Age (years)										•							•
Both																		
	1-3	129	12.5	(0.5)	8.1	(0.8)	9.0	(0.7)	10.6	(0.6)	12.4	(0.6)	14.5	(0.8)	16.6	(1.0)	17.8	(1.1)
	4-8	213	11.0	(0.2)	8.6	(0.6)	9.1	(0.5)	9.9	(0.4)	10.9	(0.3)	12.1	(0.4)	13.2	(0.5)	13.9	(0.7)
Male																		
	9-13	122	10.5	(0.3)	9.2	(0.7)	9.4	(0.6)	9.9	(0.4)	10.4	(0.4)	10.9	(0.5)	11.4	(0.7)	11.7	(0.8)
	14-18	150	10.7	(0.4)	8.3	(0.5)	8.8	(0.5)	9.6	(0.5)	10.6	(0.5)	11.5	(0.6)	12.4	(0.7)	12.9	(0.7)
	19-30	106	10.7	(0.5)	8.4	(1.1)	8.9	(1.0)	9.8	(0.8)	10.8	(0.6)	11.9	(0.8)	12.9	(1.2)	13.6	(1.6)
	31-50	155	10.7	(0.5)	9.0	(1.1)	9.4	(0.9)	10.1	(0.7)	10.8	(0.6)	11.5	(0.7)	12.2	(1.0)	12.6	(1.2)
	51-70	122	11.3	(0.5)	7.8	(1.2)	8.6	(1.0)	10.1	(0.8)	11.7	(0.7)	13.4	(0.9)	14.9	(1.2)	15.8	(1.4)
	>70	88	10.7	(0.6)	7.2	(1.1)	7.8	(1.0)	9.0	(0.9)	10.5	(0.8)	12.1	(1.0)	13.6	(1.2)	14.6	(1.5)
	19+	471	10.8	(0.3)	4.7	(0.8)	5.4	(0.8)	6.7	(0.7)	8.4	(0.6)	10.2	(0.6)	12.0	(0.6)	13.1	(0.7)
Female																		
	9-13	103	11.1	(0.5)	8.7	(0.8)	9.2	(0.7)	10.1	(0.7)	11.2	(0.7)	12.5	(0.9)	13.7	(1.1)	14.4	(1.4)
	14-18	142	9.3	(0.4)	6.6	(0.6)	7.1	(0.6)	8.0	(0.5)	9.0	(0.6)	10.1	(0.8)	11.2	(1.1)	11.8	(1.2)
	19-30	111	10.3	(0.5)	7.9	(1.0)	8.3	(0.9)	9.1	(0.7)	10.1	(0.6)	11.0	(0.7)	11.9	(1.0)	12.5	(1.1)
	31-50	146	10.7	(0.5)	8.5	(1.0)	8.9	(0.9)	9.6	(0.7)	10.5	(0.6)	11.5	(0.8)	12.4	(1.1)	13.0	(1.3)
	51-70	184	10.3	(0.3)	6.8	(0.6)	7.4	(0.5)	8.7	(0.4)	10.2	(0.4)	11.8	(0.5)	13.5	(0.7)	14.6	(0.9)
	>70	143	8.8	(0.5)	4.7	(0.8)	5.4	(0.8)	6.7	(0.7)	8.4	(0.6)	10.2	(0.6)	12.0	(0.6)	13.1	(0.7)
	19+	584	10.2	(0.2)	4.7	(0.8)	5.4	(0.8)	6.7	(0.7)	8.4	(0.6)	10.2	(0.6)	12.0	(0.6)	13.1	(0.7)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² No DRIs have been established for percentage of total energy intake from saturated fats.

Table 5.9 Percentage of total energy intake from saturated fats, by DRI age-sex group, household population, Alberta, 2004^{1,2}

										Percer	ntiles (and	SE) of usu	ıal intake					
		n	Mean	(SE)	5th	(SE)	10tł	(SE)	25th	(SE)	50th	(SE)	75th	(SE)	90tl	n (SE)	95t	h (SE)
Sex	Age (years)								·		•							•
Both																		
	1-3	169	11.8	(0.6)	6.3	$(1.4)^E$	7.4	(1.1)	9.4	(0.8)	11.9	(0.6)	14.6	(0.8)	17.0	(1.2)	18.5	(1.5)
	4-8	281	11.0	(0.3)	8.8	(0.3)	9.3	(0.3)	10.1	(0.3)	11.1	(0.3)	12.1	(0.3)	13.1	(0.3)	13.7	(0.4)
Male																		
	9-13	183	10.4	(0.3)	6.9	(0.7)	7.6	(0.6)	8.8	(0.5)	10.2	(0.4)	11.9	(0.5)	13.6	(0.8)	14.7	(1.0)
	14-18	187	10.7	(0.5)	8.3	(0.4)	8.8	(0.4)	9.6	(0.5)	10.4	(0.5)	11.4	(0.6)	12.3	(0.7)	13.0	(0.8)
	19-30	223	9.8	(0.3)	6.9	(0.9)	7.5	(0.8)	8.5	(0.5)	9.6	(0.4)	10.8	(0.6)	12.0	(0.9)	12.8	(1.2)
	31-50	229	10.0	(0.4)	7.0	(1.0)	7.5	(0.8)	8.5	(0.6)	9.6	(0.5)	10.8	(0.6)	11.9	(0.9)	12.5	(1.1)
	51-70	197	9.4	(0.5)	5.3	$(1.4)^{E}$	6.1	$(1.2)^{E}$	7.7	(0.9)	9.5	(0.7)	11.3	(0.7)	12.9	(1.0)	14.0	(1.3)
	>70	72	10.1	(0.7)	5.7	$(1.2)^{E}$	6.4	$(1.2)^{E}$	7.8	(1.1)	9.7	(0.9)	11.8	(0.8)	13.4	(1.0)	14.3	(1.1)
	19+	721	9.8	(0.2)	6.1	(0.8)	6.8	(0.7)	8.0	(0.6)	9.5	(0.6)	11.0	(0.7)	12.4	(0.9)	13.3	(1.0)
Female	}																	
	9-13	165	10.4	(0.3)	7.6	(0.9)	8.1	(0.8)	9.0	(0.6)	10.1	(0.4)	11.3	(0.6)	12.4	(0.8)	13.1	(1.0)
	14-18	206	10.1	(0.4)	7.3	(0.8)	7.7	(0.8)	8.7	(0.6)	9.9	(0.5)	11.2	(0.6)	12.5	(0.9)	13.3	(1.2)
	19-30	191	10.8	(0.7)	8.2	(1.2)	8.8	(1.1)	9.8	(1.0)	10.9	(0.9)	12.2	(1.0)	13.4	(1.3)	14.1	(1.6)
	31-50	258	10.8	(0.5)	7.5	(1.1)	8.2	(0.9)	9.4	(0.7)	10.7	(0.6)	12.1	(0.6)	13.4	(0.8)	14.2	(1.0)
	51-70	249	10.7	(0.4)	8.3	(1.0)	8.8	(0.9)	9.7	(0.7)	10.6	(0.5)	11.7	(0.6)	12.7	(0.9)	13.3	(1.2)
	>70	128	9.7	(0.5)	6.1	(0.8)	6.8	(0.7)	8.0	(0.6)	9.5	(0.6)	11.0	(0.7)	12.4	(0.9)	13.3	(1.0)
	19+	826	10.7	(0.3)	6.1	(0.8)	6.8	(0.7)	8.0	(0.6)	9.5	(0.6)	11.0	(0.7)	12.4	(0.9)	13.3	(1.0)

Symbol Legend

- E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² No DRIs have been established for percentage of total energy intake from saturated fats.

Table 5.10 Percentage of total energy intake from saturated fats, by DRI age-sex group, household population, British Columbia, 2004^{1,2}

							Percen	tiles (and SE) of usu	al intake		
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)
Sex	Age (years)					•	·	•	•	•	•
Both											
	1-3	192	12.2	(0.7)	7.7 (1.1)	8.6 (1.0)	10.2 (0.9)	12.1 (0.9)	14.2 (1.1)	16.2 (1.3)	17.4 (1.4)
	4-8	321	10.8	(0.3)	7.7 (1.1)	8.6 (1.0)	10.2 (0.9)	12.1 (0.9)	14.2 (1.1)	16.2 (1.3)	17.4 (1.4)
Male											
	9-13	226	11.0	(0.4)	8.0 (0.6)	8.7 (0.6)	9.8 (0.5)	11.1 (0.4)	12.5 (0.5)	13.8 (0.7)	14.6 (0.9)
	14-18	262	10.4	(0.3)	8.6 (0.8)	9.1 (0.7)	9.8 (0.6)	10.5 (0.5)	11.3 (0.5)	12.0 (0.6)	12.4 (0.8)
	19-30	197	10.0	(0.4)	7.1 (0.7)	7.7 (0.6)	8.7 (0.5)	9.8 (0.4)	11.0 (0.5)	12.2 (0.7)	12.9 (0.9)
	31-50	282	10.2	(0.4)	7.0 (0.8)	7.6 (0.7)	8.7 (0.5)	10.2 (0.4)	11.7 (0.6)	13.2 (0.9)	14.1 (1.1)
	51-70	234	10.6	(0.4)	7.0 (0.8)	7.7 (0.7)	9.0 (0.6)	10.7 (0.6)	12.4 (0.6)	14.1 (0.8)	15.1 (1.0)
	>70	119	9.5	(0.7)	5.2 (1.0) ^E	6.0 (0.9)	7.5 (0.8)	9.3 (0.8)	11.2 (0.8)	13.0 (1.1)	14.1 (1.2)
	19+	832	10.2	(0.2)	5.2 (0.6)	5.9 (0.6)	7.2 (0.5)	9.0 (0.6)	11.3 (0.7)	13.7 (1.0)	15.2 (1.2)
Female	:										
	9-13	226	10.7	(0.3)	8.2 (0.7)	8.6 (0.6)	9.5 (0.5)	10.4 (0.4)	11.5 (0.6)	12.4 (0.8)	13.1 (1.0)
	14-18	242	9.8	(0.3)	6.7 (0.5)	7.3 (0.5)	8.4 (0.4)	9.7 (0.4)	11.1 (0.5)	12.4 (0.7)	13.2 (0.8)
	19-30	208	10.5	(0.6)	7.6 (0.5)	8.1 (0.5)	9.1 (0.6)	10.2 (0.7)	11.4 (0.8)	12.6 (1.0)	13.4 (1.1)
	31-50	263	9.8	(0.4)	6.8 (0.9)	7.5 (0.7)	8.6 (0.6)	9.8 (0.5)	11.2 (0.7)	12.7 (1.2)	13.8 (1.5)
	51-70	322	9.4	(0.5)	7.0 (1.1)	7.5 (1.0)	8.4 (0.8)	9.5 (0.7)	10.8 (0.8)	12.0 (1.1)	12.8 (1.4)
	>70	198	9.7	(0.5)	5.2 (0.6)	5.9 (0.6)	7.2 (0.5)	9.0 (0.6)	11.3 (0.7)	13.7 (1.0)	15.2 (1.2)
	19+	991	9.8	(0.2)	5.2 (0.6)	5.9 (0.6)	7.2 (0.5)	9.0 (0.6)	11.3 (0.7)	13.7 (1.0)	15.2 (1.2)

Symbol Legend

- E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² No DRIs have been established for percentage of total energy intake from saturated fats.

Table 5.11 Percentage of total energy intake from saturated fats, by DRI age-sex group, household population, Atlantic Region, 2004^{1,2}

•							Percen	tiles (and SE) of usua	al intake		
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)
Sex	Age (years)										
Both											
	1-3	348	12.3	(0.3)	8.0 (0.6)	8.8 (0.5)	10.3 (0.4)	12.2 (0.4)	14.1 (0.5)	15.9 (0.6)	17.1 (0.8)
	4-8	554	11.2	(0.2)	8.9 (0.6)	9.4 (0.5)	10.2 (0.4)	11.2 (0.3)	12.2 (0.4)	13.2 (0.5)	13.8 (0.7)
Male											
	9-13	409	10.7	(0.3)	7.9 (0.5)	8.5 (0.4)	9.5 (0.4)	10.7 (0.3)	11.9 (0.3)	12.9 (0.3)	13.6 (0.3)
	14-18	414	10.7	(0.3)	8.4 (0.5)	8.9 (0.5)	9.8 (0.4)	10.7 (0.4)	11.7 (0.5)	12.6 (0.6)	13.1 (0.7)
	19-30	311	10.6	(0.3)	8.3 (0.6)	8.8 (0.6)	9.7 (0.5)	10.8 (0.4)	11.9 (0.5)	13.0 (0.7)	13.6 (0.8)
	31-50	489	10.6	(0.3)	7.9 (0.6)	8.4 (0.6)	9.4 (0.5)	10.5 (0.4)	11.7 (0.5)	12.8 (0.6)	13.5 (0.8)
	51-70	575	9.8	(0.3)	6.9 (0.5)	7.4 (0.4)	8.4 (0.4)	9.6 (0.3)	10.9 (0.4)	12.2 (0.6)	13.0 (0.8)
	>70	239	9.9	(0.4)	6.1 (0.7)	6.8 (0.6)	8.2 (0.5)	9.8 (0.4)	11.5 (0.5)	13.1 (0.7)	14.1 (0.8)
	19+	1614	10.3	(0.2)	7.2 (0.2)	7.8 (0.2)	8.9 (0.2)	10.2 (0.2)	11.7 (0.2)	13.0 (0.3)	13.9 (0.4)
Female	:										
	9-13	355	10.0	(0.3)	7.3 (0.7)	7.8 (0.6)	8.7 (0.5)	9.7 (0.4)	10.8 (0.5)	11.9 (0.8)	12.6 (0.9)
	14-18	410	10.0	(0.3)	7.4 (0.8)	8.0 (0.7)	9.0 (0.5)	10.1 (0.4)	11.2 (0.5)	12.2 (0.6)	12.8 (0.8)
	19-30	384	10.0	(0.4)	7.8 (0.8)	8.2 (0.7)	9.1 (0.6)	10.0 (0.5)	11.1 (0.5)	12.1 (0.7)	12.8 (0.8)
	31-50	585	10.7	(0.3)	7.4 (0.6)	8.0 (0.5)	9.1 (0.4)	10.5 (0.4)	12.0 (0.5)	13.4 (0.6)	14.4 (0.8)
	51-70	711	9.7	(0.2)	6.1 (0.4)	6.8 (0.4)	8.0 (0.3)	9.5 (0.3)	11.1 (0.4)	12.8 (0.5)	13.9 (0.6)
	>70	342	10.6	(0.7)	6.9 (0.8)	7.6 (0.8)	8.9 (0.8)	10.6 (0.9)	12.4 (1.0)	14.3 (1.2)	15.4 (1.2)
	19+	2022	10.3	(0.2)	7.0 (0.3)	7.7 (0.3)	8.8 (0.2)	10.2 (0.2)	11.7 (0.3)	13.2 (0.3)	14.1 (0.4)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² No DRIs have been established for percentage of total energy intake from saturated fats.

Table 5.12 Percentage of total energy intake from saturated fats, by DRI age-sex group, household population, Prairie Region, 2004^{1,2}

										Percei	ntiles (and	SE) of us	sual intake					
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	n (SE)	75th	(SE)	90th	(SE)	95tl	h (SE)
Sex	Age (years)											•						
Both																		
	1-3	622	11.9	(0.4)	6.9	(0.7)	7.8	(0.6)	9.7	(0.5)	11.9	(0.4)	14.4	(0.5)	16.5	(0.6)	17.9	(0.8)
	4-8	919	11.0	(0.2)	8.6	(0.5)	9.1	(0.4)	10.0	(0.3)	11.0	(0.2)	12.1	(0.3)	13.1	(0.5)	13.8	(0.6)
Male																		
	9-13	579	10.5	(0.2)	7.9	(0.4)	8.4	(0.4)	9.3	(0.3)	10.4	(0.3)	11.6	(0.3)	12.7	(0.5)	13.4	(0.6)
	14-18	634	10.9	(0.3)	8.4	(0.8)	8.8	(0.7)	9.6	(0.5)	10.6	(0.4)	11.7	(0.6)	12.8	(0.8)	13.5	(1.0)
	19-30	578	10.0	(0.3)	6.7	(0.6)	7.4	(0.5)	8.5	(0.4)	9.8	(0.3)	11.3	(0.4)	12.8	(0.6)	13.7	(0.8)
	31-50	693	10.2	(0.3)	7.2	(0.7)	7.8	(0.6)	8.8	(0.4)	9.9	(0.3)	11.1	(0.5)	12.3	(0.7)	12.9	(0.9)
	51-70	596	9.9	(0.3)	5.7	(0.8)	6.6	(0.7)	8.1	(0.5)	9.9	(0.4)	11.8	(0.4)	13.5	(0.6)	14.5	(0.7)
	>70	296	10.0	(0.4)	6.4	(0.6)	7.0	(0.6)	8.2	(0.5)	9.6	(0.5)	11.2	(0.5)	12.7	(0.7)	13.6	(0.8)
	19+	2163	10.0	(0.2)	6.4	(0.3)	7.1	(0.3)	8.4	(0.2)	9.9	(0.2)	11.5	(0.2)	13.0	(0.3)	13.9	(0.3)
Female																		
	9-13	533	10.4	(0.2)	8.3	(0.6)	8.7	(0.5)	9.5	(0.4)	10.3	(0.3)	11.1	(0.4)	12.0	(0.6)	12.5	(0.7)
	14-18	638	10.1	(0.3)	7.2	(0.4)	7.8	(0.4)	8.8	(0.3)	10.0	(0.3)	11.3	(0.4)	12.6	(0.6)	13.5	(0.7)
	19-30	499	10.5	(0.5)	7.8	(0.5)	8.4	(0.5)	9.4	(0.5)	10.5	(0.6)	11.8	(0.6)	13.0	(0.6)	13.7	(0.7)
	31-50	716	10.7	(0.3)	8.8	(0.8)	9.2	(0.7)	9.9	(0.5)	10.7	(0.4)	11.5	(0.5)	12.2	(0.7)	12.7	(0.8)
	51-70	745	10.6	(0.3)	7.4	(0.7)	8.1	(0.6)	9.2	(0.4)	10.5	(0.3)	11.9	(0.4)	13.3	(0.7)	14.2	(0.8)
	>70	510	9.4	(0.3)	5.5	(0.4)	6.2	(0.4)	7.5	(0.3)	9.1	(0.3)	11.0	(0.4)	12.7	(0.5)	13.9	(0.6)
	19+	2470		(0.2)	7.3	(0.4)	7.9	(0.3)	9.1	(0.3)	10.4	(0.2)	11.8	(0.3)	13.2	(0.4)	14.1	(0.4)

Symbol Legend

- E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² No DRIs have been established for percentage of total energy intake from saturated fats.

Table 5.13 Percentage of total energy intake from saturated fats, by DRI age-sex group, household population, Canada excluding territories, 2004^{1,2}

										Percen	tiles (and	SE) of usu	ıal intake					
		n	Mean	(SE)	5th	(SE)	10th	n (SE)	25th	(SE)	50th	n (SE)	75th	(SE)	90tl	(SE)	95tl	h (SE)
Sex	Age (years)				·		•				•		•		•		•	
Both																		
	1-3	2117	12.1	(0.2)	7.0	(0.3)	8.1	(0.3)	9.9	(0.2)	12.1	(0.2)	14.4	(0.3)	16.6	(0.3)	18.0	(0.4)
	4-8	3235	11.1	(0.1)	8.2	(0.2)	8.7	(0.2)	9.7	(0.2)	10.9	(0.1)	12.2	(0.2)	13.4	(0.2)	14.2	(0.3)
Male																		
	9-13	2080	10.8	(0.1)	7.9	(0.2)	8.5	(0.2)	9.5	(0.2)	10.6	(0.2)	11.9	(0.2)	13.1	(0.3)	13.8	(0.3)
	14-18	2288	10.7	(0.1)	8.1	(0.3)	8.6	(0.3)	9.6	(0.2)	10.7	(0.2)	11.9	(0.2)	13.0	(0.3)	13.8	(0.4)
	19-30	1804	10.0	(0.2)	6.8	(0.3)	7.5	(0.3)	8.5	(0.2)	9.8	(0.2)	11.1	(0.3)	12.5	(0.4)	13.3	(0.4)
	31-50	2596	10.4	(0.2)	6.9	(0.3)	7.6	(0.3)	8.8	(0.2)	10.2	(0.2)	11.8	(0.2)	13.4	(0.3)	14.4	(0.4)
	51-70	2550	10.1	(0.2)	6.3	(0.3)	7.0	(0.3)	8.2	(0.2)	9.8	(0.2)	11.6	(0.2)	13.3	(0.3)	14.4	(0.4)
	>70	1520	9.9	(0.2)	5.9	(0.3)	6.6	(0.3)	7.9	(0.2)	9.6	(0.2)	11.4	(0.3)	13.1	(0.4)	14.3	(0.4)
	19+	8470	10.2	(0.1)	6.5	(0.1)	7.2	(0.1)	8.4	(0.1)	9.9	(0.1)	11.6	(0.1)	13.3	(0.2)	14.3	(0.2)
Female																		
	9-13	1980	10.7	(0.1)	7.8	(0.3)	8.4	(0.2)	9.4	(0.2)	10.5	(0.2)	11.7	(0.2)	12.9	(0.3)	13.6	(0.3)
	14-18	2256	10.3	(0.2)	7.5	(0.3)	8.1	(0.3)	9.1	(0.2)	10.2	(0.2)	11.5	(0.2)	12.7	(0.3)	13.4	(0.4)
	19-30	1854	10.1	(0.2)	7.4	(0.5)	8.0	(0.4)	8.9	(0.3)	10.0	(0.2)	11.2	(0.3)	12.3	(0.4)	13.0	(0.5)
	31-50	2686	10.5	(0.2)	7.4	(0.3)	8.1	(0.3)	9.2	(0.2)	10.4	(0.2)	11.9	(0.2)	13.2	(0.3)	14.1	(0.4)
	51-70	3200	10.0	(0.1)	6.4	(0.2)	7.1	(0.2)	8.3	(0.2)	9.8	(0.2)	11.5	(0.2)	13.1	(0.3)	14.2	(0.4)
	>70	2610	10.0	(0.2)	6.2	(0.2)	6.9	(0.2)	8.1	(0.2)	9.8	(0.2)	11.7	(0.2)	13.6	(0.3)	14.8	(0.3)
	19+	10350	10.2	(0.1)	6.8	(0.1)	7.5	(0.1)	8.7	(0.1)	10.1	(0.1)	11.7	(0.1)	13.2	(0.2)	14.2	(0.2)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² No DRIs have been established for percentage of total energy intake from saturated fats.

6.	Percentage of total energy intake from monounsaturated fats

Table 6.1 Percentage of total energy intake from monounsaturated fats, by DRI age-sex group, household population, Newfoundland and Labrador, 2004^{1,2}

								Percentil	es (and SE) of us	sual intake		
		n	Mean	(SE)	5th ((SE) 10th	(SE) 25tl	h (SE) 50	th (SE)	75th (SE)	90th (SE)	95th (SE)
Sex	Age (years)											
Both												
	1-3	79	11.1	(0.7)	7.8 ((1.1) 8.6	(0.9) 9.8	(0.8) 11.2	2 (0.8)	12.6 (0.9) 1	3.9 (1.1)	14.6 (1.3)
	4-8	127	12.7	(0.6)	9.8 ((0.8) 10.4	(0.7) 11.4	(0.6) 12.5	5 (0.7)	13.9 (0.9) 1	5.3 (1.2)	16.2 (1.4)
Male												
	9-13	111	13.3	(0.6)	12.4 ((1.2) 12.7	(1.0) 13.1	(0.8) 13.0	6 (0.7)	14.1 (0.9) 1	4.6 (1.1)	14.9 (1.3)
	14-18	107	12.8	(0.5)	8.5 ((1.1) 9.4	(1.0) 10.9	(0.7) 12.0	6 (0.6)	14.2 (0.7) 1	5.8 (0.9)	16.7 (1.0)
	19-30	77	13.3	(0.7)	9.6 ((1.6) ^E 10.3	(1.3) 11.6	(1.0) 13.0	(0.8)	14.3 (1.0) 1	5.4 (1.2)	16.1 (1.4)
	31-50	145	13.3	(0.5)	11.0 ((1.1) 11.5	(1.0) 12.3	(0.8) 13.	1 (0.7)	14.0 (0.8) 1	4.7 (1.0)	15.2 (1.1)
	51-70	182	11.9	(0.4)	10.1 ((1.3) 10.4	(1.1) 10.9	(0.7) 11.5	5 (0.5)	12.1 (0.8) 1	2.7 (1.3)	13.0 (1.6)
	>70	63	12.4	(0.7)	9.3 ((1.7) ^E 10.2	(1.5) 11.7	(1.1) 13	3 (0.9)	14.7 (0.8) 1	5.8 (0.9)	16.5 (1.0)
	19+	467	12.8	(0.3)	9.4 ((0.7) 10.1	(0.6) 11.3	(0.4) 12.	7 (0.4)	14.0 (0.4) 1	5.3 (0.6)	16.0 (0.7)
Female												
	9-13	96	12.5	(0.4)	10.2 ((0.8) 10.7	(0.7) 11.5	(0.6) 12.4	4 (0.5)	13.3 (0.6) 1	4.3 (0.9)	14.9 (1.1)
	14-18	105	12.6	(0.4)	10.4 ((0.6) 10.8	(0.6) 11.4	(0.6) 12.2	2 (0.6)	13.0 (0.6) 1	3.8 (0.6)	14.2 (0.6)
	19-30	91	13.1	(0.7)	10.4 ((1.3) 11.0	(1.1) 12.1	(0.9) 13.2	2 (0.8)	14.3 (0.9) 1	5.4 (1.1)	16.0 (1.3)
	31-50	167	14.0	(0.5)	9.5 ((1.1) 10.5	(0.9) 12.0	(0.7) 13.5	5 (0.6)	15.1 (0.7) 1	6.6 (0.9)	17.6 (1.1)
	51-70	198	11.8	(0.5)	7.5 ((0.9) 8.4	(0.8) 9.9	(0.7) 11.8	3 (0.6)	14.0 (0.8) 1	6.2 (1.3)	17.6 (1.8)
	>70	74	11.4	(0.5)	8.3 ((0.8) 9.0	(0.8) 10.2	(0.7) 11.0	6 (0.7)	13.1 (0.9) 1	4.4 (1.1)	15.2 (1.3)
	19+	530	12.9	(0.3)	8.5 ((0.5) 9.4	(0.4) 10.9	(0.4) 12.0	6 (0.4)	14.4 (0.5) 1	6.1 (0.6)	17.2 (0.7)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

²No DRIs have been established for the percentage of total energy intake from monounsaturated fats.

Table 6.2 Percentage of total energy intake from monounsaturated fats, by DRI age-sex group, household population, Prince Edward Island, 2004^{1,2}

							Perce	entiles (and SE) of us	sual intake		
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)
Sex	Age (years)					•	·			•	·
Both											
	1-3	58	10.2	(0.4)	7.4 (0.9)	7.8 (0.8)	8.7 (0.7)	9.6 (0.6)	10.5 (0.7)	11.4 (0.8)	12.0 (1.0)
	4-8	110	11.9	(0.3)	10.2 (0.7)	10.5 (0.6)	11.2 (0.5)	11.9 (0.4)	12.7 (0.5)	13.4 (0.6)	13.8 (0.8)
Male											
	9-13	95	12.1	(0.6)	11.0 (1.1)	11.4 (1.0)	12.0 (0.9)	12.7 (0.8)	13.4 (0.9)	14.1 (1.1)	14.6 (1.2)
	14-18	87	13.6	(0.5)	11.3 (1.0)	11.7 (0.8)	12.4 (0.7)	13.3 (0.6)	14.2 (0.8)	15.0 (1.1)	15.5 (1.3)
	19-30	70	14.8	(0.7)	13.2 (1.3)	13.7 (1.2)	14.6 (1.0)	15.6 (0.9)	16.6 (0.9)	17.5 (1.2)	18.1 (1.4)
	31-50	109	14.1	(0.5)	12.5 (1.3)	13.0 (1.1)	13.7 (0.9)	14.6 (0.7)	15.4 (0.8)	16.2 (1.0)	16.6 (1.3)
	51-70	128	12.5	(0.4)	11.4 (1.9) ^E	11.8 (1.6)	12.4 (1.2)	13.1 (0.7)	13.7 (0.6)	14.2 (0.9)	14.5 (1.2)
	>70	65	12.3	(0.4)	9.8 (0.6)	10.2 (0.6)	10.9 (0.6)	11.8 (0.6)	12.7 (0.6)	13.6 (0.7)	14.2 (0.7)
	19+	372	13.6	(0.3)	11.1 (0.8)	11.8 (0.7)	12.9 (0.5)	14.1 (0.4)	15.3 (0.5)	16.3 (0.6)	17.0 (0.7)
Female	2										
	9-13	75	12.4	(0.7)	10.8 (0.9)	11.2 (0.8)	11.9 (0.7)	12.7 (0.7)	13.6 (0.8)	14.5 (1.0)	15.0 (1.2)
	14-18	81	13.0	(0.6)	10.1 (1.2)	10.9 (1.1)	12.2 (0.9)	13.7 (0.8)	15.2 (0.9)	16.5 (1.1)	17.3 (1.3)
	19-30	101	11.9	(0.5)	8.9 (0.9)	9.5 (0.8)	10.6 (0.7)	11.8 (0.7)	13.0 (0.9)	14.1 (1.1)	14.8 (1.3)
	31-50	116	12.6	(0.5)	9.7 (1.0)	10.3 (0.8)	11.3 (0.7)	12.4 (0.7)	13.5 (0.8)	14.7 (1.1)	15.4 (1.2)
	51-70	146	12.6	(0.4)	10.1 (0.9)	10.6 (0.8)	11.5 (0.6)	12.5 (0.6)	13.4 (0.7)	14.3 (0.9)	14.8 (1.1)
	>70	94	13.3	(0.7)	10.1 (0.7)	10.7 (0.8)	12.0 (0.8)	13.5 (0.9)	15.1 (1.0)	16.8 (1.1)	17.9 (1.2)
	19+	457	12.5	(0.3)	9.7 (0.5)	10.3 (0.5)	11.3 (0.4)	12.5 (0.4)	13.7 (0.5)	14.9 (0.6)	15.6 (0.7)

Symbol Legend

- E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

²No DRIs have been established for the percentage of total energy intake from monounsaturated fats.

Table 6.3 Percentage of total energy intake from monounsaturated fats, by DRI age-sex group, household population, Nova Scotia, 2004^{1,2}

										Percei	ntiles (and	SE) of us	ual intake					
		n	Mean	(SE)	5th	(SE)	10tl	n (SE)	25th	(SE)	50tl	n (SE)	75th	(SE)	90th	(SE)	95t	h (SE)
Sex	Age (years)						·				•				•			•
Both																		
	1-3	112	10.5	(0.4)	8.0	(0.9)	8.5	(0.8)	9.5	(0.6)	10.5	(0.5)	11.5	(0.6)	12.4	(0.8)	13.0	(0.9)
	4-8	177	11.2	(0.3)	8.8	(0.5)	9.4	(0.4)	10.4	(0.4)	11.4	(0.4)	12.3	(0.4)	13.2	(0.5)	13.8	(0.5)
Male																		
	9-13	111	12.0	(0.4)	10.0	(0.8)	10.4	(0.7)	11.1	(0.5)	12.0	(0.5)	12.9	(0.5)	13.7	(0.7)	14.2	(0.9)
	14-18	113	14.3	(0.5)	11.6	(1.0)	12.3	(0.8)	13.4	(0.7)	14.6	(0.6)	15.8	(0.7)	16.9	(0.9)	17.6	(1.1)
	19-30	91	12.7	(0.5)	9.1	(1.2)	9.9	(1.0)	11.2	(0.7)	12.8	(0.6)	14.6	(0.8)	16.2	(1.2)	17.2	(1.5)
	31-50	101	13.5	(0.5)	9.5	(1.0)	10.3	(0.9)	11.7	(0.7)	13.3	(0.7)	15.0	(0.8)	16.6	(1.0)	17.4	(1.1)
	51-70	134	12.5	(0.9)	10.1	(1.0)	10.6	(1.0)	11.4	(1.0)	12.4	(1.0)	13.4	(1.0)	14.4	(1.0)	14.9	(1.0)
	>70	56	11.7	(0.7)	8.8	(0.8)	9.4	(0.8)	10.4	(0.8)	11.5	(0.8)	12.7	(0.9)	13.7	(1.0)	14.4	(1.0)
	19+	382	12.9	(0.3)	8.9	(0.8)	9.7	(0.7)	11.1	(0.6)	12.7	(0.4)	14.3	(0.7)	15.9	(1.0)	16.8	(1.2)
Female																		
	9-13	105	12.0	(0.4)	9.1	(0.8)	9.7	(0.7)	10.7	(0.5)	11.9	(0.5)	13.1	(0.6)	14.2	(0.8)	14.9	(0.9)
	14-18	120	10.7	(0.7)	9.1	(1.2)	9.4	(1.0)	9.9	(0.8)	10.5	(0.8)	11.1	(1.0)	11.6	(1.4)	11.9	(1.7)
	19-30	91	13.8	(0.9)	10.6	(1.7)	11.4	(1.5)	12.6	(1.2)	14.1	(1.1)	15.6	(1.2)	17.1	(1.5)	18.0	(1.8)
	31-50	159	13.8	(0.5)	10.6	(1.3)	11.4	(1.1)	12.5	(0.8)	13.9	(0.6)	15.2	(0.7)	16.4	(1.0)	17.1	(1.2)
	51-70	174	13.7	(0.6)	10.2	(0.7)	10.9	(0.7)	12.1	(0.7)	13.5	(0.8)	14.9	(0.8)	16.2	(0.8)	17.1	(0.9)
	>70	80	11.8	(0.7)	8.7	(1.2)	9.4	(1.1)	10.6	(1.0)	12.1	(0.9)	13.5	(1.0)	14.7	(1.2)	15.5	(1.4)
	19+	504	13.5	(0.3)	9.7	(0.7)	10.6	(0.6)	12.1	(0.5)	13.7	(0.4)	15.4	(0.5)	16.9	(0.6)	17.8	(0.7)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

²No DRIs have been established for the percentage of total energy intake from monounsaturated fats.

Table 6.4 Percentage of total energy intake from monounsaturated fats, by DRI age-sex group, household population, New Brunswick, 2004^{1,2}

										Percer	tiles (and	SE) of usi	ual intake					
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	n (SE)	75th	(SE)	90th	(SE)	95tl	h (SE)
Sex	Age (years)										•				•			•
Both																		
	1-3	99	11.0	(0.5)	8.0	(0.8)	8.6	(0.7)	9.6	(0.6)	10.8	(0.6)	12.0	(0.7)	13.1	(0.9)	13.8	(1.0)
	4-8	140	11.2	(0.3)	9.4	(0.7)	9.8	(0.7)	10.4	(0.5)	11.2	(0.4)	11.9	(0.6)	12.6	(0.9)	13.0	(1.1)
Male																		
	9-13	92	13.7	(1.8)	9.9	$(1.7)^{E}$	10.6	(1.5)	11.8	(1.4)	13.1	(1.5)	14.4	(1.8)	15.7	(2.2)	16.6	(2.5)
	14-18	107	12.8	(0.6)	9.9	(0.9)	10.5	(0.8)	11.5	(0.7)	12.7	(0.7)	13.9	(0.8)	15.0	(1.0)	15.7	(1.2)
	19-30	73	13.0	(0.9)	10.8	(1.5)	11.3	(1.3)	12.2	(1.1)	13.2	(1.0)	14.2	(1.1)	15.1	(1.3)	15.7	(1.5)
	31-50	134	12.4	(0.5)	9.0	(1.1)	9.7	(0.9)	11.0	(0.7)	12.5	(0.6)	14.0	(0.6)	15.3	(0.8)	16.2	(1.0)
	51-70	131	13.7	(0.6)	11.1	(1.3)	11.6	(1.1)	12.4	(0.8)	13.3	(0.7)	14.3	(0.9)	15.2	(1.3)	15.8	(1.6)
	>70	55	13.2	(0.6)	10.7	(1.3)	11.2	(1.1)	12.2	(0.9)	13.3	(0.8)	14.4	(0.9)	15.4	(1.1)	16.0	(1.3)
	19+	393	13.0	(0.3)	9.6	(0.8)	10.3	(0.7)	11.5	(0.5)	12.9	(0.4)	14.4	(0.4)	15.7	(0.6)	16.5	(0.8)
Female	;																	
	9-13	79	11.2	(1.0)	7.8	$(1.4)^E$	8.4	(1.3)	9.5	(1.1)	10.7	(1.1)	11.9	(1.2)	13.0	(1.6)	13.7	(1.9)
	14-18	104	11.9	(0.5)	10.0	(0.6)	10.5	(0.6)	11.2	(0.7)	12.0	(0.7)	12.8	(0.8)	13.6	(0.9)	14.1	(0.9)
	19-30	101	12.6	(1.0)	8.9	$(1.9)^{E}$	9.8	$(1.7)^{E}$	11.4	(1.4)	13.1	(1.1)	14.7	(1.1)	16.0	(1.2)	16.9	(1.4)
	31-50	143	12.0	(0.4)	9.5	(0.5)	10.1	(0.5)	11.0	(0.5)	12.0	(0.5)	13.1	(0.5)	14.1	(0.5)	14.7	(0.5)
	51-70	193	13.0	(0.5)	9.7	(0.5)	10.4	(0.5)	11.5	(0.6)	12.9	(0.6)	14.3	(0.7)	15.7	(0.7)	16.5	(0.7)
	>70	94	11.6	(0.5)	8.1	(0.6)	8.7	(0.6)	9.7	(0.6)	11.2	(0.7)	12.9	(0.9)	14.6	(1.2)	15.6	(1.4)
	19+	531	12.3	(0.3)	9.6	(0.8)	10.2	(0.6)	11.2	(0.5)	12.4	(0.4)	13.7	(0.4)	14.8	(0.6)	15.5	(0.8)

Symbol Legend

- E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

²No DRIs have been established for the percentage of total energy intake from monounsaturated fats.

Table 6.5 Percentage of total energy intake from monounsaturated fats, by DRI age-sex group, household population, Quebec, 2004^{1,2}

<u> </u>							Percen	tiles (and SE) of usu	al intake		
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)
Sex	Age (years)					·			·		
Both											
	1-3	311	10.9	(0.3)	8.0 (0.5)	8.7 (0.5)	9.7 (0.4)	10.9 (0.3)	12.1 (0.4)	13.3 (0.5)	14.0 (0.6)
	4-8	485	12.1	(0.2)	9.4 (0.4)	10.0 (0.4)	11.0 (0.3)	12.1 (0.2)	13.2 (0.3)	14.3 (0.4)	14.9 (0.5)
Male											
	9-13	277	12.3	(0.3)	10.3 (0.7)	10.8 (0.6)	11.5 (0.5)	12.4 (0.5)	13.3 (0.6)	14.1 (0.8)	14.5 (0.9)
	14-18	339	12.6	(0.4)	9.9 (0.7)	10.4 (0.7)	11.3 (0.6)	12.4 (0.6)	13.7 (0.7)	14.8 (0.9)	15.5 (1.0)
	19-30	237	12.8	(0.5)	9.7 (1.2)	10.4 (1.0)	11.5 (0.8)	12.8 (0.7)	14.1 (0.7)	15.3 (0.9)	16.1 (1.1)
	31-50	423	12.8	(0.5)	8.8 (0.8)	9.6 (0.8)	11.2 (0.6)	12.9 (0.6)	14.7 (0.7)	16.2 (0.9)	17.2 (1.1)
	51-70	387	12.9	(0.3)	9.0 (0.6)	9.8 (0.5)	11.1 (0.4)	12.7 (0.4)	14.3 (0.4)	15.8 (0.6)	16.8 (0.7)
	>70	132	12.5	(0.5)	10.9 (1.1)	11.2 (0.9)	11.9 (0.7)	12.6 (0.6)	13.3 (0.7)	13.9 (0.9)	14.3 (1.0)
	19+	1179	12.8	(0.2)	9.2 (0.5)	9.9 (0.4)	11.3 (0.3)	12.8 (0.3)	14.4 (0.3)	15.9 (0.5)	16.8 (0.6)
Female	e										
	9-13	281	12.2	(0.3)	10.1 (0.8)	10.5 (0.7)	11.3 (0.5)	12.1 (0.5)	13.0 (0.6)	13.8 (0.8)	14.3 (0.9)
	14-18	321	12.6	(0.4)	10.4 (0.9)	10.9 (0.8)	11.8 (0.6)	12.7 (0.6)	13.7 (0.7)	14.5 (0.9)	15.0 (1.0)
	19-30	249	12.1	(0.4)	10.2 (0.9)	10.5 (0.8)	11.2 (0.6)	11.9 (0.5)	12.6 (0.6)	13.2 (0.8)	13.6 (1.0)
	31-50	364	12.8	(0.3)	10.2 (0.8)	10.7 (0.7)	11.7 (0.5)	12.8 (0.4)	14.0 (0.5)	15.1 (0.7)	15.8 (0.9)
	51-70	467	12.7	(0.3)	9.0 (0.8)	9.8 (0.6)	11.2 (0.5)	12.7 (0.4)	14.3 (0.4)	15.8 (0.7)	16.8 (0.8)
	>70	215	11.9	(0.3)	9.0 (0.4)	9.6 (0.4)	10.7 (0.4)	11.9 (0.5)	13.2 (0.5)	14.5 (0.6)	15.3 (0.7)
	19+	1295	12.5	(0.2)	9.8 (0.5)	10.4 (0.4)	11.4 (0.3)	12.5 (0.2)	13.7 (0.3)	14.8 (0.4)	15.5 (0.5)

Symbol Legend

- E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

²No DRIs have been established for the percentage of total energy intake from monounsaturated fats.

Table 6.6 Percentage of total energy intake from monounsaturated fats, by DRI age-sex group, household population, Ontario, 2004^{1,2}

•							Percen	tiles (and SE) of usua	al intake		
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)
Sex	Age (years)										
Both											
	1-3	644	9.9	(0.2)	7.6 (0.7)	8.1 (0.6)	9.0 (0.4)	9.9 (0.2)	10.9 (0.4)	11.8 (0.6)	12.3 (0.8)
	4-8	956	10.9	(0.2)	8.4 (0.6)	8.9 (0.5)	9.8 (0.3)	10.9 (0.2)	12.0 (0.3)	13.1 (0.6)	13.8 (0.7)
Male											
	9-13	589	11.7	(0.2)	9.9 (0.2)	10.3 (0.2)	11.0 (0.2)	11.8 (0.2)	12.6 (0.2)	13.3 (0.2)	13.7 (0.2)
	14-18	639	12.3	(0.2)	10.5 (0.8)	10.8 (0.7)	11.5 (0.4)	12.3 (0.2)	13.0 (0.4)	13.7 (0.7)	14.2 (0.9)
	19-30	481	12.6	(0.3)	9.0 (1.0)	9.8 (0.8)	11.1 (0.5)	12.6 (0.4)	14.1 (0.5)	15.5 (0.9)	16.5 (1.1)
	31-50	709	12.6	(0.3)	8.6 (0.8)	9.4 (0.7)	10.8 (0.5)	12.6 (0.3)	14.5 (0.5)	16.3 (0.8)	17.5 (1.0)
	51-70	758	12.4	(0.3)	8.8 (0.8)	9.5 (0.7)	10.8 (0.5)	12.2 (0.3)	13.9 (0.4)	15.4 (0.7)	16.5 (0.9)
	>70	734	11.8	(0.2)	6.9 (0.4)	7.9 (0.4)	9.6 (0.3)	11.6 (0.3)	13.8 (0.4)	15.9 (0.5)	17.1 (0.6)
	19+	2682	12.5	(0.2)	8.2 (0.3)	9.1 (0.3)	10.6 (0.2)	12.4 (0.2)	14.3 (0.2)	16.2 (0.4)	17.4 (0.5)
Female	;										
	9-13	585	11.8	(0.3)	9.2 (0.3)	9.7 (0.3)	10.7 (0.3)	11.8 (0.3)	13.0 (0.4)	14.2 (0.5)	15.0 (0.6)
	14-18	645	12.1	(0.2)	9.7 (0.9)	10.2 (0.7)	11.1 (0.5)	12.2 (0.3)	13.3 (0.5)	14.3 (0.8)	15.0 (1.0)
	19-30	514	11.7	(0.3)	8.1 (0.9)	8.8 (0.7)	10.1 (0.5)	11.6 (0.4)	13.2 (0.5)	14.7 (0.8)	15.7 (1.1)
	31-50	758	12.6	(0.3)	8.7 (0.9)	9.5 (0.8)	10.9 (0.5)	12.5 (0.3)	14.2 (0.5)	15.8 (0.8)	16.9 (1.0)
	51-70	955	12.2	(0.2)	9.2 (1.1)	9.9 (0.9)	11.0 (0.6)	12.3 (0.3)	13.6 (0.5)	14.8 (0.9)	15.6 (1.2)
	>70	1345	11.8	(0.2)	8.5 (0.6)	9.2 (0.5)	10.4 (0.3)	11.8 (0.2)	13.3 (0.4)	14.7 (0.7)	15.5 (0.8)
	19+	3572	12.2	(0.1)	8.5 (0.4)	9.3 (0.3)	10.6 (0.2)	12.1 (0.2)	13.9 (0.2)	15.5 (0.4)	16.5 (0.5)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

²No DRIs have been established for the percentage of total energy intake from monounsaturated fats.

Table 6.7 Percentage of total energy intake from monounsaturated fats, by DRI age-sex group, household population, Manitoba, 2004^{1,2}

							Percen	tiles (and SE) of usua	al intake		
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)
Sex	Age (years)						•				·
Both											
	1-3	324	10.4	(0.3)	6.9 (0.6)	7.7 (0.5)	8.9 (0.4)	10.3 (0.3)	11.7 (0.4)	13.0 (0.5)	13.8 (0.6)
	4-8	425	11.4	(0.2)	9.4 (0.9)	9.9 (0.7)	10.6 (0.5)	11.5 (0.3)	12.4 (0.4)	13.1 (0.7)	13.6 (0.9)
Male											
	9-13	274	11.9	(0.3)	9.6 (1.1)	10.1 (0.9)	11.0 (0.8)	12.0 (0.4)	13.1 (0.7)	14.1 (1.0)	14.8 (1.2)
	14-18	297	12.9	(0.3)	9.7 (0.9)	10.4 (0.7)	11.6 (0.5)	12.9 (0.3)	14.2 (0.5)	15.4 (0.7)	16.1 (0.9)
	19-30	249	13.4	(0.4)	11.2 (1.3)	11.7 (1.1)	12.6 (0.7)	13.6 (0.5)	14.7 (0.7)	15.6 (1.1)	16.3 (1.4)
	31-50	309	12.9	(0.5)	7.9 (1.2)	9.1 (1.0)	10.9 (0.7)	12.7 (0.6)	15.0 (0.8)	17.3 (1.2)	18.7 (1.5)
	51-70	277	12.8	(0.4)	9.8 (1.0)	10.5 (0.9)	11.6 (0.6)	12.9 (0.5)	14.2 (0.6)	15.5 (0.9)	16.2 (1.2)
	>70	136	11.5	(0.5)	7.7 (1.0)	8.4 (0.9)	9.7 (0.7)	11.2 (0.5)	12.8 (0.7)	14.4 (1.1)	15.4 (1.4)
	19+	971	12.8	(0.2)	8.8 (0.6)	9.6 (0.5)	11.1 (0.4)	12.8 (0.3)	14.7 (0.4)	16.4 (0.6)	17.5 (0.7)
Female											
	9-13	265	11.6	(0.3)	9.5 (0.4)	9.9 (0.4)	10.6 (0.4)	11.4 (0.4)	12.3 (0.4)	13.2 (0.4)	13.7 (0.5)
	14-18	290	12.4	(0.4)	9.0 (1.1)	9.8 (0.9)	11.1 (0.6)	12.5 (0.5)	14.0 (0.7)	15.3 (1.0)	16.1 (1.2)
	19-30	197	11.7	(0.5)	8.9 (0.5)	9.5 (0.5)	10.5 (0.6)	11.7 (0.6)	12.9 (0.6)	14.1 (0.7)	14.9 (0.7)
	31-50	312	13.0	(0.4)	12.2 (0.4)	12.4 (0.4)	12.7 (0.4)	13.1 (0.4)	13.4 (0.4)	13.8 (0.4)	14.0 (0.5)
	51-70	312	12.2	(0.4)	9.2 (0.9)	9.8 (0.8)	10.9 (0.6)	12.1 (0.5)	13.5 (0.7)	14.8 (1.1)	15.7 (1.3)
	>70	239	11.2	(0.3)	7.9 (0.7)	8.5 (0.6)	9.6 (0.5)	10.9 (0.4)	12.3 (0.5)	13.7 (0.7)	14.6 (0.9)
	19+	1060	12.2	(0.2)	9.9 (0.7)	10.4 (0.6)	11.3 (0.4)	12.3 (0.3)	13.4 (0.4)	14.4 (0.7)	15.0 (0.9)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ²No DRIs have been established for the percentage of total energy intake from monounsaturated fats.

Table 6.8 Percentage of total energy intake from monounsaturated fats, by DRI age-sex group, household population, Saskatchewan, 2004^{1,2}

										Percei	ntiles (and	SE) of usi	ual intake					
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	n (SE)	75th	(SE)	90tl	(SE)	95tl	h (SE)
Sex	Age (years)					,	,		·		•		•		•			
Both																		
	1-3	129	11.8	(0.5)	7.8 ((0.8)	8.6	(0.7)	10.1	(0.6)	11.8	(0.6)	13.7	(0.8)	15.5	(1.0)	16.7	(1.2)
	4-8	213	12.3	(0.4)	10.8 ((0.9)	11.1	(0.8)	11.6	(0.6)	12.3	(0.5)	13.0	(0.6)	13.6	(0.9)	14.0	(1.1)
Male																		
	9-13	122	12.2	(0.4)	9.4 (0.8)	10.0	(0.7)	11.0	(0.6)	12.1	(0.6)	13.4	(0.7)	14.6	(0.8)	15.4	(1.0)
	14-18	150	12.1	(0.4)	10.1 (0.4)	10.5	(0.4)	11.3	(0.5)	12.1	(0.5)	12.9	(0.5)	13.7	(0.5)	14.1	(0.5)
	19-30	106	14.1	(0.7)	9.8 (1.6)	10.8	(1.3)	12.5	(1.0)	14.3	(0.8)	16.1	(1.0)	17.8	(1.3)	18.9	(1.7)
	31-50	155	14.0	(0.7)	12.7 ($(2.2)^{E}$	13.0	(1.8)	13.5	(1.3)	14.1	(0.8)	14.8	(1.1)	15.3	(1.8)	15.7	(2.4)
	51-70	122	14.9	(0.6)	14.1 (0.8)	14.3	(0.8)	14.8	(0.8)	15.3	(0.8)	15.9	(0.9)	16.4	(0.9)	16.6	(0.9)
	>70	88	13.1	(0.6)	8.8 (1.0)	9.6	(0.9)	11.0	(0.7)	12.7	(0.7)	14.4	(0.9)	16.1	(1.2)	17.1	(1.4)
	19+	471	14.2	(0.4)	10.4 (0.9)	11.2	(0.8)	12.7	(0.6)	14.3	(0.5)	16.0	(0.6)	17.6	(0.8)	18.6	(0.9)
Female	;																	
	9-13	103	11.8	(0.5)	9.7 (0.7)	10.2	(0.7)	11.0	(0.7)	11.9	(0.7)	12.8	(0.6)	13.5	(0.6)	14.0	(0.6)
	14-18	142	12.1	(0.4)	9.2 ((0.5)	9.8	(0.5)	10.7	(0.6)	11.8	(0.6)	13.0	(0.7)	14.1	(0.7)	14.8	(0.8)
	19-30	111	12.9	(0.4)	10.3 ((0.5)	10.9	(0.5)	11.9	(0.5)	13.0	(0.6)	14.1	(0.7)	15.1	(0.7)	15.7	(0.8)
	31-50	146	12.1	(0.4)	8.4 (0.9)	9.1	(0.8)	10.3	(0.6)	11.8	(0.5)	13.3	(0.6)	14.8	(0.8)	15.8	(1.0)
	51-70	184	13.3	(0.4)	10.9 (1.0)	11.4	(0.9)	12.2	(0.7)	13.2	(0.6)	14.3	(0.8)	15.3	(1.0)	15.8	(1.2)
	>70	143	11.9	(0.5)	9.4 (1.1)	10.0	(1.0)	11.0	(0.7)	12.3	(0.6)	13.5	(0.8)	14.6	(1.2)	15.4	(1.4)
	19+	584	12.5	(0.2)	9.8 (0.7)	10.4	(0.6)	11.4	(0.4)	12.5	(0.3)	13.6	(0.4)	14.7	(0.6)	15.4	(0.7)

Symbol Legend

- E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- ^F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

²No DRIs have been established for the percentage of total energy intake from monounsaturated fats.

Table 6.9 Percentage of total energy intake from monounsaturated fats, by DRI age-sex group, household population, Alberta, 2004^{1,2}

							Percer	ntiles (and SE) of usu	al intake		
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)
Sex	Age (years)	•				•		•		•	•
Both											
	1-3	169	9.6	(0.5)	5.4 (1.3) ^E	6.4 (1.0)	7.8 (0.7)	9.6 (0.5)	11.7 (0.7)	13.4 (1.0)	14.4 (1.2)
	4-8	281	11.5	(0.3)	8.8 (1.0)	9.4 (0.8)	10.4 (0.6)	11.5 (0.4)	12.7 (0.5)	13.8 (0.7)	14.5 (0.9)
Male											
	9-13	183	12.1	(0.4)	9.4 (0.9)	9.9 (0.8)	10.9 (0.6)	12.0 (0.5)	13.2 (0.6)	14.4 (0.9)	15.1 (1.1)
	14-18	187	12.3	(0.4)	8.7 (1.2)	9.4 (1.0)	10.6 (0.7)	12.1 (0.5)	13.8 (0.7)	15.5 (1.2)	16.6 (1.5)
	19-30	223	12.4	(0.5)	9.2 (1.1)	9.9 (0.9)	11.0 (0.7)	12.4 (0.6)	13.9 (0.8)	15.2 (1.2)	16.0 (1.5)
	31-50	229	12.9	(0.7)	8.4 (0.7)	9.3 (0.7)	10.9 (0.7)	12.8 (0.8)	14.8 (0.9)	16.7 (0.9)	17.9 (1.0)
	51-70	197	12.1	(0.7)	8.8 (1.8) ^E	9.5 (1.6) ^E	10.8 (1.2)	12.2 (0.8)	13.7 (1.2)	15.1 (1.9)	16.0 (2.4)
	>70	72	12.8	(1.0)	8.8 (1.6) ^E	9.6 (1.5)	11.0 (1.2)	12.5 (1.1)	14.0 (1.2)	15.4 (1.5)	16.2 (1.7)
	19+	721	12.6	(0.4)	8.6 (0.9)	9.4 (0.8)	10.8 (0.6)	12.5 (0.5)	14.3 (0.6)	16.0 (0.9)	17.1 (1.1)
Female	:										
	9-13	165	10.8	(0.4)	8.2 (0.9)	8.7 (0.8)	9.6 (0.6)	10.6 (0.5)	11.7 (0.6)	12.8 (0.8)	13.4 (1.0)
	14-18	206	11.6	(0.4)	8.5 (0.9)	9.1 (0.8)	10.2 (0.6)	11.5 (0.5)	12.8 (0.6)	14.1 (0.9)	14.8 (1.2)
	19-30	191	12.0	(0.5)	7.5 (1.3) ^E	8.4 (1.1)	10.1 (0.8)	12.0 (0.7)	14.0 (0.8)	15.8 (1.1)	16.9 (1.4)
	31-50	258	13.4	(0.4)	12.6 (0.6)	12.8 (0.6)	13.1 (0.6)	13.5 (0.6)	13.8 (0.6)	14.2 (0.6)	14.4 (0.6)
	51-70	249	13.1	(0.5)	8.1 (1.2)	9.2 (1.0)	11.1 (0.7)	13.1 (0.5)	15.2 (0.7)	17.3 (1.1)	18.6 (1.3)
	>70	128		(0.4)	7.2 (1.0)	8.0 (0.9)	9.4 (0.7)	10.8 (0.6)	12.3 (0.6)	13.7 (0.7)	14.5 (0.9)
	19+	826		(0.2)	8.8 (0.6)	9.7 (0.5)	11.2 (0.4)	12.9 (0.3)	14.5 (0.4)	16.0 (0.5)	16.9 (0.6)

Symbol Legend

- E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

²No DRIs have been established for the percentage of total energy intake from monounsaturated fats.

Table 6.10 Percentage of total energy intake from monounsaturated fats, by DRI age-sex group, household population, British Columbia, 2004^{1,2}

										Percer	ntiles (and	SE) of usu	ıal intake					
		n	Mean	(SE)	5th	(SE)	10tl	n (SE)	25th	(SE)	50th	n (SE)	75th	(SE)	90th	(SE)	95tl	h (SE)
Sex	Age (years)						•		•		,						•	
Both																		
	1-3	192	10.7	(0.4)	6.9	(0.7)	7.7	(0.6)	8.9	(0.6)	10.4	(0.6)	12.0	(0.7)	13.5	(0.8)	14.4	(0.9)
	4-8	321	11.2	(0.3)	8.6	(0.3)	9.1	(0.4)	10.1	(0.4)	11.2	(0.4)	12.4	(0.5)	13.5	(0.5)	14.1	(0.6)
Male																		
	9-13	226	12.3	(0.4)	10.1	(0.9)	10.6	(0.8)	11.5	(0.6)	12.4	(0.6)	13.3	(0.6)	14.1	(0.7)	14.5	(0.8)
	14-18	262	12.6	(0.4)	10.9	(1.0)	11.3	(0.9)	12.0	(0.7)	12.7	(0.6)	13.4	(0.7)	14.1	(0.9)	14.5	(1.0)
	19-30	197	12.7	(0.4)	9.6	(0.9)	10.2	(0.8)	11.3	(0.6)	12.5	(0.5)	13.9	(0.7)	15.3	(1.0)	16.2	(1.3)
	31-50	282	12.4	(0.4)	10.3	(1.1)	10.8	(0.9)	11.6	(0.7)	12.5	(0.5)	13.3	(0.6)	14.0	(0.9)	14.4	(1.1)
	51-70	234	12.7	(0.4)	9.5	(0.9)	10.1	(0.8)	11.3	(0.6)	12.6	(0.5)	14.0	(0.6)	15.4	(0.8)	16.2	(1.0)
	>70	119	11.8	(0.6)	7.9	(1.0)	8.7	(0.9)	9.9	(0.8)	11.5	(0.8)	13.5	(0.9)	15.4	(1.2)	16.4	(1.3)
	19+	832	12.5	(0.2)	9.1	(0.5)	9.8	(0.4)	11.1	(0.3)	12.5	(0.3)	13.9	(0.3)	15.2	(0.4)	16.0	(0.5)
Female	;																	
	9-13	226	11.5	(0.3)	9.8	(0.6)	10.2	(0.6)	10.9	(0.5)	11.6	(0.4)	12.4	(0.5)	13.1	(0.6)	13.6	(0.8)
	14-18	242	11.6	(0.4)	8.3	(1.1)	9.0	(0.9)	10.3	(0.7)	11.6	(0.5)	13.0	(0.6)	14.2	(0.9)	15.0	(1.1)
	19-30	208	12.2	(0.5)	8.8	(0.6)	9.5	(0.6)	10.6	(0.7)	11.9	(0.7)	13.3	(0.8)	14.6	(0.8)	15.5	(0.9)
	31-50	263	12.8	(0.6)	9.1	(1.2)	10.0	(1.0)	11.5	(0.9)	13.2	(0.6)	14.9	(0.9)	16.5	(1.2)	17.5	(1.4)
	51-70	322	12.0	(0.5)	7.4	(1.0)	8.4	(0.9)	10.1	(0.7)	12.0	(0.6)	14.0	(0.7)	15.9	(0.9)	17.0	(1.1)
	>70	198	11.5	(0.3)	8.9	(0.7)	9.5	(0.6)	10.4	(0.5)	11.4	(0.4)	12.4	(0.5)	13.4	(0.8)	14.0	(0.9)
	19+	991	12.3	(0.3)	8.8	(0.5)	9.5	(0.5)	10.8	(0.4)	12.3	(0.3)	13.9	(0.4)	15.4	(0.5)	16.4	(0.7)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

²No DRIs have been established for the percentage of total energy intake from monounsaturated fats.

Table 6.11 Percentage of total energy intake from monounsaturated fats, by DRI age-sex group, household population, Atlantic Region, 2004^{1,2}

							Percen	tiles (and SE) of usu	al intake		
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)
Sex	Age (years)										
Both											
	1-3	348	10.8	(0.3)	8.1 (0.5)	8.6 (0.4)	9.6 (0.4)	10.7 (0.3)	11.8 (0.4)	12.9 (0.5)	13.5 (0.6)
	4-8	554	11.6	(0.2)	9.2 (0.5)	9.8 (0.4)	10.7 (0.3)	11.6 (0.3)	12.6 (0.3)	13.6 (0.5)	14.2 (0.6)
Male											
	9-13	409	12.9	(0.6)	10.9 (0.8)	11.3 (0.7)	12.1 (0.6)	13.0 (0.7)	14.0 (0.9)	14.9 (1.2)	15.5 (1.4)
	14-18	414	13.4	(0.3)	10.3 (0.5)	11.0 (0.5)	12.2 (0.4)	13.5 (0.4)	14.8 (0.5)	16.0 (0.5)	16.8 (0.6)
	19-30	311	13.1	(0.4)	9.8 (0.8)	10.6 (0.7)	11.8 (0.5)	13.2 (0.5)	14.5 (0.5)	15.8 (0.7)	16.6 (0.8)
	31-50	489	13.1	(0.3)	10.0 (0.7)	10.7 (0.6)	11.8 (0.4)	13.0 (0.4)	14.3 (0.5)	15.4 (0.6)	16.1 (0.7)
	51-70	575	12.7	(0.4)	10.3 (1.0)	10.8 (0.8)	11.6 (0.6)	12.5 (0.4)	13.5 (0.6)	14.4 (1.0)	14.9 (1.2)
	>70	239	12.3	(0.4)	9.4 (0.7)	10.1 (0.6)	11.2 (0.5)	12.4 (0.5)	13.7 (0.6)	14.8 (0.7)	15.5 (0.8)
	19+	1614	12.9	(0.2)	9.6 (0.4)	10.3 (0.3)	11.4 (0.3)	12.8 (0.2)	14.3 (0.3)	15.6 (0.4)	16.3 (0.4)
Female	;										
	9-13	355	11.9	(0.4)	8.7 (0.9)	9.4 (0.7)	10.5 (0.6)	11.7 (0.4)	12.9 (0.4)	14.0 (0.6)	14.7 (0.7)
	14-18	410	11.7	(0.3)	9.2 (0.8)	9.7 (0.7)	10.6 (0.5)	11.5 (0.4)	12.4 (0.5)	13.3 (0.7)	13.8 (0.9)
	19-30	384	13.2	(0.5)	9.8 (0.9)	10.7 (0.8)	12.0 (0.6)	13.5 (0.6)	15.0 (0.7)	16.4 (0.9)	17.3 (1.0)
	31-50	585	13.2	(0.3)	9.9 (0.7)	10.6 (0.6)	11.7 (0.4)	13.0 (0.4)	14.3 (0.4)	15.6 (0.6)	16.3 (0.7)
	51-70	711	13.0	(0.3)	9.4 (0.6)	10.1 (0.5)	11.4 (0.4)	12.9 (0.4)	14.5 (0.5)	16.0 (0.6)	17.0 (0.7)
	>70	342	11.7	(0.3)	8.6 (0.5)	9.3 (0.5)	10.4 (0.4)	11.7 (0.5)	13.2 (0.5)	14.6 (0.6)	15.4 (0.7)
	19+	2022	12.9	(0.2)	9.4 (0.3)	10.2 (0.3)	11.5 (0.3)	13.0 (0.2)	14.5 (0.3)	16.0 (0.3)	16.9 (0.4)

Symbol Legend

- E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ²No DRIs have been established for the percentage of total energy intake from monounsaturated fats.

Table 6.12 Percentage of total energy intake from monounsaturated fats, by DRI age-sex group, household population, Prairie Region, 2004^{1,2}

							Percen	tiles (and SE) of usua	al intake		
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)
Sex	Age (years)					·					·
Both											
	1-3	622	10.2	(0.3)	6.0 (0.8)	6.9 (0.6)	8.4 (0.4)	10.1 (0.3)	12.0 (0.4)	13.6 (0.5)	14.7 (0.7)
	4-8	919	11.6	(0.2)	9.0 (0.8)	9.6 (0.6)	10.5 (0.4)	11.6 (0.3)	12.8 (0.4)	13.8 (0.6)	14.5 (0.8)
Male											
	9-13	579	12.1	(0.3)	9.0 (0.5)	9.6 (0.4)	10.7 (0.3)	12.0 (0.3)	13.4 (0.4)	14.7 (0.5)	15.5 (0.6)
	14-18	634	12.4	(0.3)	10.0 (0.7)	10.5 (0.6)	11.3 (0.4)	12.4 (0.3)	13.4 (0.4)	14.4 (0.6)	15.0 (0.7)
	19-30	578	12.9	(0.3)	9.0 (0.9)	9.8 (0.7)	11.3 (0.5)	13.0 (0.4)	14.7 (0.6)	16.3 (0.8)	17.3 (1.0)
	31-50	693	13.1	(0.5)	8.8 (0.3)	9.6 (0.3)	11.1 (0.3)	12.8 (0.2)	14.6 (0.3)	16.2 (0.4)	17.1 (0.4)
	51-70	596	12.8	(0.4)	11.5 (1.8)	11.8 (1.5)	12.4 (0.9)	12.9 (0.5)	13.5 (1.0)	14.1 (1.8)	14.5 (2.2)
	>70	296	12.5	(0.5)	7.8 (0.9)	8.7 (0.8)	10.2 (0.7)	12.1 (0.6)	14.1 (0.7)	15.9 (0.9)	17.1 (1.0)
	19+	2163	12.9	(0.2)	8.7 (0.5)	9.6 (0.4)	11.1 (0.3)	12.9 (0.3)	14.8 (0.3)	16.7 (0.5)	17.7 (0.5)
Female	;										
	9-13	533	11.1	(0.3)	9.1 (0.7)	9.5 (0.6)	10.3 (0.4)	11.1 (0.3)	11.9 (0.4)	12.7 (0.6)	13.2 (0.8)
	14-18	638	11.9	(0.3)	8.9 (0.6)	9.5 (0.5)	10.5 (0.4)	11.7 (0.3)	13.0 (0.5)	14.1 (0.7)	14.8 (0.8)
	19-30	499	12.1	(0.3)	9.1 (1.0)	9.7 (0.8)	10.8 (0.6)	12.1 (0.5)	13.4 (0.5)	14.5 (0.8)	15.3 (0.9)
	31-50	716	13.1	(0.3)	12.1 (1.2)	12.3 (1.0)	12.7 (0.7)	13.1 (0.4)	13.5 (0.5)	13.9 (0.8)	14.2 (1.1)
	51-70	745	12.9	(0.3)	9.4 (0.8)	10.1 (0.7)	11.4 (0.4)	12.9 (0.3)	14.5 (0.5)	16.0 (0.8)	16.8 (1.0)
	>70	510	11.3	(0.2)	7.9 (0.6)	8.6 (0.5)	9.7 (0.4)	11.1 (0.3)	12.6 (0.4)	13.9 (0.5)	14.7 (0.6)
	19+	2470	12.6	(0.2)	9.4 (0.4)	10.1 (0.3)	11.3 (0.3)	12.6 (0.2)	14.0 (0.3)	15.2 (0.4)	16.0 (0.4)

Symbol Legend

- E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

²No DRIs have been established for the percentage of total energy intake from monounsaturated fats.

Table 6.13 Percentage of total energy intake from monounsaturated fats, by DRI age-sex group, household population, Canada excluding territories, 2004^{1,2}

											Percentile	s (and SE	c) of usual in	ntake				
		n	Mean	(SE)	5th ((SE)	10th	(SE)	25tl	n (SE)	50th	n (SE)	75th	(SE)	90th	(SE)	95th (SE)
Sex	Age (years)						•		·		•		·				•	•
Both																		
	1-3	2117	10.3	(0.1)	6.9	(0.3)	7.7	(0.2)	8.9	(0.2)	10.2	(0.2)	11.7	(0.2)	13.0	(0.2)	13.9	(0.3)
	4-8	3235	11.4	(0.1)	9.0	(0.3)	9.5	(0.2)	10.4	(0.2)	11.4	(0.1)	12.4	(0.2)	13.4	(0.2)	14.0	(0.3)
Male																		
	9-13	2080	12.1	(0.1)	10.0	(0.3)	10.4	(0.2)	11.2	(0.2)	12.1	(0.2)	13.0	(0.2)	13.9	(0.3)	14.4	(0.4)
	14-18	2288	12.5	(0.1)	9.8	(0.3)	10.3	(0.3)	11.3	(0.2)	12.5	(0.2)	13.6	(0.2)	14.7	(0.3)	15.4	(0.3)
	19-30	1804	12.7	(0.2)	9.4	(0.4)	10.1	(0.4)	11.4	(0.3)	12.8	(0.2)	14.2	(0.3)	15.6	(0.4)	16.4	(0.5)
	31-50	2596	12.8	(0.2)	8.8	(0.3)	9.6	(0.3)	11.1	(0.3)	12.8	(0.2)	14.6	(0.3)	16.2	(0.4)	17.1	(0.4)
	51-70	2550	12.7	(0.2)	9.1	(0.4)	9.9	(0.3)	11.1	(0.2)	12.6	(0.2)	14.1	(0.2)	15.5	(0.3)	16.4	(0.4)
	>70	1520	12.1	(0.2)	8.0	(0.3)	8.9	(0.3)	10.3	(0.3)	12.0	(0.2)	13.8	(0.3)	15.4	(0.3)	16.4	(0.4)
	19+	8470	12.7	(0.1)	8.9	(0.2)	9.7	(0.2)	11.0	(0.1)	12.7	(0.1)	14.3	(0.1)	15.9	(0.2)	16.8	(0.2)
Female	:																	
	9-13	1980	11.8	(0.2)	9.2	(0.3)	9.7	(0.3)	10.6	(0.2)	11.7	(0.2)	12.9	(0.3)	14.0	(0.4)	14.7	(0.4)
	14-18	2256	12.1	(0.1)	9.3	(0.4)	9.9	(0.3)	10.9	(0.2)	12.1	(0.2)	13.3	(0.3)	14.4	(0.4)	15.0	(0.5)
	19-30	1854	12.0	(0.2)	8.9	(0.4)	9.6	(0.4)	10.7	(0.3)	11.9	(0.2)	13.2	(0.3)	14.5	(0.4)	15.2	(0.5)
	31-50	2686	12.8	(0.2)	9.5	(0.4)	10.2	(0.3)	11.4	(0.2)	12.8	(0.2)	14.2	(0.2)	15.6	(0.3)	16.5	(0.4)
	51-70	3200	12.5	(0.1)	8.9	(0.3)	9.7	(0.3)	11.0	(0.2)	12.4	(0.2)	14.0	(0.2)	15.6	(0.3)	16.5	(0.3)
	>70	2610	11.7	(0.1)	8.6	(0.3)	9.2	(0.2)	10.3	(0.2)	11.6	(0.2)	13.0	(0.2)	14.3	(0.3)	15.1	(0.4)
	19+	10350	12.4	(0.1)	9.0	(0.2)	9.8	(0.1)	11.0	(0.1)	12.4	(0.1)	13.9	(0.1)	15.3	(0.2)	16.2	(0.2)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ²No DRIs have been established for the percentage of total energy intake from monounsaturated fats.

7.	Percentage of total energy intake from polyunsaturated fats	
		_

Table 7.1 Percentage of total energy intake from polyunsaturated fats, by DRI age-sex group, household population, Newfoundland and Labrador, 2004^{1,2}

							Pe	ercentiles (and SE) o	f usual intake		
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)
Sex	Age (years)										
Both											
	1-3	79	3.7	(0.2)	2.3 (0.4) ^E	2.6 (0.4)	3.1 (0.3)	3.6 (0.3)	4.2 (0.3)	4.8 (0.5)	5.2 (0.6)
	4-8	127	5.0	(0.2)	3.9 (0.4)	4.1 (0.3)	4.5 (0.3)	5.0 (0.2)	5.6 (0.3)	6.1 (0.4)	6.4 (0.5)
Male											
	9-13	111	5.5	(0.3)	4.9 (0.5)	5.0 (0.4)	5.3 (0.4)	5.7 (0.4)	6.0 (0.4)	6.4 (0.5)	6.6 (0.6)
	14-18	107	5.1	(0.2)	2.8 (0.5) ^E	3.3 (0.4)	4.0 (0.3)	5.0 (0.3)	6.0 (0.3)	7.0 (0.4)	7.6 (0.5)
	19-30	77	5.1	(0.4)	3.3 (0.5)	3.6 (0.5)	4.0 (0.5)	4.5 (0.6)	5.1 (0.6)	5.7 (0.6)	6.1 (0.6)
	31-50	145	5.7	(0.3)	3.9 (0.4)	4.3 (0.4)	4.9 (0.4)	5.7 (0.4)	6.5 (0.5)	7.3 (0.6)	7.8 (0.7)
	51-70	182	5.1	(0.2)	3.4 (0.2)	3.6 (0.2)	4.1 (0.2)	4.7 (0.3)	5.4 (0.3)	6.1 (0.3)	6.6 (0.3)
	>70	63	5.8	(0.3)	4.3 (0.6)	4.7 (0.5)	5.3 (0.4)	6.0 (0.4)	6.6 (0.4)	7.2 (0.5)	7.5 (0.6)
	19+	467	5.4	(0.2)	3.6 (0.2)	3.9 (0.2)	4.5 (0.2)	5.3 (0.2)	6.1 (0.3)	6.9 (0.3)	7.4 (0.4)
Female	2										
	9-13	96	5.1	(0.2)	4.2 (0.5)	4.4 (0.4)	4.8 (0.4)	5.2 (0.3)	5.6 (0.4)	6.1 (0.6)	6.3 (0.7)
	14-18	105	5.2	(0.3)	4.0 (0.3)	4.2 (0.3)	4.6 (0.3)	5.0 (0.4)	5.5 (0.4)	5.9 (0.4)	6.1 (0.4)
	19-30	91	5.4	(0.3)	4.8 (0.4)	4.9 (0.4)	5.2 (0.4)	5.5 (0.4)	5.8 (0.4)	6.0 (0.4)	6.2 (0.4)
	31-50	167	5.8	(0.3)	4.5 (0.6)	4.8 (0.5)	5.2 (0.4)	5.7 (0.3)	6.3 (0.4)	6.8 (0.5)	7.1 (0.6)
	51-70	198	5.5	(0.3)	3.6 (0.6)	3.9 (0.5)	4.6 (0.4)	5.5 (0.4)	6.7 (0.5)	7.9 (0.8)	8.8 (1.1)
	>70	74		(0.3)	3.9 (0.5)	4.2 (0.5)	4.8 (0.4)	5.7 (0.3)	6.8 (0.5)	8.1 (0.9)	9.2 (1.3)
	19+	530		(0.1)	4.2 (0.3)	4.4 (0.3)	5.0 (0.2)	5.6 (0.2)	6.4 (0.3)	7.1 (0.4)	7.6 (0.5)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² No DRIs have been established for the percentage of total energy intake from polyunsaturated fats.

Table 7.2 Percentage of total energy intake from polyunsaturated fats, by DRI age-sex group, household population, Prince Edward Island, 2004^{1,2}

										Percei	ntiles (and	d SE) of usi	ual intake					
		n	Mean	(SE)	5th	(SE)	10th	n (SE)	25th	(SE)	50tl	h (SE)	75tl	(SE)	90tl	n (SE)	95th (SE	E)
Sex	Age (years)																	
Both																		
	1-3	58	3.8	(0.4)	2.2	$(0.4)^{E}$	2.4	$(0.4)^{E}$	2.9	(0.4)	3.3	(0.4)	3.9	(0.4)	4.5	(0.6)	4.9 (0.7))
	4-8	110	4.5	(0.1)	3.3	(0.3)	3.5	(0.2)	3.9	(0.2)	4.4	(0.2)	5.0	(0.2)	5.6	(0.3)	5.9 (0.4))
Male																		
	9-13	95	4.7	(0.3)	3.7	(0.4)	3.9	(0.4)	4.2	(0.4)	4.6	(0.4)	5.0	(0.4)	5.5	(0.5)	5.7 (0.5))
	14-18	87	5.4	(0.3)	4.1	(0.5)	4.3	(0.4)	4.7	(0.3)	5.2	(0.4)	5.7	(0.5)	6.2	(0.6)	6.6 (0.7))
	19-30	70	6.2	(0.3)	5.4	(0.7)	5.6	(0.6)	6.1	(0.6)	6.6	(0.5)	7.1	(0.5)	7.6	(0.6)	7.9 (0.7))
	31-50	109	6.4	(0.3)	5.3	(0.7)	5.6	(0.7)	6.1	(0.6)	6.6	(0.6)	7.2	(0.6)	7.8	(0.7)	8.1 (0.8))
	51-70	128	5.8	(0.3)	5.5	$(1.6)^{E}$	5.7	$(1.3)^E$	5.9	(0.9)	6.1	(0.5)	6.4	(0.6)	6.6	$(1.3)^E$	6.8 (1.8)) ^E
	>70	65	5.8	(0.4)	4.3	(0.5)	4.5	(0.5)	5.0	(0.4)	5.5	(0.5)	6.2	(0.6)	6.8	(0.9)	7.3 (1.1))
	19+	372	6.1	(0.2)	5.1	(0.5)	5.4	(0.5)	5.9	(0.4)	6.4	(0.3)	7.0	(0.3)	7.5	(0.4)	7.8 (0.5))
Female	;																	
	9-13	75	5.3	(0.3)	3.8	(0.4)	4.1	(0.3)	4.6	(0.3)	5.2	(0.3)	6.0	(0.4)	6.9	(0.7)	7.6 (0.9))
	14-18	81	5.5	(0.3)	3.7	(0.5)	4.1	(0.5)	4.7	(0.5)	5.5	(0.5)	6.4	(0.6)	7.5	(0.8)	8.3 (1.0))
	19-30	101	5.0	(0.2)	4.2	(0.3)	4.4	(0.3)	4.6	(0.3)	4.8	(0.3)	5.1	(0.3)	5.3	(0.3)	5.5 (0.3))
	31-50	116	5.8	(0.4)	4.5	(0.5)	4.7	(0.5)	5.1	(0.4)	5.6	(0.4)	6.2	(0.5)	6.8	(0.7)	7.1 (0.8))
	51-70	146	5.6	(0.3)	4.6	(0.6)	4.7	(0.5)	5.0	(0.4)	5.3	(0.3)	5.6	(0.4)	6.0	(0.6)	6.1 (0.7))
	>70	94		(0.4)		(0.6)		(0.5)		(0.5)		(0.4)		(0.5)		(0.8)	8.0 (1.0)	
	19+	457		(0.2)		(0.3)		(0.3)		(0.3)		(0.2)		(0.3)		(0.4)	7.0 (0.5)	

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² No DRIs have been established for the percentage of total energy intake from polyunsaturated fats.

Table 7.3 Percentage of total energy intake from polyunsaturated fats, by DRI age-sex group, household population, Nova Scotia, 2004^{1,2}

									Percentil	les (and	SE) of usua	al intake					
		n	Mean (SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	(SE)	75th	(SE)	90tl	n (SE)	95tl	n (SE)
Sex	Age (years)																
Both																	
	1-3	112	4.0 (0.1)	2.8	(0.3)	3.1	(0.3)	3.5	(0.2)	4.0	(0.2)	4.5	(0.3)	5.1	(0.4)	5.4	(0.4)
	4-8	177	4.6 (0.2)	3.4	(0.5)	3.7 ((0.5)	4.2	(0.4)	4.8	(0.3)	5.3	(0.4)	5.9	(0.6)	6.2	(0.8)
Male																	
	9-13	111	5.1 (0.2)	4.0	(0.5)	4.2	(0.4)	4.6	(0.3)	5.0	(0.3)	5.5	(0.3)	5.9	(0.4)	6.1	(0.5)
	14-18	113	5.3 (0.2)	4.3	(0.5)	4.6	(0.4)	5.0	(0.3)	5.4	(0.3)	5.9	(0.4)	6.4	(0.5)	6.7	(0.6)
	19-30	91	4.9 (0.3)	3.5	(0.5)	3.8 ((0.5)	4.2	(0.4)	4.7	(0.4)	5.2	(0.5)	5.8	(0.7)	6.2	(0.8)
	31-50	101	5.5 (0.2)	3.5	(0.5)	3.9 ((0.4)	4.5	(0.4)	5.2	(0.3)	6.0	(0.4)	6.7	(0.5)	7.2	(0.6)
	51-70	134	5.9 (0.4)	4.2	(0.5)	4.6	(0.5)	5.2	(0.5)	5.9	(0.5)	6.7	(0.6)	7.5	(0.6)	7.9	(0.6)
	>70	56	4.8 (0.3)	3.8	(0.3)	4.0	(0.3)	4.3	(0.3)	4.6	(0.3)	5.0	(0.4)	5.4	(0.5)	5.6	(0.6)
	19+	382	5.4 (0.2)	3.7	(0.4)	4.0 ((0.3)	4.6	(0.2)	5.3	(0.2)	6.0	(0.3)	6.7	(0.4)	7.2	(0.6)
Female	;																
	9-13	105	5.0 (0.2)	3.9	(0.4)	4.1 ((0.3)	4.5	(0.3)	4.9	(0.2)	5.4	(0.3)	5.8	(0.4)	6.1	(0.5)
	14-18	120	4.8 (0.3)	3.1	$(0.6)^{E}$	3.5	(0.5)	4.0	(0.4)	4.6	(0.4)	5.4	(0.4)	6.1	(0.6)	6.6	(0.8)
	19-30	91	5.9 (0.6)	4.9	$(1.1)^E$	5.1 ($(0.9)^{E}$	5.4	(0.8)	5.7	(0.8)	6.1	$(1.0)^E$	6.4	$(1.4)^E$	6.6	$(1.7)^{E}$
	31-50	159	6.1 (0.3)	5.1	(0.4)	5.4 ((0.4)	5.8	(0.4)	6.2	(0.4)	6.7	(0.4)	7.1	(0.4)	7.3	(0.4)
	51-70	174	6.6 (0.4)	4.8	(0.7)	5.2	(0.6)	5.8	(0.5)	6.5	(0.5)	7.3	(0.6)	8.0	(0.9)	8.4	(1.1)
	>70	80	5.0 (0.3)	3.3	(0.4)	3.5	(0.4)	4.0	(0.4)	4.7	(0.4)	5.4	(0.5)	6.3	(0.7)	6.8	(0.9)
	19+	504	6.1 (0.2)	4.3	(0.5)	4.7 ((0.4)	5.3	(0.3)	6.1	(0.3)	6.9	(0.4)	7.6	(0.5)	8.1	(0.6)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² No DRIs have been established for the percentage of total energy intake from polyunsaturated fats.

Table 7.4 Percentage of total energy intake from polyunsaturated fats, by DRI age-sex group, household population, New Brunswick, 2004^{1,2}

,						Percen	tiles (and SE) of usua	al intake		
		n	Mean (SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)
Sex	Age (years)									
Both										
	1-3	99	4.3 (0.3)	2.6 (0.4)	3.0 (0.4)	3.5 (0.3)	4.2 (0.4)	5.0 (0.5)	5.8 (0.7)	6.3 (0.8)
	4-8	140	4.4 (0.2)	3.3 (0.2)	3.5 (0.2)	3.9 (0.2)	4.3 (0.2)	4.8 (0.2)	5.2 (0.2)	5.5 (0.2)
Male										
	9-13	92	6.3 (1.0)	4.2 (0.7) ^E	4.6 (0.7)	5.3 (0.7)	6.1 (0.9)	7.1 (1.2)	8.2 (1.6) ^E	9.0 (1.9) ^E
	14-18	107	5.3 (0.5)	4.5 (0.8) ^E	4.6 (0.7)	4.8 (0.6)	5.0 (0.5)	5.3 (0.5)	5.5 (0.6)	5.7 (0.7)
	19-30	73	5.4 (0.4)	3.6 (0.6) ^E	3.9 (0.6)	4.6 (0.5)	5.4 (0.5)	6.2 (0.6)	7.0 (0.7)	7.5 (0.8)
	31-50	134	5.5 (0.3)	4.0 (0.5)	4.2 (0.5)	4.7 (0.4)	5.4 (0.4)	6.1 (0.4)	6.9 (0.6)	7.4 (0.7)
	51-70	131	6.2 (0.3)	4.4 (0.3)	4.7 (0.3)	5.3 (0.4)	6.0 (0.4)	6.7 (0.4)	7.4 (0.4)	7.9 (0.5)
	>70	55	5.6 (0.3)	4.0 (0.7) ^E	4.4 (0.6)	5.0 (0.4)	5.8 (0.3)	6.5 (0.4)	7.2 (0.7)	7.7 (0.9)
	19+	393	5.7 (0.2)	3.9 (0.2)	4.3 (0.2)	4.9 (0.2)	5.6 (0.2)	6.4 (0.2)	7.2 (0.3)	7.7 (0.3)
Female	;									
	9-13	79	5.2 (0.5)	3.8 (0.6)	4.0 (0.6)	4.5 (0.5)	5.0 (0.6)	5.7 (0.7)	6.2 (1.0)	6.6 (1.3) ^E
	14-18	104	5.3 (0.4)	3.9 (0.4)	4.2 (0.4)	4.7 (0.5)	5.3 (0.5)	6.1 (0.5)	6.8 (0.6)	7.3 (0.7)
	19-30	101	6.3 (0.5)	4.7 (0.8) ^E	5.0 (0.7)	5.7 (0.6)	6.4 (0.6)	7.2 (0.7)	8.0 (0.9)	8.5 (1.1)
	31-50	143	5.4 (0.2)	4.6 (0.3)	4.8 (0.3)	5.1 (0.3)	5.5 (0.3)	5.9 (0.3)	6.2 (0.3)	6.4 (0.3)
	51-70	193	6.2 (0.2)	4.8 (0.2)	5.1 (0.2)	5.6 (0.3)	6.2 (0.3)	6.9 (0.3)	7.5 (0.3)	7.9 (0.3)
	>70	94	5.5 (0.3)	4.0 (0.6)	4.3 (0.5)	4.9 (0.5)	5.5 (0.4)	6.2 (0.5)	6.9 (0.6)	7.4 (0.7)
	19+	531	5.8 (0.2)	4.4 (0.4)	4.7 (0.3)	5.2 (0.3)	5.9 (0.2)	6.6 (0.3)	7.3 (0.4)	7.7 (0.5)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² No DRIs have been established for the percentage of total energy intake from polyunsaturated fats.

Table 7.5 Percentage of total energy intake from polyunsaturated fats, by DRI age-sex group, household population, Quebec, 2004^{1,2}

							Percen	tiles (and SE) of usua	ıl intake		
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)
ex	Age (years)										
oth											
	1-3	311	3.8	(0.1)	2.7 (0.3)	2.9 (0.2)	3.3 (0.2)	3.8 (0.2)	4.3 (0.2)	4.8 (0.3)	5.1 (0.4)
	4-8	485	4.6	(0.1)	3.2 (0.2)	3.5 (0.2)	4.0 (0.2)	4.6 (0.1)	5.2 (0.2)	6.0 (0.3)	6.4 (0.4)
I ale											
	9-13	277	5.2	(0.2)	3.8 (0.3)	4.1 (0.3)	4.6 (0.3)	5.3 (0.3)	6.0 (0.4)	6.8 (0.5)	7.3 (0.7)
	14-18	339	4.9	(0.2)	3.6 (0.3)	3.8 (0.3)	4.2 (0.3)	4.7 (0.2)	5.3 (0.3)	5.8 (0.4)	6.1 (0.5)
	19-30	237	5.5	(0.3)	4.7 (0.6)	4.9 (0.5)	5.2 (0.4)	5.5 (0.4)	5.9 (0.5)	6.3 (0.7)	6.5 (0.8)
	31-50	423	5.2	(0.2)	4.4 (0.5)	4.6 (0.4)	4.9 (0.3)	5.3 (0.3)	5.6 (0.3)	5.9 (0.5)	6.1 (0.6)
	51-70	387	5.7	(0.2)	3.5 (0.2)	3.9 (0.2)	4.6 (0.2)	5.5 (0.2)	6.5 (0.3)	7.5 (0.3)	8.3 (0.4)
	>70	132	5.7	(0.3)	4.0 (0.3)	4.3 (0.3)	5.0 (0.4)	5.8 (0.4)	6.7 (0.4)	7.5 (0.5)	8.0 (0.5)
	19+	1179	5.4	(0.1)	4.1 (0.3)	4.4 (0.2)	4.9 (0.2)	5.4 (0.2)	6.1 (0.2)	6.7 (0.3)	7.1 (0.4)
emale	;										
	9-13	281	5.1	(0.2)	4.2 (0.4)	4.4 (0.3)	4.7 (0.2)	5.2 (0.2)	5.7 (0.3)	6.2 (0.4)	6.5 (0.6)
	14-18	321	5.5	(0.3)	4.5 (0.3)	4.8 (0.3)	5.2 (0.4)	5.7 (0.4)	6.3 (0.5)	6.8 (0.5)	7.2 (0.6)
	19-30	249	5.3	(0.2)	4.3 (0.4)	4.5 (0.4)	4.8 (0.3)	5.1 (0.3)	5.5 (0.3)	5.9 (0.4)	6.1 (0.6)
	31-50	364	5.6	(0.2)	4.5 (0.3)	4.8 (0.3)	5.2 (0.4)	5.7 (0.4)	6.3 (0.5)	6.8 (0.5)	7.2 (0.6)
	51-70	467	5.9	(0.2)	4.2 (0.5)	4.5 (0.4)	5.1 (0.3)	5.8 (0.2)	6.6 (0.3)	7.4 (0.5)	7.9 (0.6)
	>70	215	5.7	(0.2)	4.7 (0.5)	4.9 (0.5)	5.3 (0.4)	5.8 (0.3)	6.3 (0.4)	6.8 (0.6)	7.1 (0.7)
	19+	1295		(0.1)	4.4 (0.3)	4.6 (0.2)	5.1 (0.2)	5.6 (0.1)	6.2 (0.2)	6.7 (0.3)	7.1 (0.4)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² No DRIs have been established for the percentage of total energy intake from polyunsaturated fats.

Table 7.6 Percentage of total energy intake from polyunsaturated fats, by DRI age-sex group, household population, Ontario, 2004^{1,2}

							Percen	tiles (and SE) of usua	al intake		
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)
Sex	Age (years)										
Both											
	1-3	644	3.7	(0.1)	2.8 (0.4)	3.0 (0.3)	3.3 (0.2)	3.7 (0.1)	4.1 (0.2)	4.4 (0.4)	4.7 (0.5)
	4-8	956	4.6	(0.1)	3.1 (0.3)	3.3 (0.2)	3.8 (0.2)	4.5 (0.1)	5.2 (0.2)	6.0 (0.3)	6.5 (0.5)
Male											
	9-13	589	4.9	(0.1)	4.0 (0.3)	4.2 (0.3)	4.5 (0.2)	4.9 (0.1)	5.3 (0.2)	5.7 (0.3)	5.9 (0.4)
	14-18	639	5.1	(0.1)	4.0 (0.1)	4.2 (0.1)	4.6 (0.1)	5.0 (0.1)	5.4 (0.1)	5.9 (0.2)	6.1 (0.2)
	19-30	481	5.5	(0.2)	3.4 (0.4)	3.8 (0.4)	4.5 (0.3)	5.4 (0.2)	6.4 (0.3)	7.4 (0.5)	8.0 (0.7)
	31-50	709	5.4	(0.1)	3.9 (0.4)	4.2 (0.4)	4.7 (0.3)	5.2 (0.2)	5.8 (0.3)	6.5 (0.5)	6.8 (0.7)
	51-70	758	5.8	(0.2)	3.7 (0.4)	4.1 (0.4)	4.8 (0.3)	5.7 (0.2)	6.7 (0.3)	7.9 (0.5)	8.6 (0.7)
	>70	734	5.5	(0.2)	3.5 (0.1)	3.9 (0.1)	4.5 (0.1)	5.4 (0.2)	6.3 (0.3)	7.4 (0.4)	8.1 (0.5)
	19+	2682	5.5	(0.1)	3.4 (0.2)	3.8 (0.1)	4.5 (0.1)	5.4 (0.1)	6.4 (0.1)	7.5 (0.2)	8.2 (0.3)
Female	:										
	9-13	585	5.2	(0.2)	3.9 (0.1)	4.2 (0.1)	4.6 (0.2)	5.2 (0.2)	5.8 (0.2)	6.5 (0.3)	6.9 (0.3)
	14-18	645	5.4	(0.1)	3.5 (0.4)	3.9 (0.4)	4.5 (0.2)	5.2 (0.2)	6.1 (0.3)	7.0 (0.5)	7.6 (0.7)
	19-30	514	5.3	(0.2)	4.1 (0.2)	4.3 (0.2)	4.7 (0.2)	5.2 (0.2)	5.8 (0.2)	6.4 (0.3)	6.8 (0.3)
	31-50	758	5.9	(0.2)	3.7 (0.4)	4.1 (0.3)	4.8 (0.2)	5.8 (0.2)	6.8 (0.3)	8.0 (0.5)	8.7 (0.6)
	51-70	955	5.6	(0.2)	4.3 (0.5)	4.5 (0.4)	5.0 (0.3)	5.6 (0.2)	6.3 (0.3)	6.9 (0.5)	7.3 (0.6)
	>70	1345	5.7	(0.2)	3.6 (0.3)	4.0 (0.3)	4.6 (0.2)	5.5 (0.2)	6.6 (0.2)	7.8 (0.5)	8.7 (0.7)
	19+	3572		(0.1)	3.9 (0.2)	4.2 (0.2)	4.8 (0.2)	5.6 (0.1)	6.5 (0.1)	7.4 (0.3)	8.0 (0.3)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² No DRIs have been established for the percentage of total energy intake from polyunsaturated fats.

Table 7.7 Percentage of total energy intake from polyunsaturated fats, by DRI age-sex group, household population, Manitoba, 2004^{1,2}

							Percent	iles (and SE) of usua	al intake		
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)
Sex	Age (years)										
Both											
	1-3	324	3.7	(0.1)	2.4 (0.3)	2.7 (0.3)	3.1 (0.2)	3.6 (0.1)	4.2 (0.2)	4.7 (0.3)	5.1 (0.4)
	4-8	425	4.7	(0.2)	3.3 (0.5)	3.6 (0.5)	4.1 (0.3)	4.7 (0.3)	5.4 (0.3)	6.1 (0.5)	6.6 (0.6)
Male											
	9-13	274	5.1	(0.2)	3.4 (0.2)	3.7 (0.2)	4.3 (0.2)	5.0 (0.2)	5.9 (0.3)	6.8 (0.4)	7.4 (0.5)
	14-18	297	5.1	(0.2)	4.8 (1.5) ^E	4.8 (1.2) ^E	4.9 (0.7)	5.0 (0.2)	5.1 (0.7)	5.2 (1.3) ^E	5.3 (1.7) ^E
	19-30	249	5.8	(0.2)	4.6 (0.2)	4.9 (0.2)	5.4 (0.2)	5.9 (0.3)	6.5 (0.3)	7.1 (0.3)	7.5 (0.4)
	31-50	309	5.3	(0.3)	3.6 (0.5)	3.9 (0.4)	4.3 (0.3)	5.0 (0.3)	5.9 (0.4)	6.9 (0.7)	7.5 (0.9)
	51-70	277	5.6	(0.2)	5.3 (1.7) ^E	5.3 (1.5) ^E	5.4 (0.9) ^E	5.5 (0.3)	5.6 (0.8)	5.7 (1.8) ^E	F
	>70	136	5.8	(0.3)	3.4 (0.3)	3.8 (0.3)	4.6 (0.3)	5.6 (0.4)	6.7 (0.4)	7.9 (0.5)	8.6 (0.6)
	19+	971	5.5	(0.1)	4.4 (0.4)	4.6 (0.3)	5.0 (0.2)	5.5 (0.2)	6.0 (0.2)	6.5 (0.4)	6.9 (0.6)
Female	•										
	9-13	265	5.0	(0.2)	3.9 (0.2)	4.1 (0.2)	4.5 (0.2)	4.9 (0.2)	5.3 (0.3)	5.8 (0.3)	6.1 (0.3)
	14-18	290	5.1	(0.2)	3.9 (0.4)	4.1 (0.4)	4.6 (0.3)	5.0 (0.2)	5.5 (0.3)	6.0 (0.5)	6.3 (0.6)
	19-30	197	5.0	(0.2)	4.2 (0.2)	4.4 (0.2)	4.7 (0.2)	5.0 (0.3)	5.3 (0.3)	5.6 (0.3)	5.8 (0.3)
	31-50	312	5.5	(0.2)	4.3 (0.2)	4.5 (0.2)	5.0 (0.2)	5.5 (0.2)	6.0 (0.3)	6.6 (0.3)	6.9 (0.3)
	51-70	312	5.7	(0.3)	3.2 (0.4)	3.6 (0.4)	4.4 (0.4)	5.4 (0.4)	6.7 (0.5)	8.1 (0.8)	9.0 (1.0)
	>70	239		(0.2)	3.3 (0.4)	3.7 (0.3)	4.3 (0.3)	5.0 (0.2)	5.8 (0.3)	6.6 (0.4)	7.1 (0.5)
	19+	1060		(0.1)	3.7 (0.2)	4.0 (0.2)	4.6 (0.2)	5.3 (0.1)	6.1 (0.2)	7.0 (0.3)	7.6 (0.4)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² No DRIs have been established for the percentage of total energy intake from polyunsaturated fats.

Table 7.8 Percentage of total energy intake from polyunsaturated fats, by DRI age-sex group, household population, Saskatchewan, 2004^{1,2}

						Percen	tiles (and SE) of usua	al intake		
		n	Mean (SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)
Sex	Age (years)									
Both										
	1-3	129	4.2 (0.2)	2.6 (0.3)	3.0 (0.3)	3.5 (0.3)	4.2 (0.3)	5.0 (0.4)	5.9 (0.6)	6.5 (0.7)
	4-8	213	5.0 (0.2)	3.7 (0.4)	3.9 (0.3)	4.4 (0.3)	4.9 (0.2)	5.5 (0.3)	6.2 (0.5)	6.6 (0.6)
Male										
	9-13	122	5.9 (0.9)	3.1 (0.5)	3.5 (0.5)	4.2 (0.6)	5.3 (0.7)	6.7 (1.0)	8.4 (1.4) ^E	9.7 (1.7) ^E
	14-18	150	5.5 (0.2)	5.4 (1.6) ^E	5.4 (1.4) ^E	5.5 (0.9)	5.6 (0.3)	5.8 (0.6)	5.9 (1.3) ^E	5.9 (1.8) ^E
	19-30	106	5.8 (0.4)	3.8 (0.7) ^E	4.1 (0.6)	4.8 (0.5)	5.6 (0.4)	6.6 (0.5)	7.6 (0.8)	8.3 (1.1)
	31-50	155	6.1 (0.3)	4.7 (0.7)	5.0 (0.6)	5.5 (0.5)	6.1 (0.4)	6.7 (0.5)	7.3 (0.7)	7.7 (0.9)
	51-70	122	6.3 (0.3)	6.5 (1.9) ^E	6.5 (1.6) ^E	6.6 (1.0)	6.7 (0.5)	6.8 (0.9)	6.9 (1.8) ^E	F
	>70	88	6.1 (0.3)	3.9 (0.4)	4.3 (0.4)	5.0 (0.3)	5.9 (0.4)	7.1 (0.5)	8.3 (0.7)	9.2 (0.9)
	19+	471	6.1 (0.2)	4.2 (0.4)	4.5 (0.4)	5.2 (0.3)	6.1 (0.3)	7.0 (0.3)	7.9 (0.4)	8.6 (0.6)
Female	2									
	9-13	103	4.9 (0.3)	4.0 (0.3)	4.2 (0.3)	4.5 (0.3)	4.9 (0.3)	5.4 (0.3)	5.8 (0.4)	6.0 (0.4)
	14-18	142	5.2 (0.3)	4.6 (0.4)	4.7 (0.4)	4.9 (0.4)	5.2 (0.4)	5.4 (0.4)	5.6 (0.5)	5.8 (0.5)
	19-30	111	5.6 (0.2)	4.9 (0.3)	5.1 (0.3)	5.4 (0.4)	5.7 (0.4)	6.1 (0.4)	6.5 (0.4)	6.7 (0.5)
	31-50	146	5.2 (0.3)	3.3 (0.7) ^E	3.6 (0.6) ^E	4.2 (0.5)	4.9 (0.4)	5.7 (0.4)	6.5 (0.6)	7.1 (0.7)
	51-70	184	6.3 (0.3)	4.5 (0.7)	4.8 (0.7)	5.4 (0.6)	6.1 (0.5)	7.0 (0.6)	7.9 (0.8)	8.5 (1.0)
	>70	143	5.8 (0.2)	4.2 (0.3)	4.5 (0.3)	5.1 (0.3)	5.8 (0.4)	6.6 (0.4)	7.4 (0.5)	7.9 (0.5)
	19+	584	5.7 (0.2)	4.2 (0.5)	4.4 (0.4)	4.9 (0.3)	5.5 (0.2)	6.2 (0.3)	6.9 (0.4)	7.3 (0.6)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² No DRIs have been established for the percentage of total energy intake from polyunsaturated fats.

Table 7.9 Percentage of total energy intake from polyunsaturated fats, by DRI age-sex group, household population, Alberta, 2004^{1,2}

							Percen	tiles (and SE) of usua	al intake		
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)
Sex	Age (years)										
Both											
	1-3	169	3.5	(0.2)	1.9 (0.3)	2.2 (0.2)	2.7 (0.2)	3.4 (0.2)	4.2 (0.3)	5.1 (0.4)	5.6 (0.5)
	4-8	281	4.6	(0.2)	3.1 (0.4)	3.4 (0.3)	3.9 (0.2)	4.5 (0.2)	5.2 (0.3)	5.9 (0.4)	6.3 (0.6)
Male											
	9-13	183	5.0	(0.2)	3.5 (0.4)	3.8 (0.3)	4.3 (0.3)	4.9 (0.2)	5.7 (0.3)	6.5 (0.5)	7.0 (0.6)
	14-18	187	5.2	(0.3)	3.8 (0.5)	4.1 (0.5)	4.5 (0.4)	5.1 (0.3)	5.9 (0.4)	6.7 (0.6)	7.2 (0.8)
	19-30	223	5.0	(0.2)	3.3 (0.5)	3.6 (0.4)	4.3 (0.3)	5.1 (0.3)	6.0 (0.4)	6.9 (0.6)	7.5 (0.7)
	31-50	229	5.8	(0.4)	4.4 (0.4)	4.7 (0.4)	5.2 (0.4)	5.9 (0.5)	6.6 (0.5)	7.2 (0.5)	7.6 (0.6)
	51-70	197	5.5	(0.3)	4.2 (0.6)	4.4 (0.5)	4.9 (0.4)	5.5 (0.3)	6.1 (0.5)	6.7 (0.7)	7.1 (1.0)
	>70	72	6.2	(0.5)	3.9 (0.7) ^E	4.4 (0.6)	5.1 (0.5)	6.1 (0.5)	7.3 (0.7)	8.6 (1.2)	9.5 (1.6) ^E
	19+	721	5.6	(0.2)	3.9 (0.5)	4.2 (0.4)	4.9 (0.3)	5.6 (0.2)	6.5 (0.3)	7.4 (0.5)	7.9 (0.7)
Female											
	9-13	165	4.8	(0.3)	3.3 (0.5)	3.6 (0.4)	4.1 (0.4)	4.7 (0.3)	5.4 (0.4)	6.2 (0.6)	6.7 (0.7)
	14-18	206	5.5	(0.3)	4.8 (0.3)	4.9 (0.3)	5.1 (0.3)	5.4 (0.3)	5.7 (0.3)	5.9 (0.3)	6.1 (0.4)
	19-30	191	5.2	(0.2)	4.4 (0.3)	4.5 (0.3)	4.8 (0.3)	5.2 (0.3)	5.6 (0.3)	6.0 (0.4)	6.2 (0.4)
	31-50	258	5.9	(0.3)	4.5 (0.2)	4.8 (0.3)	5.2 (0.3)	5.8 (0.3)	6.4 (0.3)	7.0 (0.4)	7.4 (0.4)
	51-70	249	5.6	(0.2)	4.7 (0.9) ^E	4.9 (0.8)	5.3 (0.5)	5.6 (0.3)	6.0 (0.4)	6.4 (0.8)	6.6 (1.1)
	>70	128		(0.6)	3.4 (0.7) ^E	3.7 (0.7) ^E	4.5 (0.6)	5.4 (0.7)	6.5 (0.9)	7.8 (1.2)	8.7 (1.5) ^E
	19+	826		(0.1)	4.0 (0.4)	4.3 (0.3)	4.9 (0.2)	5.6 (0.2)	6.3 (0.2)	7.1 (0.4)	7.6 (0.5)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² No DRIs have been established for the percentage of total energy intake from polyunsaturated fats.

Table 7.10 Percentage of total energy intake from polyunsaturated fats, by DRI age-sex group, household population, British Columbia, 2004^{1,2}

							Percen	tiles (and SE) of usua	al intake		
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)
Sex	Age (years)										
Both											
	1-3	192	4.2	(0.2)	3.0 (0.3)	3.2 (0.3)	3.5 (0.2)	4.0 (0.3)	4.5 (0.3)	5.0 (0.5)	5.3 (0.6)
	4-8	321	4.9	(0.2)	3.4 (0.2)	3.6 (0.2)	4.1 (0.2)	4.8 (0.3)	5.5 (0.4)	6.3 (0.5)	6.9 (0.6)
Male											
	9-13	226	5.3	(0.2)	4.0 (0.4)	4.2 (0.4)	4.6 (0.3)	5.1 (0.3)	5.7 (0.3)	6.2 (0.4)	6.5 (0.5)
	14-18	262	5.8	(0.3)	4.3 (0.3)	4.6 (0.3)	5.1 (0.3)	5.7 (0.3)	6.3 (0.4)	6.9 (0.4)	7.3 (0.4)
	19-30	197	5.6	(0.3)	4.6 (0.5)	4.8 (0.5)	5.2 (0.4)	5.7 (0.4)	6.3 (0.5)	6.8 (0.6)	7.2 (0.7)
	31-50	282	5.5	(0.2)	3.5 (0.5)	3.9 (0.5)	4.7 (0.4)	5.5 (0.3)	6.4 (0.4)	7.4 (0.6)	8.0 (0.7)
	51-70	234	5.5	(0.2)	4.0 (0.5)	4.3 (0.4)	4.8 (0.3)	5.4 (0.2)	6.1 (0.3)	6.8 (0.5)	7.3 (0.7)
	>70	119	5.7	(0.3)	4.3 (0.5)	4.6 (0.5)	5.1 (0.4)	5.7 (0.4)	6.3 (0.4)	7.0 (0.6)	7.4 (0.7)
	19+	832	5.6	(0.1)	3.8 (0.3)	4.2 (0.3)	4.8 (0.2)	5.5 (0.2)	6.4 (0.2)	7.2 (0.3)	7.7 (0.4)
Female	}										
	9-13	226	4.8	(0.2)	4.1 (0.4)	4.2 (0.4)	4.5 (0.3)	4.8 (0.3)	5.2 (0.3)	5.5 (0.4)	5.7 (0.5)
	14-18	242	5.3	(0.2)	4.5 (0.7)	4.7 (0.6)	5.0 (0.4)	5.4 (0.3)	5.8 (0.3)	6.2 (0.5)	6.5 (0.6)
	19-30	208	5.7	(0.3)	3.5 (0.5)	3.8 (0.5)	4.5 (0.4)	5.3 (0.4)	6.3 (0.5)	7.3 (0.7)	7.9 (0.9)
	31-50	263	5.8	(0.2)	4.2 (0.6)	4.6 (0.5)	5.2 (0.4)	5.9 (0.3)	6.7 (0.4)	7.4 (0.7)	7.9 (0.9)
	51-70	322	5.7	(0.2)	3.9 (0.5)	4.2 (0.4)	4.8 (0.3)	5.5 (0.3)	6.3 (0.3)	7.1 (0.5)	7.6 (0.6)
	>70	198	5.3	(0.2)	3.7 (0.4)	4.0 (0.4)	4.5 (0.3)	5.1 (0.3)	5.9 (0.4)	6.6 (0.5)	7.2 (0.7)
	19+	991	5.7	(0.1)	3.8 (0.2)	4.1 (0.2)	4.8 (0.2)	5.6 (0.2)	6.5 (0.2)	7.4 (0.3)	8.0 (0.4)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² No DRIs have been established for the percentage of total energy intake from polyunsaturated fats.

Table 7.11 Percentage of total energy intake from polyunsaturated fats, by DRI age-sex group, household population, Atlantic Region, 2004^{1,2}

										Percen	tiles (and	SE) of usu	al intake					
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	n (SE)	75th	n (SE)	90th	(SE)	95tl	n (SE)
Sex	Age (years)																	
Both																		
	1-3	348	4.1	(0.1)	2.7	(0.2)	3.0	(0.2)	3.4	(0.2)	3.9	(0.2)	4.5	(0.2)	5.1	(0.3)	5.5	(0.3)
	4-8	554	4.6	(0.1)	3.5	(0.1)	3.7	(0.1)	4.1	(0.1)	4.6	(0.1)	5.2	(0.1)	5.7	(0.2)	6.0	(0.2)
Male																		
	9-13	409	5.6	(0.3)	4.4	(0.4)	4.7	(0.4)	5.2	(0.3)	5.7	(0.4)	6.3	(0.5)	6.9	(0.7)	7.2	(0.9)
	14-18	414	5.3	(0.2)	3.9	(0.3)	4.2	(0.3)	4.7	(0.2)	5.2	(0.2)	5.8	(0.2)	6.3	(0.3)	6.7	(0.3)
	19-30	311	5.2	(0.2)	3.5	(0.3)	3.8	(0.3)	4.3	(0.3)	5.0	(0.3)	5.7	(0.3)	6.4	(0.4)	6.9	(0.5)
	31-50	489	5.6	(0.1)	3.9	(0.2)	4.2	(0.2)	4.8	(0.2)	5.5	(0.2)	6.2	(0.2)	7.0	(0.3)	7.4	(0.4)
	51-70	575	5.8	(0.2)	4.1	(0.2)	4.4	(0.2)	5.0	(0.2)	5.7	(0.2)	6.5	(0.2)	7.2	(0.3)	7.7	(0.3)
	>70	239	5.3	(0.2)	3.7	(0.3)	4.0	(0.3)	4.6	(0.2)	5.3	(0.2)	6.1	(0.3)	6.9	(0.4)	7.4	(0.5)
	19+	1614	5.5	(0.1)	3.8	(0.2)	4.1	(0.1)	4.7	(0.1)	5.4	(0.1)	6.2	(0.1)	7.0	(0.2)	7.5	(0.2)
Female																		
	9-13	355	5.1	(0.2)	3.7	(0.3)	4.0	(0.3)	4.5	(0.2)	5.0	(0.2)	5.7	(0.3)	6.4	(0.4)	6.9	(0.4)
	14-18	410	5.1	(0.2)	3.6	(0.4)	3.9	(0.3)	4.4	(0.3)	5.1	(0.3)	5.8	(0.3)	6.4	(0.4)	6.9	(0.5)
	19-30	384	5.9	(0.3)	4.9	(0.5)	5.1	(0.5)	5.5	(0.4)	5.9	(0.4)	6.4	(0.5)	6.8	(0.6)	7.0	(0.7)
	31-50	585	5.8	(0.2)	4.8	(0.4)	5.0	(0.4)	5.4	(0.3)	5.8	(0.2)	6.2	(0.3)	6.6	(0.4)	6.8	(0.5)
	51-70	711	6.2	(0.2)	4.5	(0.4)	4.8	(0.3)	5.4	(0.3)	6.1	(0.2)	7.0	(0.3)	7.7	(0.4)	8.2	(0.5)
	>70	342		(0.2)	3.7	(0.2)	4.0	(0.2)		(0.2)	5.2	(0.2)	6.1	(0.3)	6.9	(0.4)		(0.5)
	19+	2022		(0.1)		(0.2)	4.6	, ,		(0.1)		(0.1)		(0.2)		(0.2)		(0.3)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² No DRIs have been established for the percentage of total energy intake from polyunsaturated fats.

Table 7.12 Percentage of total energy intake from polyunsaturated fats, by DRI age-sex group, household population, Prairie Region, 2004^{1,2}

							Percen	tiles (and SE) of usua	ıl intake		
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)
ex	Age (years)										
Both											
	1-3	622	3.7	(0.1)	2.0 (0.3)	2.3 (0.2)	2.9 (0.2)	3.6 (0.2)	4.4 (0.2)	5.1 (0.3)	5.7 (0.4)
	4-8	919	4.7	(0.1)	3.0 (0.2)	3.3 (0.2)	3.9 (0.1)	4.6 (0.1)	5.4 (0.2)	6.2 (0.3)	6.8 (0.3)
I ale											
	9-13	579	5.2	(0.2)	3.4 (0.2)	3.7 (0.2)	4.3 (0.2)	5.0 (0.2)	5.9 (0.3)	6.9 (0.4)	7.6 (0.5)
	14-18	634	5.3	(0.2)	4.2 (0.2)	4.4 (0.2)	4.8 (0.2)	5.3 (0.2)	5.8 (0.2)	6.3 (0.2)	6.6 (0.3)
	19-30	578	5.3	(0.2)	4.1 (0.5)	4.4 (0.4)	4.8 (0.3)	5.4 (0.2)	6.0 (0.3)	6.6 (0.4)	7.0 (0.6)
	31-50	693	5.7	(0.3)	4.4 (0.6)	4.7 (0.5)	5.2 (0.4)	5.8 (0.3)	6.5 (0.4)	7.1 (0.6)	7.5 (0.7)
	51-70	596	5.7	(0.2)	4.0 (0.2)	4.3 (0.2)	4.9 (0.2)	5.7 (0.2)	6.5 (0.2)	7.3 (0.2)	7.8 (0.3)
	>70	296	6.1	(0.3)	3.7 (0.3)	4.1 (0.3)	4.9 (0.3)	5.9 (0.3)	7.1 (0.4)	8.4 (0.7)	9.4 (0.9)
	19+	2163	5.6	(0.1)	4.1 (0.3)	4.4 (0.3)	5.0 (0.2)	5.7 (0.2)	6.5 (0.2)	7.3 (0.3)	7.8 (0.4)
'emale											
	9-13	533	4.8	(0.2)	3.8 (0.4)	4.0 (0.3)	4.4 (0.3)	4.8 (0.2)	5.3 (0.2)	5.8 (0.3)	6.1 (0.4)
	14-18	638	5.3	(0.2)	4.7 (0.5)	4.8 (0.5)	5.1 (0.3)	5.3 (0.2)	5.6 (0.3)	5.9 (0.5)	6.0 (0.7)
	19-30	499	5.2	(0.2)	4.4 (0.5)	4.6 (0.4)	4.9 (0.3)	5.3 (0.2)	5.6 (0.3)	6.0 (0.5)	6.2 (0.6)
	31-50	716	5.7	(0.2)	4.3 (0.5)	4.5 (0.4)	5.0 (0.3)	5.6 (0.2)	6.2 (0.2)	6.8 (0.4)	7.2 (0.5)
	51-70	745	5.8	(0.2)	3.8 (0.3)	4.1 (0.3)	4.8 (0.2)	5.7 (0.2)	6.6 (0.3)	7.6 (0.4)	8.2 (0.6)
	>70	510	5.4	(0.3)	3.7 (0.4)	4.0 (0.4)	4.6 (0.3)	5.4 (0.3)	6.1 (0.4)	7.0 (0.6)	7.6 (0.7)
	19+	2470	5.6	(0.1)	3.9 (0.2)	4.2 (0.2)	4.8 (0.1)	5.5 (0.1)	6.3 (0.1)	7.1 (0.2)	7.6 (0.3)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² No DRIs have been established for the percentage of total energy intake from polyunsaturated fats.

Table 7.13 Percentage of total energy intake from polyunsaturated fats, by DRI age-sex group, household population, Canada excluding territories, 2004^{1,2}

						Percer	tiles (and SE) of usua	l intake		
		n	Mean (SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)
Sex	Age (years)									
Both										
	1-3	2117	3.8 (0.1)	2.4 (0.1)	2.7 (0.1)	3.1 (0.1)	3.7 (0.1)	4.3 (0.1)	5.0 (0.1)	5.4 (0.2)
	4-8	3235	4.7 (0.1)	3.3 (0.1)	3.6 (0.1)	4.0 (0.1)	4.6 (0.1)	5.2 (0.1)	5.9 (0.2)	6.4 (0.2)
Male										
	9-13	2080	5.1 (0.1)	3.7 (0.1)	4.0 (0.1)	4.5 (0.1)	5.1 (0.1)	5.7 (0.1)	6.5 (0.2)	6.9 (0.2)
	14-18	2288	5.2 (0.1)	4.0 (0.2)	4.2 (0.2)	4.7 (0.1)	5.1 (0.1)	5.6 (0.1)	6.1 (0.2)	6.4 (0.3)
	19-30	1804	5.5 (0.1)	4.0 (0.2)	4.3 (0.2)	4.8 (0.2)	5.5 (0.1)	6.2 (0.2)	6.9 (0.3)	7.4 (0.4)
	31-50	2596	5.4 (0.1)	3.7 (0.2)	4.0 (0.2)	4.6 (0.1)	5.4 (0.1)	6.2 (0.1)	7.0 (0.2)	7.5 (0.3)
	51-70	2550	5.7 (0.1)	4.0 (0.2)	4.4 (0.2)	4.9 (0.1)	5.7 (0.1)	6.5 (0.1)	7.3 (0.2)	7.8 (0.3)
	>70	1520	5.6 (0.1)	3.7 (0.1)	4.0 (0.1)	4.7 (0.1)	5.6 (0.1)	6.6 (0.2)	7.6 (0.3)	8.3 (0.3)
	19+	8470	5.5 (0.1)	3.8 (0.1)	4.1 (0.1)	4.7 (0.1)	5.5 (0.1)	6.3 (0.1)	7.2 (0.1)	7.8 (0.2)
Female										
	9-13	1980	5.1 (0.1)	3.9 (0.2)	4.1 (0.2)	4.5 (0.1)	5.1 (0.1)	5.7 (0.1)	6.3 (0.2)	6.7 (0.3)
	14-18	2256	5.4 (0.1)	4.1 (0.3)	4.4 (0.3)	4.8 (0.2)	5.4 (0.1)	6.0 (0.2)	6.6 (0.3)	6.9 (0.3)
	19-30	1854	5.4 (0.1)	4.1 (0.2)	4.3 (0.2)	4.7 (0.2)	5.3 (0.1)	5.8 (0.2)	6.4 (0.3)	6.8 (0.4)
	31-50	2686	5.8 (0.1)	4.2 (0.2)	4.5 (0.2)	5.0 (0.1)	5.7 (0.1)	6.5 (0.1)	7.2 (0.2)	7.7 (0.3)
	51-70	3200	5.8 (0.1)	3.9 (0.2)	4.3 (0.1)	4.9 (0.1)	5.7 (0.1)	6.6 (0.1)	7.5 (0.2)	8.0 (0.2)
	>70	2610	5.6 (0.1)	3.8 (0.2)	4.1 (0.2)	4.7 (0.1)	5.5 (0.1)	6.4 (0.2)	7.4 (0.2)	8.1 (0.3)
	19+	10350	5.7 (0.1)	4.0 (0.1)	4.3 (0.1)	4.9 (0.1)	5.6 (0.1)	6.4 (0.1)	7.2 (0.1)	7.7 (0.2)

Symbol Legend

- E Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² No DRIs have been established for the percentage of total energy intake from polyunsaturated fats.

8. Total dietary fibre (g/d): Usual intakes from food

Table 8.1 Total dietary fibre (g/d): Usual intakes from food, by DRI age-sex group, household population, Newfoundland and Labrador, 2004¹

									Percent	tiles (and	SE) of usu	al intake	,							
	n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	(SE)	75th	(SE)	90th	(SE)	95th	(SE)	AI^2	% >AI	(SE)
Age (years)																				
1-3	79	9.4	(0.8)	4.6	$(1.0)^E$	5.5	$(1.1)^E$	7.0	(1.1)	8.8	(1.1)	10.8	(1.2)	12.7	(1.3)	13.8	(1.4)	19	<3	
4-8	127	12.7	(0.7)	8.1	$(1.6)^E$	8.9	$(1.5)^{E}$	10.6	(1.3)	12.6	(1.1)	15.0	(1.2)	17.5	(1.6)	19.2	(2.0)	25	<3	
9-13	111	15.4	(1.0)	10.4	(1.7)	11.3	(1.5)	12.9	(1.4)	14.9	(1.4)	17.2	(1.7)	19.5	(2.2)	21.0	(2.6)	31	<3	
14-18	107	15.9	(1.1)	10.7	$(1.9)^E$	11.8	(1.7)	13.9	(1.5)	16.8	(1.5)	20.4	(2.1)	24.3	(3.3)	27.1	(4.4)	38	<3	
19-30	77	14.9	(1.1)	9.7	$(2.3)^E$	10.9	$(2.1)^{E}$	13.0	(1.7)	15.4	(1.4)	17.9	(1.5)	20.2	(2.0)	21.6	(2.5)	38	<3	
31-50	145	14.1	(1.0)	8.3	$(1.6)^E$	9.3	(1.4)	10.9	(1.2)	13.1	(1.2)	16.3	(1.6)	19.9	(2.6)	22.5	(3.3)	38	<3	
51-70	182	17.4	(1.2)	7.1	$(1.6)^{E}$	8.5	$(1.5)^{E}$	11.2	(1.4)	15.3	(1.3)	20.9	(2.6)	27.5	(3.8)	32.4	(4.7)	30	F	
>70	63	19.6	$(3.5)^{E}$	9.3	$(1.7)^E$	10.6	(1.7)	13.3	(1.9)	17.2	$(2.9)^{E}$	23.1	$(5.0)^{E}$	30.9	$(8.4)^{E}$	37.4	$(11.5)^{E}$	30	F	
19+	467	15.7	(0.6)	7.9	(0.7)	9.2	(0.7)	11.4	(0.7)	14.6	(0.7)	18.9	(0.9)	23.8	(1.3)	27.4	(1.8)			
9-13	96	12.8	(0.8)	8.5	(1.0)	9.3	(1.0)	10.8	(1.0)	12.9	(1.1)	15.4	(1.4)	17.9	(1.8)	19.5	(2.1)	26	<3	
14-18	105	12.2	(1.1)	6.9	$(1.5)^{E}$	7.8	$(1.5)^{E}$	9.6	(1.4)	11.9	(1.5)	14.7	(1.8)	17.4	(2.3)	19.1	(2.7)	26	<3	
19-30	91	11.4	(0.9)	6.9	(0.8)	7.6	(0.9)	8.8	(0.9)	10.3	(1.1)	12.0	(1.3)	13.8	(1.5)	15.1	(1.6)	25	<3	
31-50	167	13.1	(1.2)	7.0	$(1.3)^{E}$	8.2	(1.3)	10.3	(1.4)	13.4	(1.7)	17.7	(2.3)	22.6	(3.2)	26.0	(4.0)	25	F	
	198																		F	
			, ,																F	
			, ,								, ,		, ,				` '			
	1-3 4-8 9-13 14-18 19-30 31-50 51-70 >70 19+ 9-13 14-18 19-30	Age (years) 1-3 79 4-8 127 9-13 111 14-18 107 19-30 77 31-50 145 51-70 182 >70 63 19+ 467 9-13 96 14-18 105 19-30 91 31-50 167 51-70 198 >70 74	Age (years) 1-3 79 9.4 4-8 127 12.7 9-13 111 15.4 14-18 107 15.9 19-30 77 14.9 31-50 145 14.1 51-70 182 17.4 >70 63 19.6 19+ 467 15.7 9-13 96 12.8 14-18 105 12.2 19-30 91 11.4 31-50 167 13.1 51-70 198 13.9 >70 74 15.9	Age (years) 1-3 79 9.4 (0.8) 4-8 127 12.7 (0.7) 9-13 111 15.4 (1.0) 14-18 107 15.9 (1.1) 19-30 77 14.9 (1.1) 31-50 145 14.1 (1.0) 51-70 182 17.4 (1.2) >70 63 19.6 (3.5) E 19+ 467 15.7 (0.6) 9-13 96 12.8 (0.8) 14-18 105 12.2 (1.1) 19-30 91 11.4 (0.9) 31-50 167 13.1 (1.2) 51-70 198 13.9 (0.9) >70 74 15.9 (1.9)	Age (years) 1-3 79 9.4 (0.8) 4.6 4-8 127 12.7 (0.7) 8.1 9-13 111 15.4 (1.0) 10.4 14-18 107 15.9 (1.1) 10.7 19-30 77 14.9 (1.1) 9.7 31-50 145 14.1 (1.0) 8.3 51-70 182 17.4 (1.2) 7.1 >70 63 19.6 (3.5) ^E 9.3 19+ 467 15.7 (0.6) 7.9 9-13 96 12.8 (0.8) 8.5 14-18 105 12.2 (1.1) 6.9 19-30 91 11.4 (0.9) 6.9 31-50 167 13.1 (1.2) 7.0 51-70 198 13.9 (0.9) 7.2 >70 74 15.9 (1.9) 8.1	Age (years) 1-3 79 9.4 (0.8) 4.6 $(1.0)^E$ 9-13 111 15.4 (1.0) 10.4 (1.7) 14-18 107 15.9 (1.1) 10.7 $(1.9)^E$ 19-30 77 14.9 (1.1) 9.7 $(2.3)^E$ 31-50 145 14.1 (1.0) 8.3 $(1.6)^E$ 51-70 182 17.4 (1.2) 7.1 $(1.6)^E$ >70 63 19.6 $(3.5)^E$ 9.3 $(1.7)^E$ 19+ 467 15.7 (0.6) 7.9 (0.7) 9-13 96 12.8 (0.8) 8.5 (1.0) 14-18 105 12.2 (1.1) 6.9 $(1.5)^E$ 19-30 91 11.4 (0.9) 6.9 (0.8) 31-50 167 13.1 (1.2) 7.0 $(1.3)^E$ 51-70 198 13.9 (0.9) 7.2 $(1.9)^E$ >70 74 15.9 (1.9) 8.1 $(1.7)^E$	Age (years) Age (years) 1-3 79 9.4 (0.8) 4.6 $(1.0)^E$ 5.5 4-8 127 12.7 (0.7) 8.1 $(1.6)^E$ 8.9 9-13 111 15.4 (1.0) 10.4 (1.7) 11.3 14-18 107 15.9 (1.1) 10.7 $(1.9)^E$ 11.8 19-30 77 14.9 (1.1) 9.7 $(2.3)^E$ 10.9 31-50 145 14.1 (1.0) 8.3 $(1.6)^E$ 9.3 51-70 182 17.4 (1.2) 7.1 $(1.6)^E$ 8.5 >70 63 19.6 $(3.5)^E$ 9.3 $(1.7)^E$ 10.6 19+ 467 15.7 (0.6) 7.9 (0.7) 9.2 9-13 96 12.8 (0.8) 8.5 (1.0) 9.3 14-18 105 12.2 (1.1) 6.9 $(1.5)^E$ 7.8 19-30 91 11.4 (0.9) 6.9 (0.8) 7.6 31-50 167 13.1 (1.2) 7.0 $(1.3)^E$ 8.2 51-70 198 13.9 (0.9) 7.2 $(1.9)^E$ 8.4 >70 74 15.9 (1.9) 8.	Age (years) 4.6 $(1.0)^E$ 5.5 $(1.1)^E$ 1-3 79 9.4 (0.8) 4.6 $(1.0)^E$ 5.5 $(1.1)^E$ 4-8 127 12.7 (0.7) 8.1 $(1.6)^E$ 8.9 $(1.5)^E$ 9-13 111 15.4 (1.0) 10.4 (1.7) 11.3 (1.5) 14-18 107 15.9 (1.1) 10.7 $(1.9)^E$ 11.8 (1.7) 19-30 77 14.9 (1.1) 9.7 $(2.3)^E$ 10.9 $(2.1)^E$ 31-50 145 14.1 (1.0) 8.3 $(1.6)^E$ 9.3 (1.4) 51-70 182 17.4 (1.2) 7.1 $(1.6)^E$ 8.5 $(1.5)^E$ >70 63 19.6 $(3.5)^E$ 9.3 $(1.7)^E$ 10.6 (1.7) 19+ 467 15.7 (0.6) 7.9 (0.7) 9.2 (0.7) 9-13 96 12.8 (0.8) 8.5 (1.0) 9.3 (1.0) 14-18 105 12.2 (1.1) 6.9 $(1.5)^E$ 7.8 $(1.5)^E$ 19-30 91 11.4 (0.9) 6.9 (0.8) 7.6 (0.9) 31-50 167 13.1 (1.2) 7.0 $(1.3)^E$ 8.2 (1.3) 51-70 198 13.9 (0.9)	Age (years) 1-3	Age (years) 4.6 $(1.0)^E$ 5.5 $(1.1)^E$ 7.0 (1.1) 4-8 127 12.7 (0.7) 8.1 $(1.6)^E$ 5.5 $(1.1)^E$ 7.0 (1.1) 9-13 111 15.4 (1.0) 10.4 (1.7) 11.3 (1.5) 12.9 (1.4) 14-18 107 15.9 (1.1) 10.7 $(1.9)^E$ 11.8 (1.7) 13.9 (1.5) 19-30 77 14.9 (1.1) 9.7 $(2.3)^E$ 10.9 $(2.1)^E$ 13.0 (1.7) 31-50 145 14.1 (1.0) 8.3 $(1.6)^E$ 9.3 (1.4) 10.9 (1.2) 51-70 182 17.4 (1.2) 7.1 $(1.6)^E$ 8.5 $(1.5)^E$ 11.2 (1.4) >70 63 19.6 $(3.5)^E$ 9.3 $(1.7)^E$ 10.6 (1.7) 13.3 (1.9) 19+ 467 15.7 (0.6) 7.9 (0.7) 9.2 (0.7) 11.4 (0.7) 9-13 96 12.8 (0.8) 8.5 (1.0) 9.3 (1.0) 10.8 (1.0) 9-14 167 13.1 (1.2) 7.0 $(1.3)^E$ 7.8 $(1.5)^E$ 9.6 (1.4) 19-30 91 11.4 (0.9) 6.9 (0.8) 7.6 (0.9) 8.8 (0.9) 31-50	Age (years) 1-3	Age (years) 1-3	Age (years) 1-3	Age (years) 1-3	Age (years) 1-3	Age (years) 1.3	Age (years) Age (years) 1-3 79 9.4 (0.8) 4.6 $(1.0)^E$ 5.5 $(1.1)^E$ 7.0 (1.1) 8.8 (1.1) 10.8 (1.2) 12.7 (1.3) 13.8 4-8 127 12.7 (0.7) 8.1 $(1.6)^E$ 8.9 $(1.5)^E$ 10.6 (1.3) 12.6 (1.1) 15.0 (1.2) 17.5 (1.6) 19.2 9-13 111 15.4 (1.0) 10.4 (1.7) 11.3 (1.5) 12.9 (1.4) 14.9 (1.4) 17.2 (1.7) 19.5 (2.2) 21.0 14-18 107 15.9 (1.1) 10.7 $(1.9)^E$ 11.8 (1.7) 13.9 (1.5) 16.8 (1.5) 20.4 (2.1) 24.3 (3.3) 27.1 19-30 77 14.9 (1.1) 9.7 $(2.3)^E$ 10.9 $(2.1)^E$ 13.0 (1.7) 15.4 (1.4) 17.9 (1.5) 20.2 (2.0) 21.6 31-50 145 14.1 (1.0) 8.3 $(1.6)^E$ 9.3 (1.4) 10.9 (1.2) 13.1 (1.2) 16.3 (1.6) 19.9 (2.6) 22.5 51-70 182 17.4 $(1.6)^E$ 8.5 $(1.5)^E$ 11.2 (1.4) 15.3 (1.3) 20.9 $(2.$	Age (years) 1.3	Age (years) 1-3	Age (years) 1-3

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.

Table 8.2 Total dietary fibre (g/d): Usual intakes from food, by DRI age-sex group, household population, Prince Edward Island, 2004¹

										Percenti	les (and SE	E) of usu	ıal intake								
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th ((SE)	75th	(SE)	90th	(SE)	95th	(SE)	AI^2	% >AI	(SE)
Sex	Age (years)																				
Both																					
	1-3	58	10.3	(0.7)	5.5	(0.9)	6.5	(0.9)	8.3	(0.9)	10.2 (1.0)	12.3	(1.2)	14.2	(1.4)	15.3	(1.6)	19	<3	
	4-8	110	12.2	(0.6)	7.8	(1.0)	8.7	(0.9)	10.3	(0.7)	12.1 (0.7)	14.0	(0.9)	15.8	(1.3)	16.8	(1.5)	25	<3	
I ale																					
	9-13	95	15.4	(1.0)	12.8	(1.8)	13.3	(1.7)	14.1	(1.5)	15.1 (1.4)	16.0	(1.5)	16.9	(1.8)	17.4	(2.1)	31	<3	
	14-18	87	17.2	(1.1)	8.7	$(1.8)^E$	10.5	(1.6)	13.7	(1.3)	17.7 (1.4)	22.2	(1.9)	26.9	(2.9)	30.0	(3.7)	38	<3	
	19-30	70	20.0	(1.9)	11.8	$(3.6)^{E}$	13.5	$(3.4)^{E}$	16.7	$(2.9)^{E}$	20.6 (2.7)	24.5	(2.8)	28.3	(3.5)	30.7	(4.1)	38	<3	
	31-50	109	17.5	(1.3)	10.3	$(2.0)^E$	11.5	$(2.0)^E$	13.9	(1.9)	17.3 (1.9)	21.1	(2.2)	25.0	(2.8)	27.7	(3.4)	38	<3	
	51-70	128	18.2	(0.9)	12.7	$(2.1)^E$	13.9	(1.8)	15.9	(1.4)	18.4 (1.3)	21.0	(1.7)	23.6	(2.5)	25.2	(3.1)	30	F	
	>70	65	16.6	(0.9)	10.5	(1.3)	11.4	(1.3)	13.4	(1.3)	16.7 (1.2)	20.6	(1.5)	23.4	(1.7)	25.0	(1.9)	30	<3	
	19+	372	18.2	(0.6)	10.7	(1.0)	12.1	(1.1)	14.9	(1.1)	18.4	1.0)	22.1	(1.1)	25.7	(1.3)	28.0	(1.5)			
'emale																					
	9-13	75	13.3	(1.0)	8.9	(1.2)	9.7	(1.3)	11.2	(1.4)	12.9 (1.4)	14.8	(1.4)	16.5	(1.4)	17.7	(1.4)	26	<3	
	14-18	81	13.9	(0.9)	6.7	(1.1)	8.1	(1.0)	10.6	(1.0)	13.7	1.1)	17.1	(1.3)	20.0	(1.7)	22.1	(2.1)	26	F	
	19-30	101	14.3	(1.4)	9.0	$(1.6)^{E}$	9.9	(1.5)	11.6	(1.4)	13.7 (1.4)	16.2	(1.8)	18.7	(2.6)	20.4	(3.2)	25	F	
	31-50	116	15.1	(1.2)	6.4	(0.8)	7.8	(0.9)	10.5	(1.0)	14.3 (1.2)	18.8	(1.6)	23.5	(2.0)	26.7	(2.5)	25	F	
	51-70	146	15.7	(0.7)	8.1	(1.2)	9.5	(1.1)	11.9	(1.0)	15.0 (1.0)	18.7	(1.3)	22.6	(1.8)	25.3	(2.2)	21	F	
	>70	94		(0.7)		(1.1)		(1.0)		(0.9)	12.0 (14.9		18.0		20.2		21	F	
	19+	457		(0.6)		(0.5)		(0.5)		(0.5)	14.3	,	17.8	,	21.7	, ,	24.4				

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>

Footnotes

F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.

Table 8.3 Total dietary fibre (g/d): Usual intakes from food, by DRI age-sex group, household population, Nova Scotia, 2004¹

										Percentil	les (and S	SE) of usi	ual intake	:							
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	(SE)	75th	(SE)	90th	(SE)	95th	(SE)	AI^2	% >AI	(SE)
Sex	Age (years)																				
Both																					
	1-3	112	10.6	(0.8)	5.8	$(1.4)^E$	6.6	$(1.3)^E$	8.1	(1.1)	10.2	(1.0)	12.6	(1.1)	15.1	(1.8)	16.8	(2.4)	19	F	
	4-8	177	13.4	(0.8)	8.5	$(1.4)^E$	9.4	(1.3)	11.0	(1.1)	13.0	(1.0)	15.5	(1.2)	18.0	(1.8)	19.6	(2.3)	25	<3	
Male																					
	9-13	111	16.3	(1.6)	10.8	(1.8)	11.7	(1.6)	13.5	(1.5)	15.8	(1.6)	18.4	(2.1)	21.1	(3.0)	22.9	(3.7)	31	<3	
	14-18	113	15.2	(1.1)	9.2	$(2.0)^{E}$	10.2	$(1.9)^{E}$	12.3	(1.6)	15.2	(1.5)	18.4	(1.8)	21.7	(2.5)	23.9	(3.2)	38	<3	
	19-30	91	19.2	(1.8)	9.4	$(2.4)^{E}$	11.0	$(2.2)^{E}$	14.1	(1.9)	18.2	(2.0)	23.3	(3.0)	28.4	(4.4)	31.6	$(5.5)^{E}$	38	F	
	31-50	101	18.2	(1.2)	10.3	$(2.0)^{E}$	11.6	(1.9)	14.2	(1.6)	17.3	(1.5)	20.8	(1.8)	24.4	(2.4)	26.6	(2.9)	38	<3	
	51-70	134	21.4	(1.7)	13.1	$(2.5)^E$	14.7	(2.3)	17.5	(2.1)	21.2	(2.1)	25.2	(2.6)	29.3	(3.5)	32.0	(4.2)	30	F	
	>70	56	15.1	(1.1)	7.7	(1.2)	8.7	(1.4)	11.0	(1.5)	14.2	(1.5)	17.5	(1.6)	20.7	(2.1)	22.9	(2.6)	30	<3	
	19+	382	19.1	(0.7)	10.3	(1.2)	11.8	(1.1)	14.5	(1.0)	18.2	(0.9)	22.7	(1.2)	27.3	(1.8)	30.3	(2.3)			
Female	;																				
	9-13	105	13.1	(0.9)	9.3	(0.8)	10.0	(0.9)	11.3	(1.1)	12.9	(1.3)	14.8	(1.4)	16.7	(1.6)	17.9	(1.7)	26	<3	
	14-18	120	12.2	(1.2)	6.0	$(1.8)^{E}$	7.2	$(1.7)^{E}$	9.4	(1.4)	12.0	(1.3)	14.8	(1.4)	17.7	(1.7)	19.6	(2.1)	26	<3	
	19-30	91	14.2	(0.8)	9.7	(1.5)	10.6	(1.4)	12.3	(1.1)	14.2	(1.0)	16.2	(1.3)	18.3	(1.9)	19.7	(2.4)	25	F	
	31-50	159	16.1	(0.9)	7.4	$(1.3)^{E}$	8.9	(1.3)	11.8	(1.2)	15.2	(1.3)	19.2	(1.7)	23.5	(2.3)	26.4	(2.8)	25	F	
	51-70	174	15.6	(0.7)	8.3	$(1.5)^{E}$	9.6	(1.3)	12.0	(1.0)	15.0	(0.8)	18.3	(1.1)	21.7	(1.8)	24.2	(2.5)	21	F	
	>70	80		(1.2)		(1.0)		(1.2)		$(1.8)^{E}$		(1.9)		(2.2)	21.8			(3.6)	21	F	
	19+	504		(0.5)		(0.6)		(0.6)		(0.6)		(0.6)		(0.7)	22.3	,		(1.2)			

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.

Table 8.4 Total dietary fibre (g/d): Usual intakes from food, by DRI age-sex group, household population, New Brunswick, 2004¹

										Percentil	es (and S	E) of usu	aal intake)							
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	(SE)	75th	(SE)	90th	(SE)	95th	(SE)	AI^2	% >AI	(SE
Sex	Age (years)																				
Both																					
	1-3	99	9.9	(0.5)	5.7	(0.9)	6.5	(0.8)	7.9	(0.7)	9.9	(0.7)	12.3	(1.0)	14.7	(1.5)	16.5	(1.9)	19	F	
	4-8	140	13.7	(0.8)	9.0	(1.3)	9.9	(1.1)	11.5	(0.9)	13.4	(0.9)	15.6	(1.3)	17.9	(1.9)	19.4	(2.4)	25	<3	
Male																					
	9-13	92	14.2	(0.9)	9.7	(1.4)	10.4	(1.3)	11.9	(1.3)	13.8	(1.3)	15.9	(1.5)	17.8	(1.7)	19.0	(2.0)	31	<3	
	14-18	107	18.4	(1.0)	12.1	$(2.1)^E$	13.4	(1.8)	15.7	(1.5)	18.6	(1.3)	21.8	(1.6)	25.0	(2.3)	27.0	(2.9)	38	<3	
	19-30	73	21.6	(3.1)	10.8	$(3.0)^{E}$	12.8	$(2.9)^{E}$	16.6	(2.7)	21.6	(2.9)	27.4	(3.8)	33.2	(5.1)	37.0	(6.1)	38	F	
	31-50	134	17.8	(1.5)	10.4	$(2.2)^{E}$	11.4	$(2.1)^E$	13.4	(1.9)	16.1	(1.9)	19.4	(2.4)	22.9	(3.5)	25.3	(4.7) ^E	38	<3	
	51-70	131	16.4	(1.4)	10.5	$(2.3)^E$	11.6	$(2.2)^E$	13.5	(2.0)	16.0	(1.9)	18.9	(2.2)	21.9	(3.1)	23.9	$(4.1)^{E}$	30	F	
	>70	55	19.4	(2.5)	7.6	$(2.2)^{E}$	9.1	$(2.1)^E$	12.2	$(2.1)^E$	16.5	(2.3)	22.9	(3.3)	32.0	$(6.0)^{E}$	40.0	$(9.2)^{E}$	30	F	
	19+	393	18.3	(1.0)	8.4	(1.1)	9.9	(1.2)	13.0	(1.2)	17.4	(1.2)	22.9	(1.5)	29.1	(2.4)	33.8	(3.4)			
Female	:																				
	9-13	79	13.3	(0.8)	9.2	(1.4)	10.1	(1.3)	11.7	(1.0)	13.6	(1.0)	15.6	(1.2)	17.7	(1.6)	19.1	(2.0)	26	<3	
	14-18	104	13.5	(0.9)	8.7	$(1.6)^{E}$	9.5	(1.5)	11.1	(1.2)	13.2	(1.1)	15.5	(1.4)	17.9	(1.9)	19.5	(2.4)	26	<3	
	19-30	101	13.6	(0.9)	8.0	$(1.4)^{E}$	9.1	(1.3)	11.1	(1.2)	13.7	(1.3)	16.7	(1.6)	19.8	(2.1)	21.8	(2.5)	25	F	
	31-50	143	15.2	(1.1)	8.0	$(1.7)^{E}$	9.4	(1.5)	12.0	(1.2)	14.9	(1.2)	18.1	(1.5)	21.2	(2.2)	23.2	(2.6)	25	F	
	51-70	193	14.7	(0.8)	7.8	(1.1)	8.9	(1.0)	11.0	(0.9)	13.7	(1.0)	16.9	(1.2)	20.5	(1.7)	23.1	(2.2)	21	F	
	>70	94	14.7	(1.2)	7.1	$(1.3)^{E}$		(1.3)	10.5	(1.3)	13.6	(1.5)	17.3	(2.0)	21.3	(2.7)	24.0	(3.3)	21	F	
	19+	531		(0.5)		(0.5)		(0.5)		(0.5)	14.1			(0.7)		(0.9)		(1.1)			

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>

Footnotes

F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.

Table 8.5 Total dietary fibre (g/d): Usual intakes from food, by DRI age-sex group, household population, Quebec, 2004¹

										Percenti	les (and SE) of us	ual intake							
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th (SE)	75th ((SE)	90th (SE)	95th	(SE)	AI^2	% >AI	(SE)
Sex	Age (years)																		
Both																			
	1-3	311	10.9	(0.5)	5.9	(0.8)	6.8	(0.8)	8.5	(0.7)	10.6 (0.7)	12.8 ((0.8)	5.1 (1.0)	16.6	(1.1)	19	F	
	4-8	485	13.8	(0.5)	9.9	(1.1)	10.7	(1.0)	12.2	(0.7)	13.9 (0.6)	15.8 ((0.8)	7.7 (1.2)	18.9	(1.6)	25	<3	
Male																			
	9-13	277	16.5	(0.9)	9.7	(1.1)	10.9	(1.1)	13.2	(1.0)	16.2 (1.1)	19.7 ((1.4)	3.3 (1.9)	25.7	(2.3)	31	<3	
	14-18	339	19.1	(0.9)	10.9	(1.3)	12.5	(1.3)	15.6	(1.2)	19.6 (1.2)	24.5 ((1.9)	0.2 (3.8)	34.4	$(6.1)^{E}$	38	F	
	19-30	237	20.0	(1.1)	13.8	(2.1)	15.0	(1.9)	17.3	(1.5)	20.2 (1.4)	23.4 ((1.8)	6.6 (2.6)	28.7	(3.3)	38	<3	
	31-50	423	19.5	(1.0)	10.4	(1.3)	12.0	(1.2)	15.0	(1.1)	18.7 (1.1)	23.5 ((1.5)	9.1 (2.5)	33.3	(3.3)	38	F	
	51-70	387	17.1	(0.6)	10.1	(0.9)	11.3	(0.8)	13.5	(0.8)	16.6 (0.8)	20.3 ((0.9)	3.7 (1.2)	26.0	(1.5)	30	F	
	>70	132	15.5	(1.1)	8.9	$(1.8)^{E}$	10.1	$(1.7)^{E}$	12.4	(1.6)	15.2 (1.5)	18.5 ((1.7)	2.1 (2.2)	24.5	(2.7)	30	F	
	19+	1179	18.6	(0.5)	10.6	(0.6)	12.0	(0.6)	14.7	(0.6)	18.2 (0.7)	22.3 ((0.8)	6.8 (1.2)	29.9	(1.5)			
Female	!																		
	9-13	281	14.8	(0.7)	9.2	(1.1)	10.1	(1.0)	11.8	(0.9)	14.2 (1.0)	17.0 ((1.2)	0.0 (1.7)	21.9	(2.1)	26	F	
	14-18	321	14.6	(0.6)	8.6	(0.8)	9.7	(0.8)	11.9	(0.7)	14.6 (0.8)	17.8 ((1.0)	1.0 (1.3)	23.1	(1.6)	26	F	
	19-30	249	16.6	(0.9)	10.0	(1.4)	11.2	(1.3)	13.5	(1.1)	16.4 (1.1)	19.3 ((1.4)	2.2 (1.9)	24.0	(2.4)	25	F	
	31-50	364	15.3	(0.8)	9.1	(1.1)	10.1	(1.0)	11.9	(1.0)	14.7 (1.0)	18.5 ((1.3)	2.4 (2.0)	24.9	(2.5)	25	F	
	51-70	467	17.4	(0.7)	8.6	(0.9)	10.2	(0.9)	13.1	(0.8)	16.9 (0.8)	21.4 ((1.0) 2	6.4 (1.6)	30.0	(2.2)	21	26.9	(4.8)
	>70	215	14.0	(0.7)	7.8	(1.1)	9.0	(1.0)	11.1	(0.9)	13.6 (0.9)	16.4 ((1.1) 1	9.5 (1.5)	21.7	(1.8)	21	F	
	19+	1295		(0.4)		(0.5)		(0.5)		(0.5)	15.5 (0.5)	19.5 (3.6 (0.9)		(1.1)			

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.

Table 8.6 Total dietary fibre (g/d): Usual intakes from food, by DRI age-sex group, household population, Ontario, 2004¹

									Percent	les (and SE) of usu	ual intake				
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	AI^2	% >AI (SE)
Sex	Age (years)														
Both															
	1-3	644	10.1	(0.3)	5.5	(0.7)	6.4	(0.6)	8.0 (0.4)	10.0 (0.3)	12.3 (0.4)	14.6 (0.7)	16.2 (1.0)	19	F
	4-8	956	13.5	(0.3)	8.7	(0.7)	9.6	(0.6)	11.3 (0.5)	13.4 (0.3)	15.8 (0.4)	18.3 (0.8)	19.9 (1.1)	25	<3
I ale															
	9-13	589	16.2	(0.5)	9.3	(0.8)	10.4	(0.7)	12.6 (0.7)	15.5 (0.6)	19.2 (0.7)	23.3 (1.2)	26.2 (1.7)	31	F
	14-18	639	17.4	(0.5)	11.7	(1.8)	12.8	(1.5)	14.9 (1.1)	17.4 (0.6)	20.2 (0.9)	23.3 (1.7)	25.3 (2.4)	38	<3
	19-30	481	19.0	(0.8)	11.4	$(1.9)^E$	12.8	(1.7)	15.4 (1.2)	18.8 (0.9)	22.7 (1.4)	26.6 (2.5)	29.3 (3.3)	38	<3
	31-50	709	18.4	(0.7)	10.5	(1.6)	11.8	(1.4)	14.3 (1.0)	17.5 (0.8)	21.4 (1.1)	25.7 (2.0)	28.6 (2.7)	38	<3
	51-70	758	19.6	(0.6)	9.6	(0.8)	11.1	(0.7)	14.0 (0.7)	18.2 (0.6)	23.7 (0.8)	29.7 (1.4)	33.9 (2.1)	30	9.5 (2.3)
	>70	734	17.7	(0.5)	8.6	(0.7)	10.0	(0.6)	12.6 (0.6)	16.4 (0.6)	21.4 (0.8)	26.7 (1.1)	30.3 (1.5)	30	5.3 (1.5)
	19+	2682	18.8	(0.4)	9.8	(0.5)	11.2	(0.5)	14.0 (0.4)	17.9 (0.4)	22.6 (0.6)	27.7 (0.9)	31.3 (1.2)		
emale															
	9-13	585	14.0	(0.4)	7.4	(0.7)	8.6	(0.6)	10.7 (0.5)	13.5 (0.4)	16.7 (0.6)	20.0 (1.0)	22.2 (1.3)	26	F
	14-18	645	14.8	(0.5)	8.1	(0.9)	9.3	(0.8)	11.5 (0.6)	14.4 (0.5)	18.0 (0.7)	21.8 (1.2)	24.5 (1.6)	26	F
	19-30	514	13.5	(0.5)	6.2	(0.6)	7.3	(0.6)	9.5 (0.5)	12.3 (0.5)	16.0 (0.7)	19.9 (1.0)	22.6 (1.2)	25	F
	31-50	758	16.3	(0.7)	7.4	(0.7)	8.8	(0.6)	11.5 (0.5)	15.1 (0.6)	19.9 (0.9)	25.7 (1.7)	30.2 (2.5)	25	11.2 (2.9)
	51-70	955	16.5	(0.5)	7.8	(0.7)	9.3	(0.6)	12.0 (0.6)	15.6 (0.6)	20.0 (0.7)	25.1 (1.2)	28.8 (1.6)	21	21.0 (3.0)
	>70	1345	15.6			(0.5)		(0.5)	11.4 (0.4)	14.6 (0.4)	18.5 (0.6)	22.8 (0.9)	25.8 (1.2)	21	14.8 (2.3)
	19+	3572	15.7			(0.2)		(0.2)	11.2 (0.2)	14.6 (0.3)	19.0 (0.4)	24.1 (0.7)	27.7 (1.0)		110 (210)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.

Table 8.7 Total dietary fibre (g/d): Usual intakes from food, by DRI age-sex group, household population, Manitoba, 2004¹

										Percent	iles (and SE) of usu	ıal intake							
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th (SE)	75th	(SE)	90th (SI	E) 95tl	n (SE)	AI^2	% >AI	(SE)
Sex	Age (years)																		
Both																			
	1-3	324	9.6	(0.4)	4.7	$(0.8)^{E}$	5.7	(0.7)	7.5	(0.6)	9.6 (0.5)	12.0	(0.7)	14.5 (0.	9) 16.0	(1.1)	19	<3	
	4-8	425	11.7	(0.5)	7.0	(0.4)	7.8	(0.4)	9.3	(0.4)	11.2 (0.5)	13.4	(0.6)	15.9 (0.	8) 17.7	(1.0)	25	<3	
Male																			
	9-13	274	15.2	(0.7)	8.3	(1.2)	9.5	(1.0)	11.8	(0.8)	14.7 (0.8)	17.9	(1.2)	21.0 (1.	7) 22.9	(2.1)	31	<3	
	14-18	297	17.8	(0.8)	9.0	(0.9)	10.5	(0.9)	13.3	(0.8)	16.9 (0.9)	21.2	(1.2)	25.6 (1.)	7) 28.5	(2.2)	38	<3	
	19-30	249	19.2	(1.5)	10.8	(1.0)	12.2	(1.1)	15.0	(1.3)	18.6 (1.6)	22.8	(2.0)	27.1 (2	<i>3</i> 0.0	(2.7)	38	<3	
	31-50	309	16.5	(1.1)	9.4	$(1.8)^E$	10.7	(1.7)	13.2	(1.4)	16.1 (1.2)	19.2	(1.6)	22.5 (2.4)	4) 24.6	(3.0)	38	<3	
	51-70	277	18.4	(0.9)	8.0	(1.2)	9.6	(1.2)	12.7	(1.1)	17.0 (1.0)	22.4	(2.3)	28.3 (6.	9) ^E	,	30	F	
	>70	136	18.0	(1.2)	10.7	$(2.1)^E$	12.0	(1.8)	14.4	(1.5)	17.4 (1.4)	20.8	(2.0)	24.2 (3.	<i>26.4</i>	(3.8)	30	F	
	19+	971	17.8	(0.6)	9.9	(1.1)	11.2	(1.0)	13.8	(0.8)	17.2 (0.7)	20.7	(0.9)	24.6 (1	5) 27. 4	(2.0)			
Female																			
	9-13	265	13.1	(0.7)	8.8	(1.4)	9.6	(1.2)	11.0	(1.0)	12.6 (0.8)	14.4	(1.1)	16.2 (1.)	7) 17.3	(2.1)	26	<3	
	14-18	290	13.5	(0.8)	6.7	$(1.2)^{E}$	7.8	(1.2)	9.8	(1.1)	12.6 (0.9)	16.0	(1.5)	19.7 (2	<i>l</i>) 22.1	(2.5)	26	F	
	19-30	197	14.1	(0.8)	7.8	(1.3)	8.9	(1.2)	11.1	(1.0)	13.9 (1.0)	17.2	(1.3)	20.4 (1.5)	9) 22.6	(2.3)	25	F	
	31-50	312	15.0	(0.6)	8.8	(1.1)	10.0	(1.0)	12.2	(0.8)	14.6 (0.7)	17.5	(1.0)	20.9 (1.6	5) 23. 3	(2.1)	25	F	
	51-70	312	16.8	(0.9)	8.9	(1.3)		(1.3)	12.6	(1.1)	15.8 (1.0)	19.6		23.6 (1.6		(2.3)	21	18.5	(5.9)
	>70	239		(0.9)		(1.0)		(1.0)	11.2		14.8 (0.8)	19.4		24.6 (1.)		(2.5)	21		(4.8)
	19+	1060		(0.4)		(0.4)		(0.4)	11.3	, ,	14.6 (0.4)	18.6	,	23.1 (0.)	•	(1.1)			()
	1/1	1000	15.7	(0.7)	7.0	(0.7)	0.7	(0.7)	11.5	(0.7)	17.0 (0.7)	10.0	(0.0)	23.1 (0.,	20.2	(1.1)			

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.

Table 8.8 Total dietary fibre (g/d): Usual intakes from food, by DRI age-sex group, household population, Saskatchewan, 2004¹

									Percen	tiles (and S	E) of usi	ual intake)							
	n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	(SE)	75th	(SE)	90th	(SE)	95th	(SE)	AI^2	% >AI	(SE)
Age (years)																				
1-3	129	9.8	(0.5)	5.5	(0.9)	6.4	(0.8)	8.0	(0.7)	9.9	(0.7)	12.0	(0.8)	14.1	(1.0)	15.5	(1.2)	19	<3	
4-8	213	13.2	(0.6)	8.4	(0.9)	9.3	(0.8)	11.0	(0.7)	13.0	(0.7)	15.4	(0.8)	17.7	(1.2)	19.2	(1.4)	25	<3	
9-13	122	16.2	(1.3)	12.3	(1.7)	13.2	(1.6)	14.9	(1.4)	16.9	(1.4)	19.2	(1.7)	21.5	(2.3)	23.0	(2.7)	31	<3	
14-18	150	19.4	(1.5)	11.4	$(1.9)^E$	12.9	(1.8)	15.6	(1.5)	19.2	(1.5)	23.3	(2.2)	27.6	(3.2)	30.4	(4.0)	38	F	
19-30	106	17.2	(1.5)	8.0	$(1.8)^E$	9.5	$(1.8)^{E}$	12.3	(1.6)	16.2	(1.7)	21.1	(2.4)	26.6	(3.7)	30.6	(4.9)	38	F	
31-50	155	18.7	(1.4)	8.5	$(2.5)^E$	10.4	$(2.2)^{E}$	13.8	(1.8)	18.0	(1.6)	23.3	(2.2)	29.5	(3.7)	33.7	(4.9)	38	F	
51-70	122	16.7	(1.1)	9.1	$(1.8)^E$	10.5	(1.5)	12.9	(1.2)	15.9	(1.4)	19.2	(2.1)	22.6	(3.1)	24.9	(3.8)	30	F	
>70	88	20.9	(1.3)	9.9	(1.5)	11.5	(1.5)	14.6	(1.3)	18.8	(1.3)	24.2	(2.1)	30.2	(3.4)	34.6	(4.5)	30	F	
19+	471	18.1	(0.7)	8.4	(0.9)	10.1	(0.8)	13.1	(0.8)	17.1	(0.8)	21.8	(1.2)	27.2	(1.7)	31.0	(2.2)			
9-13	103	16.0	(1.0)	10.3	(1.2)	11.3	(1.2)	13.2	(1.1)	15.6	(1.2)	18.6	(1.5)	21.7	(2.0)	23.8	(2.4)	26	F	
14-18	142	13.0	(0.7)	7.6	(0.9)	8.7	(0.8)	10.6	(0.7)	12.8	(0.8)	15.4	(1.0)	18.4	(1.4)	20.4	(1.7)	26	<3	
19-30	111	13.1	(1.0)	6.5	$(1.4)^E$	7.5	$(1.3)^{E}$	9.4	(1.1)	12.1	(1.2)	15.4	(1.8)	19.2	(2.9)	21.8	$(3.8)^{E}$	25	F	
31-50	146	14.4	(0.7)			8.2	$(1.4)^{E}$	10.2	(1.2)	12.9	(1.2)	16.1	(1.3)	19.7	(1.8)	22.5	(2.4)	25	F	
																			20.6	(6.2
19+					, ,		,		, ,		, ,				, ,					(= . =
	1-3 4-8 9-13 14-18 19-30 31-50 51-70 >70 19+ 9-13 14-18 19-30 31-50 51-70 >70	Age (years) 1-3 129 4-8 213 9-13 122 14-18 150 19-30 106 31-50 155 51-70 122 >70 88 19+ 471 9-13 103 14-18 142 19-30 111 31-50 146 51-70 184 >70 143	Age (years) 1-3 129 9.8 4-8 213 13.2 9-13 122 16.2 14-18 150 19.4 19-30 106 17.2 31-50 155 18.7 51-70 122 16.7 >70 88 20.9 19+ 471 18.1 9-13 103 16.0 14-18 142 13.0 19-30 111 13.1 31-50 146 14.4 51-70 184 16.8 >70 143 17.2	1-3	Age (years) 1-3 129 9.8 (0.5) 5.5 4-8 213 13.2 (0.6) 8.4 9-13 122 16.2 (1.3) 12.3 14-18 150 19.4 (1.5) 11.4 19-30 106 17.2 (1.5) 8.0 31-50 155 18.7 (1.4) 8.5 51-70 122 16.7 (1.1) 9.1 >70 88 20.9 (1.3) 9.9 19+ 471 18.1 (0.7) 8.4 9-13 103 16.0 (1.0) 10.3 14-18 142 13.0 (0.7) 7.6 19-30 111 13.1 (1.0) 6.5 31-50 146 14.4 (0.7) 7.1 51-70 184 16.8 (1.2) 7.6 >70 143 17.2 (0.9) 10.1	Age (years) 1-3 129 9.8 (0.5) 5.5 (0.9) 4-8 213 13.2 (0.6) 8.4 (0.9) 9-13 122 16.2 (1.3) 12.3 (1.7) 14-18 150 19.4 (1.5) 11.4 (1.9) ^E 19-30 106 17.2 (1.5) 8.0 (1.8) ^E 31-50 155 18.7 (1.4) 8.5 (2.5) ^E 51-70 122 16.7 (1.1) 9.1 (1.8) ^E >70 88 20.9 (1.3) 9.9 (1.5) 19+ 471 18.1 (0.7) 8.4 (0.9) 9-13 103 16.0 (1.0) 10.3 (1.2) 14-18 142 13.0 (0.7) 7.6 (0.9) 19-30 111 13.1 (1.0) 6.5 (1.4) ^E 31-50 146 14.4 (0.7) 7.1 (1.5) ^E 51-70 184 16.8 (1.2) 7.6 (1.2) >70 143 17.2 (0.9) 10.1 (1.4)	Age (years) 1-3 129 9.8 (0.5) 5.5 (0.9) 6.4 4-8 213 13.2 (0.6) 8.4 (0.9) 9.3 9-13 122 16.2 (1.3) 12.3 (1.7) 13.2 14-18 150 19.4 (1.5) 11.4 (1.9) ^E 12.9 19-30 106 17.2 (1.5) 8.0 (1.8) ^E 9.5 31-50 155 18.7 (1.4) 8.5 (2.5) ^E 10.4 51-70 122 16.7 (1.1) 9.1 (1.8) ^E 10.5 >70 88 20.9 (1.3) 9.9 (1.5) 11.5 19+ 471 18.1 (0.7) 8.4 (0.9) 10.1 9-13 103 16.0 (1.0) 10.3 (1.2) 11.3 14-18 142 13.0 (0.7) 7.6 (0.9) 8.7 19-30 111 13.1 (1.0) 6.5 (1.4) ^E 7.5 31-50 146 14.4 (0.7) 7.1 (1.5) ^E 8.2 51-70 184 16.8 (1.2) 7.6 (1.2) 9.1 >70 143 17.2 (0.9) 10.1 (1.4) 11.6	Age (years) 1-3 129 9.8 (0.5) 5.5 (0.9) 6.4 (0.8) 4-8 213 13.2 (0.6) 8.4 (0.9) 9.3 (0.8) 9-13 122 16.2 (1.3) 12.3 (1.7) 13.2 (1.6) 14-18 150 19.4 (1.5) 11.4 (1.9) ^E 12.9 (1.8) 19-30 106 17.2 (1.5) 8.0 (1.8) ^E 9.5 (1.8) ^E 31-50 155 18.7 (1.4) 8.5 (2.5) ^E 10.4 (2.2) ^E 51-70 122 16.7 (1.1) 9.1 (1.8) ^E 10.5 (1.5) >70 88 20.9 (1.3) 9.9 (1.5) 11.5 (1.5) 19+ 471 18.1 (0.7) 8.4 (0.9) 10.1 (0.8) 9-13 103 16.0 (1.0) 10.3 (1.2) 11.3 (1.2) 14-18 142 13.0 (0.7) 7.6 (0.9) 8.7 (0.8) 19-30 111 13.1 (1.0) 6.5 (1.4) ^E 7.5 (1.3) ^E 31-50 146 14.4 (0.7) 7.1 (1.5) ^E 8.2 (1.4) ^E 51-70 184 16.8 (1.2) 7.6 (1.2) 9.1 (1.1) >70 143 17.2 (0.9) 10.1 (Age (years) 1-3 129 9.8 (0.5) 5.5 (0.9) 6.4 (0.8) 8.0 4-8 213 13.2 (0.6) 8.4 (0.9) 9.3 (0.8) 11.0 9-13 122 16.2 (1.3) 12.3 (1.7) 13.2 (1.6) 14.9 14-18 150 19.4 (1.5) 11.4 (1.9) 12.9 (1.8) 15.6 19-30 106 17.2 (1.5) 8.0 (1.8) 12.3 31-50 155 18.7 (1.4) 8.5 (2.5) 10.4 (2.2) 13.8 51-70 122 16.7 (1.1) 9.1 (1.8) 10.5 (1.5) 12.9 >70 88 20.9 (1.3) 9.9 (1.5) 11.5 (1.5) 14.6 19+ 471 18.1 (0.7) 8.4 (0.9) 10.1 (0.8) 13.1 9-13 103 16.0 (1.0) 10.3 (1.2) 11.3 (1.2) 13.2 14-18 142 13.0 (0.7) 7.6 (0.9) 8.7 (0.8) 10.6 19-30 111 13.1 (1.0) 6.5 (1.4) 16 7.5 (1.3) 16 9.4 31-50 146 14.4 (0.7) 7.1 (1.5) 18 8.2 (1.4) 11.9 >70 143 17.2 (0.9) 10.1 (1.4) 11.6 (1.2) 14.3	Age (years) 1.3 129 9.8 (0.5) 5.5 (0.9) 6.4 (0.8) 8.0 (0.7) 4-8 213 13.2 (0.6) 8.4 (0.9) 9.3 (0.8) 11.0 (0.7) 9-13 122 16.2 (1.3) 12.3 (1.7) 13.2 (1.6) 14.9 (1.4) 14-18 150 19.4 (1.5) 11.4 $(1.9)^E$ 12.9 (1.8) 15.6 (1.5) 19-30 106 17.2 (1.5) 8.0 $(1.8)^E$ 9.5 $(1.8)^E$ 12.3 (1.6) 31-50 155 18.7 (1.4) 8.5 $(2.5)^E$ 10.4 $(2.2)^E$ 13.8 (1.8) 51-70 122 16.7 (1.1) 9.1 $(1.8)^E$ 10.5 (1.5) 12.9 (1.2) >70 88 20.9 (1.3) 9.9 (1.5) 11.5 (1.5) 14.6 (1.3)	Age (years) n Mean (SE) 5th (SE) 10th (SE) 25th (SE) 50th 1-3 129 9.8 (0.5) 5.5 (0.9) 6.4 (0.8) 8.0 (0.7) 9.9 4-8 213 13.2 (0.6) 8.4 (0.9) 9.3 (0.8) 11.0 (0.7) 13.0 9-13 122 16.2 (1.3) 12.3 (1.7) 13.2 (1.6) 14.9 (1.4) 16.9 14-18 150 19.4 (1.5) 11.4 (1.9) ^E 12.9 (1.8) 15.6 (1.5) 19.2 19-30 106 17.2 (1.5) 8.0 (1.8) ^E 9.5 (1.8) ^E 12.3 (1.6) 16.2 31-50 155 18.7 (1.4) 8.5 (2.5) ^E 10.4 (2.2) ^E 13.8 (1.8) 18.0 51-70 122 16.7 (1.1) 9.1 (1.8) ^E 10.5 (1.5) 11.6 (1.3)	Age (years) 10th (SE) 25th (SE) 50th (SE)	Age (years) n Mean (SE) 5th (SE) 10th (SE) 25th (SE) 50th (SE) 75th 1-3 129 9.8 (0.5) 5.5 (0.9) 6.4 (0.8) 8.0 (0.7) 9.9 (0.7) 12.0 4-8 213 13.2 (0.6) 8.4 (0.9) 9.3 (0.8) 11.0 (0.7) 13.0 (0.7) 15.4 9-13 122 16.2 (1.3) 12.3 (1.7) 13.2 (1.6) 14.9 (1.4) 16.9 (1.4) 19.2 14-18 150 19.4 (1.5) 11.4 (1.9) ^E 12.9 (1.8) 15.6 (1.5) 19.2 (1.5) 23.3 19-30 106 17.2 (1.5) 8.0 (1.8) ^E 9.5 (1.8) ^E 12.3 (1.6) 16.2 (1.7) 21.1 31-50 155 18.7 (1.4) 8.5 (2.5) ^E 10.4 (2.2) ^E 13.8 (1.8) 18.0	Age (years) 1-3 129 9.8 (0.5) 5.5 (0.9) 6.4 (0.8) 8.0 (0.7) 9.9 (0.7) 12.0 (0.8) 4-8 213 13.2 (0.6) 8.4 (0.9) 9.3 (0.8) 11.0 (0.7) 13.0 (0.7) 15.4 (0.8) 9-13 122 16.2 (1.3) 12.3 (1.7) 13.2 (1.6) 14.9 (1.4) 16.9 (1.4) 19.2 (1.7) 14-18 150 19.4 (1.5) 11.4 (1.9) ^E 12.9 (1.8) 15.6 (1.5) 19.2 (1.5) 23.3 (2.2) 19-30 106 17.2 (1.5) 8.0 (1.8) ^E 9.5 (1.8) ^E 12.3 (1.6) 16.2 (1.7) 21.1 (2.4) 31-50 155 18.7 (1.4) 8.5 (2.5) ^E 10.4 (2.2) ^E 13.8 (1.8) 18.0 (1.6) 23.3 (2.2) 51-70 122 16.7 (1.1) 9.1 (1.8) ^E 10.5 (1.5) 12.9 (1.2) 15.9 (1.4) 19.2 (2.1) >70 88 20.9 (1.3) 9.9 (1.5) 11.5 (1.5) 14.6 (1.3) 18.8 (1.3) 24.2 (2.1) 19+ 471 18.1 (0.7) 8.4 (0.9) 10.1 (0.8) 13.1 (0.8) 17.1 (0.8) 21.8 (1.2) 14-18 142 <td>Age (years) n Mean (SE) 5th (SE) 10th (SE) 25th (SE) 50th (SE) 75th (SE) 90th (SE) 1-3 129 9.8 (0.5) 5.5 (0.9) 6.4 (0.8) 8.0 (0.7) 9.9 (0.7) 12.0 (0.8) 14.1 4-8 213 13.2 (0.6) 8.4 (0.9) 9.3 (0.8) 11.0 (0.7) 13.0 (0.7) 15.4 (0.8) 14.1 4-8 213 13.2 (0.6) 8.4 (0.9) 9.3 (0.8) 11.0 (0.7) 13.0 (0.7) 15.4 (0.8) 14.1 4-8 213 13.2 (0.6) 8.0 (1.7) 13.2 (1.6) 14.9 (1.4) 16.9 (1.4) 19.2 (1.7) 21.5 14-18 150 19.4 (1.5) 11.4 (1.9)^E 12.9 (1.8) 15.6 (1.5) 19.2 (1.5) 21.1 (2.1 22.6 31.5</td> <td>Age (years) n Mean (SE) 5th (SE) 10th (SE) 25th (SE) 50th (SE) 75th (SE) 90th (SE) Age (years) 48 129 9.8 (0.5) 5.5 (0.9) 6.4 (0.8) 8.0 (0.7) 9.9 (0.7) 12.0 (0.8) 14.1 (1.0) 4-8 213 13.2 (0.6) 8.4 (0.9) 9.3 (0.8) 11.0 (0.7) 13.0 (0.7) 15.4 (0.8) 17.7 (1.2) 9-13 122 16.2 (1.3) 12.3 (1.7) 13.2 (1.6) 14.9 (1.4) 16.9 (1.4) 19.2 (1.7) 21.5 (2.3) 14-18 150 19.4 (1.5) 11.4 (1.9)^E 12.9 (1.8) 15.6 (1.5) 19.2 (1.5) 23.3 (2.2) 27.6 (3.2) 19-30 106 17.2 (1.5) 8.0 (1.8)^E 9.5 (1.8)^E 12.3 (1.6) 16.2 (1.7) 21.1 (2.4) 26.6 (3.7) 31-50 155 18.7 (1.4) 8.5 (2.5)^E 10.4 (2.2)^E 13.8 (1.8) 18.0 (1.6) 23.3 (2.2) 29.5 (3.7) 51-70 122 16.7 (1.1) 9.1 (1.8)^E 10.5 (1.5) 12.9 (1.2) 15.9 (1.4)</td> <td>Age (years) Mean (SE) 5th (SE) 10th (SE) 25th (SE) 50th (SE) 75th (SE) 90th (SE) 95th Age (Years) 1-3 129 9.8 (0.5) 5.5 (0.9) 6.4 (0.8) 8.0 (0.7) 9.9 (0.7) 12.0 (0.8) 14.1 (1.0) 15.5 4-8 213 13.2 (0.6) 8.4 (0.9) 9.3 (0.8) 11.0 (0.7) 13.0 (0.7) 15.4 (0.8) 14.1 (1.0) 15.5 4-8 213 13.2 (0.6) 8.4 (0.9) 9.3 (0.8) 11.0 (0.7) 13.0 (0.7) 15.4 (0.8) 17.7 (1.2) 19.2 9-13 122 16.2 (1.3) 12.3 (1.6) 14.9 (1.4) 16.9 (1.4) 19.2 (1.7) 21.5 23.3 22.2 27.6 (3.2) 30.4 19-30 106 17.2 (1.5) 18.8 (1.5) <</td> <td>Age (years) Mean (SE) 5th (SE) 10th (SE) 25th (SE) 50th (SE) 75th (SE) 90th (SE) 95th (SE) 1-3 129 9.8 (0.5) 5.5 (0.9) 6.4 (0.8) 8.0 (0.7) 9.9 (0.7) 12.0 (0.8) 14.1 (1.0) 15.5 (1.2) 4-8 213 13.2 (0.6) 8.4 (0.9) 9.3 (0.8) 11.0 (0.7) 13.0 (0.7) 15.4 (0.8) 17.7 (1.2) 19.2 (1.4) 9-13 122 16.2 (1.3) 12.3 (1.7) 13.2 (1.6) 14.9 (1.4) 16.9 (1.4) 19.2 (1.7) 21.5 (2.3) 23.0 (2.7) 14-18 150 19.4 (1.5) 11.4 (1.9)^E 12.9 (1.8) 15.6 (1.5) 19.2 (1.5) 23.3 (2.2) 27.6 (3.2) 30.4 (4.0) 19-30 106 17.2 (1.5) 8.0 (1.8)^E 9.5 (1.8)^E 12.3 (1.6) 16.2 (1.7) 21.1 (2.4) 26.6 (3.7) 30.6 (4.9) 31-50 155 18.7 (1.4) 8.5 (2.5)^E 10.4 (2.2)^E 13.8 (1.8) 18.0 (1.6) 23.3 (2.2) 29.5 (3.7) 33.7 (4.9) 51-70 122</td> <td>Age (years) 10h (SE) 5th (SE) 10th (SE) 25th (SE) 50th (SE) 75th (SE) 90th (SE) 95th (SE) Al² Age (years) 48 129 9.8 (0.5) 5.5 (0.9) 6.4 (0.8) 8.0 (0.7) 9.9 (0.7) 12.0 (0.8) 14.1 (1.0) 15.5 (1.2) 19 4.8 213 13.2 (0.6) 8.4 (0.9) 9.3 (0.8) 11.0 (0.7) 13.0 (0.7) 15.4 (0.8) 17.7 (1.2) 19.2 (1.4) 25 9-13 122 16.2 (1.3) 12.3 (1.7) 13.2 (1.6) 14.9 (1.4) 16.9 (1.4) 19.2 (1.7) 21.5 (2.3) 23.0 (2.7) 31 14-18 150 19.4 (1.5) 11.4 (1.9) E 12.9 (1.8) 15.6 (1.5) 19.2 (1.5) 23.3 (2.2) 27.6 (3.2) 30.4 (4.0) 38 19-30 106 17.2 (1.5) 8.0 (1.8) E 9.5 (1.8) E 12.3 (1.6) 16.2 (1.7) 21.1 (2.4) 26.6 (3.7) 33.7 (4.9) 38 31-50 15.7 (1.4) 8.5 (2.5) E 10.4 (2.2) E 13.8 (1.8) 18.0 (6) 23.3 (2.2)</td> <td>Age (years) 1-3</td>	Age (years) n Mean (SE) 5th (SE) 10th (SE) 25th (SE) 50th (SE) 75th (SE) 90th (SE) 1-3 129 9.8 (0.5) 5.5 (0.9) 6.4 (0.8) 8.0 (0.7) 9.9 (0.7) 12.0 (0.8) 14.1 4-8 213 13.2 (0.6) 8.4 (0.9) 9.3 (0.8) 11.0 (0.7) 13.0 (0.7) 15.4 (0.8) 14.1 4-8 213 13.2 (0.6) 8.4 (0.9) 9.3 (0.8) 11.0 (0.7) 13.0 (0.7) 15.4 (0.8) 14.1 4-8 213 13.2 (0.6) 8.0 (1.7) 13.2 (1.6) 14.9 (1.4) 16.9 (1.4) 19.2 (1.7) 21.5 14-18 150 19.4 (1.5) 11.4 (1.9) ^E 12.9 (1.8) 15.6 (1.5) 19.2 (1.5) 21.1 (2.1 22.6 31.5	Age (years) n Mean (SE) 5th (SE) 10th (SE) 25th (SE) 50th (SE) 75th (SE) 90th (SE) Age (years) 48 129 9.8 (0.5) 5.5 (0.9) 6.4 (0.8) 8.0 (0.7) 9.9 (0.7) 12.0 (0.8) 14.1 (1.0) 4-8 213 13.2 (0.6) 8.4 (0.9) 9.3 (0.8) 11.0 (0.7) 13.0 (0.7) 15.4 (0.8) 17.7 (1.2) 9-13 122 16.2 (1.3) 12.3 (1.7) 13.2 (1.6) 14.9 (1.4) 16.9 (1.4) 19.2 (1.7) 21.5 (2.3) 14-18 150 19.4 (1.5) 11.4 (1.9) ^E 12.9 (1.8) 15.6 (1.5) 19.2 (1.5) 23.3 (2.2) 27.6 (3.2) 19-30 106 17.2 (1.5) 8.0 (1.8) ^E 9.5 (1.8) ^E 12.3 (1.6) 16.2 (1.7) 21.1 (2.4) 26.6 (3.7) 31-50 155 18.7 (1.4) 8.5 (2.5) ^E 10.4 (2.2) ^E 13.8 (1.8) 18.0 (1.6) 23.3 (2.2) 29.5 (3.7) 51-70 122 16.7 (1.1) 9.1 (1.8) ^E 10.5 (1.5) 12.9 (1.2) 15.9 (1.4)	Age (years) Mean (SE) 5th (SE) 10th (SE) 25th (SE) 50th (SE) 75th (SE) 90th (SE) 95th Age (Years) 1-3 129 9.8 (0.5) 5.5 (0.9) 6.4 (0.8) 8.0 (0.7) 9.9 (0.7) 12.0 (0.8) 14.1 (1.0) 15.5 4-8 213 13.2 (0.6) 8.4 (0.9) 9.3 (0.8) 11.0 (0.7) 13.0 (0.7) 15.4 (0.8) 14.1 (1.0) 15.5 4-8 213 13.2 (0.6) 8.4 (0.9) 9.3 (0.8) 11.0 (0.7) 13.0 (0.7) 15.4 (0.8) 17.7 (1.2) 19.2 9-13 122 16.2 (1.3) 12.3 (1.6) 14.9 (1.4) 16.9 (1.4) 19.2 (1.7) 21.5 23.3 22.2 27.6 (3.2) 30.4 19-30 106 17.2 (1.5) 18.8 (1.5) <	Age (years) Mean (SE) 5th (SE) 10th (SE) 25th (SE) 50th (SE) 75th (SE) 90th (SE) 95th (SE) 1-3 129 9.8 (0.5) 5.5 (0.9) 6.4 (0.8) 8.0 (0.7) 9.9 (0.7) 12.0 (0.8) 14.1 (1.0) 15.5 (1.2) 4-8 213 13.2 (0.6) 8.4 (0.9) 9.3 (0.8) 11.0 (0.7) 13.0 (0.7) 15.4 (0.8) 17.7 (1.2) 19.2 (1.4) 9-13 122 16.2 (1.3) 12.3 (1.7) 13.2 (1.6) 14.9 (1.4) 16.9 (1.4) 19.2 (1.7) 21.5 (2.3) 23.0 (2.7) 14-18 150 19.4 (1.5) 11.4 (1.9) ^E 12.9 (1.8) 15.6 (1.5) 19.2 (1.5) 23.3 (2.2) 27.6 (3.2) 30.4 (4.0) 19-30 106 17.2 (1.5) 8.0 (1.8) ^E 9.5 (1.8) ^E 12.3 (1.6) 16.2 (1.7) 21.1 (2.4) 26.6 (3.7) 30.6 (4.9) 31-50 155 18.7 (1.4) 8.5 (2.5) ^E 10.4 (2.2) ^E 13.8 (1.8) 18.0 (1.6) 23.3 (2.2) 29.5 (3.7) 33.7 (4.9) 51-70 122	Age (years) 10h (SE) 5th (SE) 10th (SE) 25th (SE) 50th (SE) 75th (SE) 90th (SE) 95th (SE) Al ² Age (years) 48 129 9.8 (0.5) 5.5 (0.9) 6.4 (0.8) 8.0 (0.7) 9.9 (0.7) 12.0 (0.8) 14.1 (1.0) 15.5 (1.2) 19 4.8 213 13.2 (0.6) 8.4 (0.9) 9.3 (0.8) 11.0 (0.7) 13.0 (0.7) 15.4 (0.8) 17.7 (1.2) 19.2 (1.4) 25 9-13 122 16.2 (1.3) 12.3 (1.7) 13.2 (1.6) 14.9 (1.4) 16.9 (1.4) 19.2 (1.7) 21.5 (2.3) 23.0 (2.7) 31 14-18 150 19.4 (1.5) 11.4 (1.9) E 12.9 (1.8) 15.6 (1.5) 19.2 (1.5) 23.3 (2.2) 27.6 (3.2) 30.4 (4.0) 38 19-30 106 17.2 (1.5) 8.0 (1.8) E 9.5 (1.8) E 12.3 (1.6) 16.2 (1.7) 21.1 (2.4) 26.6 (3.7) 33.7 (4.9) 38 31-50 15.7 (1.4) 8.5 (2.5) E 10.4 (2.2) E 13.8 (1.8) 18.0 (6) 23.3 (2.2)	Age (years) 1-3

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>

Footnotes

F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.

Table 8.9 Total dietary fibre (g/d): Usual intakes from food, by DRI age-sex group, household population, Alberta, 2004¹

						Percenti	les (and SE) of usi	ual intake				
	n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	AI^2	% >AI (Si
Age (years)												
1-3	169	9.1	(0.6)	3.3 (0.9) ^E	4.3 (0.8) ^E	6.3 (0.7)	8.8 (0.6)	11.9 (0.9)	15.4 (1.5)	17.9 (2.1)	19	F
4-8	281	12.6	(0.5)	7.6 (0.4)	8.4 (0.4)	10.0 (0.5)	12.1 (0.6)	14.6 (0.7)	17.0 (0.8)	18.5 (0.9)	25	<3
9-13	183	17.8	(1.2)	10.2 (1.9) ^E	11.3 (1.8)	13.6 (1.5)	16.9 (1.2)	21.2 (1.9)	26.1 (3.5)	29.7 (4.9) ^E	31	F
14-18	187	18.2	(1.0)	11.6 (2.1) ^E	12.9 (1.8)	15.2 (1.4)	18.0 (1.2)	21.1 (1.6)	24.1 (2.4)	26.0 (3.0)	38	<3
19-30	223	18.7	(1.1)	10.9 (2.3) ^E	12.4 $(2.1)^E$	15.0 (1.6)	18.3 (1.2)	22.0 (1.6)	26.0 (2.7)	28.6 (3.6)	38	<3
31-50	229	19.8	(1.1)	10.0 (2.0) ^E	11.8 (1.8)	15.1 (1.6)	19.4 (1.4)	25.0 (1.9)	31.8 (3.4)	36.7 (4.6)	38	F
51-70	197	18.9	(1.0)	10.8 (1.7)	12.3 (1.5)	15.0 (1.2)	18.3 (1.1)	22.4 (1.4)	27.0 (2.3)	30.4 (3.4)	30	F
>70	72	18.5	(1.4)	8.8 (2.2) ^E	10.9 $(2.1)^E$	14.7 (1.9)	18.5 (1.7)	22.6 (2.0)	28.1 (3.0)	33.0 (4.1)	30	F
19+	721	19.2	(0.6)	9.8 (0.9)	11.6 (0.9)	14.8 (0.7)	18.8 (0.7)	23.7 (0.9)	29.4 (1.4)	33.5 (1.9)		
9-13	165	15.0	(1.0)	11.5 (1.9) ^E	12.3 (1.8)	13.8 (1.6)	15.6 (1.5)	17.7 (1.7)	19.7 (2.3)	21.1 (2.9)	26	F
14-18	206	13.0	(0.7)	7.8 (1.2)	8.7 (1.1)	10.4 (0.9)	12.6 (0.8)	15.1 (1.1)	17.8 (1.8)	19.7 (2.4)	26	<3
19-30	191	13.7	(1.2)	6.4 (1.4) ^E	7.5 (1.3) ^E	9.6 (1.1)	12.3 (1.1)	15.8 (1.5)	20.2 (2.5)	23.5 (3.5)	25	F
31-50	258	13.3	(0.8)	9.4 (1.6) ^E	10.1 (1.4)	11.3 (1.2)	13.0 (1.1)	15.1 (1.3)	17.5 (2.2)	19.1 (3.2)	25	F
51-70	249	15.4	(1.0)	7.9 (1.8) ^E	9.1 (1.6) ^E	11.5 (1.2)	14.5 (0.9)	18.1 (1.5)	21.9 (2.6)	24.5 (3.4)	21	F
								, ,				F
	1-3 4-8 9-13 14-18 19-30 31-50 51-70 >70 19+ 9-13 14-18 19-30 31-50	Age (years) 1-3 169 4-8 281 9-13 183 14-18 187 19-30 223 31-50 229 51-70 197 >70 72 19+ 721 9-13 165 14-18 206 19-30 191 31-50 258 51-70 249 >70 128	Age (years) 1-3 169 9.1 4-8 281 12.6 9-13 183 17.8 14-18 187 18.2 19-30 223 18.7 31-50 229 19.8 51-70 197 18.9 >70 72 18.5 19+ 721 19.2 9-13 165 15.0 14-18 206 13.0 19-30 191 13.7 31-50 258 13.3 51-70 249 15.4 >70 128 13.5	1-3	Age (years) 1-3 169 9.1 (0.6) 3.3 (0.9) E 4-8 281 12.6 (0.5) 7.6 (0.4) 9-13 183 17.8 (1.2) 10.2 (1.9) E 14-18 187 18.2 (1.0) 11.6 (2.1) E 19-30 223 18.7 (1.1) 10.9 (2.3) E 31-50 229 19.8 (1.1) 10.0 (2.0) E 51-70 197 18.9 (1.0) 10.8 (1.7) >70 72 18.5 (1.4) 8.8 (2.2) E 19+ 721 19.2 (0.6) 9.8 (0.9) 9-13 165 15.0 (1.0) 11.5 (1.9) E 14-18 206 13.0 (0.7) 7.8 (1.2) 19-30 191 13.7 (1.2) 6.4 (1.4) E 31-50 258 13.3 (0.8) 9.4 (1.6) E 51-70 249 15.4 (1.0) 7.9 (1.8) E >70 128 13.5 (0.8) 7.9 (0.8)	Age (years) 1-3 169 9.1 (0.6) 3.3 (0.9) E 4.3 (0.8) E 4-8 281 12.6 (0.5) 7.6 (0.4) 8.4 (0.4) 9-13 183 17.8 (1.2) 10.2 (1.9) E 11.3 (1.8) 14-18 187 18.2 (1.0) 11.6 (2.1) E 12.9 (1.8) 19-30 223 18.7 (1.1) 10.9 (2.3) E 12.4 (2.1) E 31-50 229 19.8 (1.1) 10.0 (2.0) E 11.8 (1.8) 51-70 197 18.9 (1.0) 10.8 (1.7) 12.3 (1.5) >70 72 18.5 (1.4) 8.8 (2.2) E 10.9 (2.1) E 19+ 721 19.2 (0.6) 9.8 (0.9) 11.6 (0.9) 9-13 165 15.0 (1.0) 11.5 (1.9) E 12.3 (1.8) 19-30 191 13.7 (1.2) 6.4 (1.4) E 7.5 (1.3) E	Age (years) 1-3 169 9.1 (0.6) 3.3 $(0.9)^E$ 4.3 $(0.8)^E$ 6.3 (0.7) 4-8 281 12.6 (0.5) 7.6 (0.4) 8.4 (0.4) 10.0 (0.5) 9-13 183 17.8 (1.2) 10.2 $(1.9)^E$ 11.3 (1.8) 13.6 (1.5) 14-18 187 18.2 (1.0) 11.6 $(2.1)^E$ 12.9 (1.8) 15.2 (1.4) 19-30 223 18.7 (1.1) 10.9 $(2.3)^E$ 12.4 $(2.1)^E$ 15.0 (1.6) 31-50 229 19.8 (1.1) 10.0 $(2.0)^E$ 11.8 (1.8) 15.1 (1.6) 51-70 197 18.9 (1.0) 10.8 (1.7) 12.3 (1.5) 15.0 (1.2) >70 72 18.5 (1.4) 8.8 $(2.2)^E$ 10.9 $(2.1)^E$ 14.7 (1.9) 19+ 72 19.2 (0.6) 9.8 (0.9)	Age (years) 1-3 169 9.1 (0.6) 3.3 (0.9) ^E 4.3 (0.8) ^E 6.3 (0.7) 8.8 (0.6) 4-8 281 12.6 (0.5) 7.6 (0.4) 8.4 (0.4) 10.0 (0.5) 12.1 (0.6) 9-13 183 17.8 (1.2) 10.2 (1.9) ^E 11.3 (1.8) 13.6 (1.5) 16.9 (1.2) 14-18 187 18.2 (1.0) 11.6 (2.1) ^E 12.9 (1.8) 15.2 (1.4) 18.0 (1.2) 19-30 223 18.7 (1.1) 10.9 (2.3) ^E 12.4 (2.1) ^E 15.0 (1.6) 18.3 (1.2) 31-50 229 19.8 (1.1) 10.0 (2.0) ^E 11.8 (1.8) 15.1 (1.6) 19.4 (1.4) 51-70 197 18.9 (1.0) 10.8 (1.7) 12.3 (1.5) 15.0 (1.2) 18.3 (1.1) 270 72 18.5 (1.4) 8.8 (2.2) ^E 10.9 (2.1) ^E 14.7 (1.9) 18.5 (1.7) 19+ 721 19.2 (0.6) 9.8 (0.9) 11.6 (0.9) 14.8 (0.7) 18.8 (0.7) 18.6 (1.5) 19-30 191 13.7 (1.2) 6.4 (1.4) ^E 7.5 (1.3) ^E 9.6 (1.1) 12.3 (1.1) 12.3 (1.1) 51-70 249 15.4 (1.0) 7.9 (1.8) ^E 9.1 (1.6) ^E 11.5 (1.2) 14.5 (0.9) >70 128 13.5 (0.8) 7.9 (0.8) 8.9 (0.8) 10.6 (0.8) 12.8 (1.1)	Age (years) 1-3	Age (years) 1.3	Age (years) 1-3	Age (years) 1-3

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- $^{\rm 2}$ AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.

Table 8.10 Total dietary fibre (g/d): Usual intakes from food, by DRI age-sex group, household population, British Columbia, 2004¹

										Percen	tiles (and S	E) of usi	ual intake	;							
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	(SE)	75th	(SE)	90th	(SE)	95th	(SE)	AI^2	% >AI	(SE)
Sex	Age (years)																				
Both																					
	1-3	192	10.6	(0.5)	6.2	$(1.3)^E$	7.0	(1.1)	8.3	(0.9)	10.0	(0.7)	11.9	(0.9)	13.8	(1.4)	15.1	(1.8)	19	<3	
	4-8	321	14.6	(0.5)	8.8	(0.9)	9.9	(0.8)	11.9	(0.6)	14.5	(0.6)	17.5	(0.8)	20.4	(1.3)	22.2	(1.6)	25	F	
I ale																					
	9-13	226	17.4	(0.9)	10.4	(1.1)	11.8	(1.0)	14.4	(1.0)	17.7	(1.1)	21.4	(1.3)	25.5	(1.8)	28.6	(2.3)	31	F	
	14-18	262	21.0	(1.7)	10.1	$(2.1)^E$	11.9	$(2.0)^E$	15.3	(1.9)	19.7	(2.0)	25.3	(2.4)	32.0	(3.4)	36.8	(4.3)	38	F	
	19-30	197	21.3	(1.1)	11.5	$(1.9)^E$	13.1	(1.8)	16.2	(1.6)	20.6	(1.4)	26.0	(1.9)	32.0	(3.0)	36.2	(4.0)	38	F	
	31-50	282	22.3	(1.4)	10.6	(1.4)	12.4	(1.4)	15.9	(1.4)	21.0	(1.5)	27.3	(1.9)	33.7	(2.7)	38.1	(3.5)	38	F	
	51-70	234	21.8	(1.4)	10.0	(1.6)	12.0	(1.5)	15.9	(1.4)	20.9	(1.5)	26.7	(2.0)	33.1	(3.0)	37.5	(3.9)	30	F	
	>70	119	21.5	(1.8)	9.6	$(2.0)^E$	11.7	$(1.9)^{E}$	15.6	(2.0)	20.9	(2.2)	27.0	(2.7)	33.4	(3.7)	37.5	(4.5)	30	F	
	19+	832	21.9	(0.7)	10.2	(0.6)	12.0	(0.6)	15.6	(0.7)	20.7	(0.8)	27.0	(1.1)	33.8	(1.6)	38.3	(2.0)			
emale																					
	9-13	226	14.7	(0.8)	8.9	(1.0)	9.9	(1.0)	12.0	(0.9)	14.6	(1.0)	17.5	(1.1)	20.4	(1.4)	22.4	(1.6)	26	F	
	14-18	242	14.6	(0.8)	7.6	(0.9)	8.8	(0.9)	10.9	(0.8)	13.8	(1.0)	17.5	(1.3)	21.7	(1.9)	24.6	(2.4)	26	F	
	19-30	208	15.1	(0.9)	9.0	$(1.6)^{E}$	10.1	(1.5)	12.0	(1.3)	14.5	(1.2)	17.5	(1.5)	20.5	(2.1)	22.6	(2.7)	25	F	
	31-50	263	16.8	(0.8)		$(1.4)^{E}$	9.3	(1.3)	11.9	(1.0)	15.3	(1.0)	19.5	(1.4)	24.3	(2.3)	27.5	(2.9)	25	F	
	51-70	322		(0.7)		(1.3)		(1.2)		(1.0)	16.8			(1.0)		(1.5)	26.5		21	21.7	(5.9
	>70	198		(0.8)		(1.0)		(1.0)		(1.0)	16.3			(1.2)		(1.7)	27.6		21		(5.8
	19+	991		(0.4)		(0.5)		(0.5)		(0.5)	15.6	, ,		(0.7)		(0.9)	26.8		-1	22.0	(2.0)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.

Table 8.11 Total dietary fibre (g/d): Usual intakes from food, by DRI age-sex group, household population, Atlantic Region, 2004¹

										Percen	tiles (and SE) of usu	ıal intake							
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th (SE)	75th ((SE)	90th (SE) 95th	(SE)	AI^2	% >AI	(SE)
Sex	Age (years)																		
Both																			
	1-3	348	10.1	(0.4)	5.2	(0.6)	6.1	(0.6)	7.7	(0.5)	9.7 (0.5)	12.0 ((0.6)	14.5 (0.9) 16.2	(1.2)	19	F	
	4-8	554	13.3	(0.4)	8.2	(0.6)	9.2	(0.5)	10.9	(0.5)	13.1 (0.6)	15.7 ((0.7)	18.5 (0.9	20.3	(1.1)	25	<3	
Male																			
	9-13	409	15.4	(0.7)	10.9	(1.0)	11.7	(0.9)	13.2	(0.8)	15.0 (0.8)	17.1 ((1.0)	19.1 (1.4	20.4	(1.7)	31	<3	
	14-18	414	16.5	(0.6)	9.9	(0.8)	11.2	(0.8)	13.6	(0.8)	16.7 (0.8)	20.3 ((1.0)	24.1 (1.2	26.6	(1.5)	38	<3	
	19-30	311	19.0	(1.3)	10.3	(1.3)	11.9	(1.3)	15.1	(1.2)	19.0 (1.3)	23.4 ((1.9)	28.2 (2.8	31.5	(3.4)	38	F	
	31-50	489	17.1	(0.7)	8.8	(0.9)	10.0	(0.9)	12.3	(0.9)	15.8 (0.9)	20.0 ((1.1)	24.1 (1.5	27.0	(1.9)	38	<3	
	51-70	575	18.8	(0.9)	9.5	(1.1)	11.0	(1.0)	13.7	(1.0)	18.1 (1.1)	23.3 ((1.6)	29.4 (2.5	33.7	(3.4)	30	F	
	>70	239	17.5	(1.2)	8.1	(1.0)	9.5	(1.0)	12.2	(0.9)	16.0 (1.0)	20.6 ((1.5)	26.2 (2.4	30.7	(3.4)	30	F	
	19+	1614	18.0	(0.5)	8.8	(0.5)	10.3	(0.5)	13.0	(0.5)	17.0 (0.6)	22.0 ((0.7)	27.5 (1.1)	31.5	(1.4)			
Female	;																		
	9-13	355	13.1	(0.5)	9.3	(0.7)	10.1	(0.7)	11.5	(0.7)	13.3 (0.7)	15.3 ((0.8)	17.2 (1.0	18.5	(1.1)	26	<3	
	14-18	410	12.7	(0.6)	6.0	(0.9)	7.3	(0.8)	9.5	(0.7)	12.2 (0.7)	15.6 ((0.8)	19.1 (1.1	21.3	(1.3)	26	<3	
	19-30	384	13.4	(0.5)	8.6	(0.8)	9.5	(0.8)	11.2	(0.7)	13.4 (0.7)	15.8 ((0.8)	18.2 (1.2	19.9	(1.5)	25	<3	
	31-50	585	15.1	(0.6)	6.6	(0.5)	8.1	(0.6)	10.9	(0.6)	14.6 (0.7)	18.9 ((1.0)	23.7 (1.3	26.9	(1.6)	25	7.6	$(2.3)^{E}$
	51-70	711	14.9	(0.4)	7.5	(0.6)	8.8	(0.5)	11.2	(0.5)	14.3 (0.5)	17.9 ((0.6)	21.5 (0.8	3) 24.0	(1.1)	21	11.5	$(2.4)^{E}$
	>70	342	14.7	(0.7)	7.0	(0.6)	8.0	(0.7)	10.0	(0.9)	13.5 (1.0)	17.6 ((1.2)	21.5 (1.4	24.3	(1.7)	21	F	
	19+	2022		(0.3)	7.3	(0.3)	8.6	(0.3)	11.0	(0.3)	14.2 (0.4)	18.0 ((0.5)	21.9 (0.6	(a) 24.6	(0.7)			

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.

Table 8.12 Total dietary fibre (g/d): Usual intakes from food, by DRI age-sex group, household population, Prairie Region, 2004¹

									Percenti	les (and SE) of usu	ıal intake					
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	AI^2	% >AI	(SE)
Sex	Age (years)															
Both																
	1-3	622	9.3	(0.4)	4.1	(0.5)	5.1	(0.4)	6.9 (0.4)	9.2 (0.4)	11.8 (0.5)	14.5 (0.8)	16.4 (1.0)	19	F	
	4-8	919	12.5	(0.3)	7.7	(0.7)	8.6	(0.6)	10.1 (0.5)	12.1 (0.4)	14.4 (0.5)	16.7 (0.8)	18.2 (1.0)	25	<3	
Male																
	9-13	579	16.9	(0.7)	10.8	(1.2)	11.8	(1.1)	13.9 (0.9)	16.6 (0.9)	19.9 (1.2)	23.4 (1.9)	25.8 (2.5)	31	F	
	14-18	634	18.3	(0.7)	10.2	(0.9)	11.7	(0.8)	14.4 (0.7)	17.9 (0.8)	22.1 (1.1)	26.1 (1.5)	28.6 (1.8)	38	<3	
	19-30	578	18.5	(0.8)	11.0	$(1.8)^E$	12.5	(1.6)	15.1 (1.3)	18.3 (0.9)	22.0 (1.2)	25.9 (2.1)	28.5 (2.8)	38	<3	
	31-50	693	18.9	(0.8)	9.8	(1.2)	11.4	(1.2)	14.7 (1.0)	18.8 (0.9)	23.4 (1.1)	28.7 (1.8)	32.6 (2.5)	38	F	
	51-70	596	18.4	(0.6)	9.3	(0.7)	11.0	(0.7)	13.9 (0.6)	17.5 (0.7)	22.0 (1.0)	27.2 (1.6)	31.1 (2.2)	30	F	
	>70	296	18.9	(0.8)	9.3	(1.4)	11.1	(1.2)	14.5 (1.0)	18.2 (0.8)	22.5 (1.0)	27.7 (1.5)	31.7 (2.2)	30	F	
	19+	2163	18.7	(0.4)	9.5	(0.6)	11.2	(0.6)	14.3 (0.5)	18.3 (0.5)	22.8 (0.6)	28.0 (0.9)	31.7 (1.2)			
Female	:															
	9-13	533	14.8	(0.7)	8.8	(0.8)	9.9	(0.8)	12.0 (0.8)	14.7 (0.9)	17.7 (1.0)	20.9 (1.3)	23.0 (1.6)	26	F	
	14-18	638	13.1	(0.5)	6.9	(0.6)	8.0	(0.6)	9.9 (0.6)	12.5 (0.6)	15.7 (0.7)	19.1 (0.9)	21.4 (1.2)	26	<3	
	19-30	499	13.7	(0.8)	6.7	(0.8)	7.8	(0.7)	9.8 (0.7)	12.6 (0.8)	16.1 (1.0)	20.2 (1.6)	23.2 (2.2)	25	F	
	31-50	716	13.8	(0.5)	7.5	(0.9)	8.5	(0.8)	10.4 (0.8)	13.0 (0.8)	16.4 (0.8)	20.3 (1.2)	23.1 (1.7)	25	F	
	51-70	745	16.0	(0.6)	7.8	(0.6)	9.1	(0.6)	11.5 (0.6)	14.8 (0.6)	19.1 (0.9)	23.7 (1.3)	26.8 (1.8)	21	17.6	$(3.7)^{E}$
	>70	510	15.0	(0.5)	7.7	(0.5)	8.9	(0.5)	11.1 (0.6)	14.4 (0.7)	18.5 (0.8)	23.3 (1.1)	26.8 (1.4)	21	15.5	$(2.8)^{E}$
	19+	2470	14.5	(0.3)	7.0	(0.3)	8.2	(0.3)	10.4 (0.3)	13.5 (0.4)	17.6 (0.5)	22.2 (0.7)	25.4 (0.9)			

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>

Footnotes

F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.

Table 8.13 Total dietary fibre (g/d): Usual intakes from food, by DRI age-sex group, household population, Canada excluding territories, 2004¹

										Percent	iles (and SI	E) of usu	al intake								
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	(SE)	75th	(SE)	90th	(SE)	95th	(SE)	AI^2	% >AI	(SE)
Sex	Age (years)																				
Both																					
	1-3	2117	10.2	(0.2)	5.0	(0.3)	6.0	(0.3)	7.8	(0.2)	9.9	(0.2)	12.4	(0.3)	14.9	(0.4)	16.6	(0.4)	19	1.8	$(0.5)^{E}$
	4-8	3235	13.5	(0.2)	8.4	(0.3)	9.4	(0.3)	11.2	(0.3)	13.4	(0.2)	15.8	(0.3)	18.4	(0.4)	20.2	(0.6)	25	<3	
Male																					
	9-13	2080	16.5	(0.3)	10.4	(0.4)	11.5	(0.4)	13.6	(0.4)	16.3	(0.4)	19.4	(0.5)	22.8	(0.7)	25.0	(0.9)	31	<3	
	14-18	2288	18.3	(0.4)	10.4	(0.5)	11.9	(0.5)	14.7	(0.5)	18.2	(0.5)	22.4	(0.6)	27.0	(0.8)	30.1	(1.0)	38	<3	
	19-30	1804	19.4	(0.5)	11.2	(0.7)	12.7	(0.7)	15.5	(0.6)	19.2	(0.6)	23.5	(0.7)	28.1	(1.1)	31.3	(1.4)	38	<3	
	31-50	2596	19.1	(0.4)	9.5	(0.5)	11.1	(0.4)	14.1	(0.4)	18.2	(0.5)	23.2	(0.6)	28.9	(0.9)	32.9	(1.2)	38	2.0	$(0.6)^{E}$
	51-70	2550	19.0	(0.4)	9.5	(0.4)	11.1	(0.4)	14.0	(0.4)	18.1	(0.4)	23.1	(0.5)	28.4	(0.8)	32.1	(1.1)	30	7.5	(1.2)
	>70	1520	17.9	(0.4)	8.8	(0.5)	10.3	(0.5)	13.2	(0.5)	17.0	(0.6)	21.8	(0.7)	27.0	(0.9)	30.7	(1.2)	30	5.8	$(1.2)^{E}$
	19+	8470	19.1	(0.2)	9.7	(0.3)	11.3	(0.3)	14.2	(0.3)	18.2	(0.3)	23.2	(0.3)	28.6	(0.5)	32.4	(0.7)			
Female																					
	9-13	1980	14.4	(0.3)	8.3	(0.4)	9.4	(0.4)	11.4	(0.3)	14.0	(0.3)	17.0	(0.4)	20.1	(0.6)	22,2	(0.7)	26	<3	
	14-18	2256	14.3	(0.2)	7.5	(0.3)	8.7	(0.3)	10.9	(0.3)	13.9	(0.3)	17.5	(0.4)	21.4	(0.6)	24.2	(0.7)	26	3.1	$(0.7)^{E}$
	19-30	1854	14.5	(0.3)	7.7	(0.4)	8.7	(0.4)	10.8	(0.4)	13.6	(0.4)	16.9	(0.5)	20.4	(0.7)	22.8	(0.9)	25	F	
	31-50	2686	15.7	(0.3)	7.4	(0.3)	8.8	(0.3)	11.2	(0.3)	14.6	(0.4)	19.1	(0.5)	24.2	(0.8)	28.0	(1.2)	25	8.7	$(1.5)^{E}$
	51-70	3200	16.6	(0.3)	8.1	(0.3)	9.5	(0.3)	12.2	(0.3)	15.9	(0.3)	20.3	(0.4)	25.0	(0.6)	28.3	(0.8)	21	21.9	(1.9)
	>70	2610		(0.3)		(0.3)		(0.3)	11.3		14.5		18.4			(0.6)		(0.7)	21		(1.6)
	19+	10350		(0.2)		(0.2)		(0.2)	11.3		14.7		19.0	, ,		(0.4)		(0.6)			

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.

9. Cholesterol (mg/d): Usual intakes from food

Table 9.1 Total cholesterol (mg/d): Usual intakes from food, by DRI age-sex group, household population, Newfoundland and Labrador, 2004^{1,2}

							Percent	iles (and SE) of usua	al intake		
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)
Sex	Age (years)										
Both											
	1-3	79	189	(20)	111 (22) ^E	124 (21) ^E	149 (19)	181 (21)	218 (27)	257 (38)	281 (46)
	4-8	127	229	(20)	142 (30) ^E	156 (28) ^E	184 (26)	221 (25)	267 (29)	318 (45)	353 (59) ^E
Male											
	9-13	111	280	(32)	192 (39) ^E	207 (36) ^E	236 (33)	272 (36)	316 (51)	361 (71) ^E	391 (85) ^E
	14-18	107	256	(22)	187 (49) ^E	202 (45) ^E	228 (38) ^E	258 (31)	290 (32)	320 (49)	338 (66) ^E
	19-30	77	294	(27)	162 (23)	184 (23)	225 (24)	275 (28)	332 (35)	389 (43)	426 (49)
	31-50	145	382	(39)	206 (52) ^E	233 (48) ^E	285 (41)	354 (41)	442 (62)	547 (101) ^E	621 (133) ^E
	51-70	182	297	(23)	165 (17)	183 (19)	219 (23)	267 (28)	324 (32)	379 (35)	412 (36)
	>70	63	315	(31)	186 (58) ^E	215 (54) ^E	268 (50) ^E	338 (51)	424 (61)	514 (78)	571 (92)
	19+	467	333	(19)	210 (33)	232 (30)	271 (24)	322 (21)	381 (29)	444 (46)	485 (59)
Female											
	9-13	96	200	(24)	115 (29) ^E	128 (28) ^E	152 (26) ^E	182 (27)	218 (32)	256 (43) ^E	282 (52) ^E
	14-18	105	200	(20)	102 (12)	116 (14)	144 (19)	183 (25)	237 (33)	300 (42)	345 (49)
	19-30	91	171	(15)	103 (13)	112 (14)	130 (15)	151 (17)	175 (19)	198 (21)	213 (22)
	31-50	167	218	(22)	92 (26) ^E	109 (26) ^E	142 (26) ^E	191 (29)	258 (37)	334 (51)	387 (63)
	51-70	198		(30)	F	F	164 (41) ^E	234 (35)	336 (48)	467 (94) ^E	566 (138) ^E
	>70	74		$(64)^E$	195 (58) ^E	214 (59) ^E	251 (61) ^E	299 (70) ^E	358 (102) ^E	F	F
						, ,	, ,	, ,	, ,	277 (20)	445 (54)
	19+	530	228	(15)	104 (14)	122 (14)	158 (15)	210 (18)	285 (25)	377 (39)	445 (54)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² No DRIs have been established for cholesterol.

Table 9.2 Total cholesterol (mg/d): Usual intakes from food, by DRI age-sex group, household population, Prince Edward Island, 2004^{1,2}

							Percent	iles (and SE) of usua	al intake		
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)
Sex	Age (years)										
Both											
	1-3	58	164	(17)	70 (19) ^E	85 (19) ^E	113 (19) ^E	150 (21)	192 (25)	236 (32)	265 (37)
	4-8	110	203	$(39)^{E}$	147 (36) ^E	156 (36) ^E	172 (34) ^E	191 (34) ^E	213 (37) ^E	234 (43) ^E	248 (48) ^E
Male											
	9-13	95	227	(21)	139 (33) ^E	155 (32) ^E	188 (30)	232 (30)	286 (35)	345 (48)	386 (60)
	14-18	87	315	(42)	232 (58) ^E	251 (57) ^E	284 (54) ^E	325 (53)	371 (59)	418 (76) ^E	448 (92) ^E
	19-30	70	416	(68)	244 (70) ^E	282 (68) ^E	357 (68) ^E	467 (79) ^E	612 (113) ^E	783 (169) ^E	908 (218) ^E
	31-50	109	325	(28)	167 (45) ^E	195 (41) ^E	249 (34)	316 (33)	393 (44)	471 (63)	521 (77)
	51-70	128	309	(26)	114 (33) ^E	142 (33) ^E	200 (33)	283 (32)	386 (39)	497 (54)	571 (68)
	>70	65	255	(24)	193 (38) ^E	204 (35) ^E	223 (32)	246 (34)	270 (46) ^E	294 (67) ^E	310 (84) ^E
	19+	372	332	(19)	163 (22)	192 (22)	248 (21)	325 (23)	419 (30)	520 (43)	589 (55)
Female											
	9-13	75	183	(19)	116 (23) ^E	126 (23) ^E	148 (24)	178 (27)	215 (35)	255 (47) ^E	282 (57) ^E
	14-18	81	189	(25)	56 (18) ^E	74 (18) ^E	113 (20) ^E	171 (26)	246 (40)	331 (62) ^E	390 (79) ^E
	19-30	101	237	(30)	104 (28) ^E	127 (29) ^E	173 (31) ^E	239 (40) ^E	324 (58) ^E	426 (84) ^E	500 (105) ^E
	31-50	116	221	(21)	126 (32) ^E	142 (30) ^E	171 (28)	211 (28)	262 (34)	317 (49)	354 (60) ^E
	51-70	146	244	(18)	135 (32) ^E	153 (29) ^E	188 (25)	234 (23)	286 (31)	339 (45)	373 (55)
	>70	94		(25)	146 (33) ^E	163 (31) ^E	195 (29)	235 (30)	281 (40)	328 (56) ^E	359 (70) ^E
	19+	457		(12)	128 (15)	146 (15)	181 (14)	228 (16)	284 (21)	343 (29)	382 (35)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>

Footnotes

F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² No DRIs have been established for cholesterol.

Table 9.3 Total cholesterol (mg/d): Usual intakes from food, by DRI age-sex group, household population, Nova Scotia, 2004^{1,2}

									Percent	iles (and	SE) of usua	al intake					
		n	Mean	(SE)	5th (SE	E) 10th	(SE)	25th	(SE)	50th	n (SE)	75th	(SE)	90tl	n (SE)	95tl	h (SE)
Sex	Age (years)																
Both																	
	1-3	112	171	(15)	112 (26)	121	$(24)^{E}$	138	(20)	161	(20)	190	(28)	220	$(42)^E$	240	(53) ^E
	4-8	177	191	(17)	78 (18)	95 95	$(16)^{E}$	129	(15)	175	(15)	234	(22)	306	(35)	360	(50)
Male																	
	9-13	111	262	(20)	131 (26)	150 150	$(25)^{E}$	187	(24)	238	(25)	303	(32)	376	(45)	427	(56)
	14-18	113	330	(39)	216 (51)) ^E 238	$(49)^{E}$	278	(45)	325	(46)	378	$(66)^{E}$	435	$(103)^{E}$	474	$(136)^{E}$
	19-30	91	321	(44)	156 (28)	180 180	$(31)^E$	227	(37)	290	(47)	369	(59)	453	(72)	508	(81)
	31-50	101	305	(31)	F	161	$(41)^{E}$	211	$(35)^{E}$	277	(34)	360	(47)	457	$(76)^{E}$	527	$(102)^{E}$
	51-70	134	304	(30)	178 (25)	200	(27)	240	(31)	292	(36)	353	(42)	417	(47)	459	(50)
	>70	56	268	(48) ^E	F	F		200	$(61)^{E}$	245	$(64)^{E}$	297	$(70)^{E}$	350	$(80)^{E}$	385	$(92)^{E}$
	19+	382	304	(20)	181 (35)	201	(32)	237	(27)	285	(24)	341	(30)	400	(44)	438	(56)
Female																	
	9-13	105	237	(30)	144 (22)	159	(24)	188	(27)	224	(31)	264	(36)	302	(40)	327	(42)
	14-18	120	181	(22)	100 (29)) ^E 116	$(28)^{E}$	147	$(26)^{E}$	187	(28)	236	(39)	290	(60) ^E	328	(79) ^E
	19-30	91	282	(42)	162 (40)	182	$(39)^{E}$	219	$(37)^{E}$	265	(38)	319	(43)	374	(55)	410	(66)
	31-50	159		(17)	131 (31)		$(28)^{E}$	187			(21)		(27)		(39)		(48)
	51-70	174		(20)	88 (29)	,	$(29)^E$	146			(25)		(29)		(47)		(64)
	>70	80		(23)	129 (24)		$(26)^E$	163			$(32)^E$		$(36)^E$		$(41)^E$		$(44)^{E}$
							,		,		,		,		, ,		
	19+	504	238	(12)	129 (18)	148	(18)	186	(10)	234	(16)	290	(19)	348	(27)	385	(33)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² No DRIs have been established for cholesterol.

Table 9.4 Total cholesterol (mg/d): Usual intakes from food, by DRI age-sex group, household population, New Brunswick, 2004^{1,2}

							Percent	iles (and SE) of usua	al intake		
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)
Sex	Age (years)										
Both											
	1-3	99	215	(20)	89 (25) ^E	110 (24) ^E	150 (23)	203 (24)	268 (30)	340 (44)	393 (59)
	4-8	140	228	(22)	130 (12)	146 (14)	177 (17)	218 (22)	270 (29)	327 (38)	368 (44)
Male											
	9-13	92	295	(46)	141 (41) ^E	164 (39) ^E	199 (39) ^E	247 (45) ^E	325 (60) ^E	425 (91) ^E	496 (118) ^E
	14-18	107	366	(38)	203 (34) ^E	230 (33)	284 (33)	356 (36)	445 (47)	540 (63)	605 (77)
	19-30	73	381	(38)	135 (42) ^E	171 (43) ^E	244 (47) ^E	362 (57)	554 (84)	804 (147) ^E	988 (204) ^E
	31-50	134	338	(27)	230 (62) ^E	253 (57) ^E	294 (47)	341 (38)	392 (49)	444 (82) ^E	477 (111) ^E
	51-70	131	350	(27)	251 (52) ^E	269 (47) ^E	302 (38)	340 (34)	382 (44)	421 (65)	446 (83) ^E
	>70	55	318	(42)	F	146 (47) ^E	202 (47) ^E	284 (51) ^E	387 (65) ^E	496 (88) ^E	567 (109) ^E
	19+	393	349	(16)	175 (21)	205 (21)	262 (21)	339 (23)	434 (30)	536 (42)	606 (52)
Female	:										
	9-13	79	201	(42) ^E	90 (28) ^E	107 (29) ^E	140 (32) ^E	190 (40) ^E	256 (61) ^E	336 (98) ^E	397 (130) ^E
	14-18	104	192	(15)	130 (27) ^E	144 (25) ^E	170 (21)	202 (21)	237 (27)	272 (36)	294 (44)
	19-30	101	214	(31)	F	F	135 (34) ^E	205 (37) ^E	306 (57) ^E	427 (88) ^E	514 (112) ^E
	31-50	143	207	(20)	91 (13)	108 (14)	143 (18)	191 (23)	250 (29)	315 (37)	359 (44)
	51-70	193	249	(18)	111 (26) ^E	132 (25) ^E	173 (23)	231 (23)	304 (31)	383 (47)	438 (61)
	>70	94		(24)	111 (19) ^E	123 (21) ^E	147 (25) ^E	178 (30) ^E	216 (37) ^E	256 (46) ^E	283 (53) ^E
	19+	531		(12)	103 (16)	121 (16)	158 (15)	210 (14)	273 (20)	340 (30)	385 (38)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

 $^{^{\}rm 2}$ No DRIs have been established for cholesterol.

Table 9.5 Total cholesterol (mg/d): Usual intakes from food, by DRI age-sex group, household population, Quebec, 2004^{1,2}

							Percen	tiles (and SE) of usua	al intake		
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)
Sex	Age (years)										
Both											
	1-3	311	200	(12)	115 (21) ^E	131 (19)	161 (16)	199 (15)	242 (20)	287 (28)	318 (35)
	4-8	485	234	(16)	152 (30) ^E	166 (27)	192 (23)	226 (19)	266 (21)	309 (30)	339 (38)
Male											
	9-13	277	327	(17)	271 (40)	288 (37)	318 <i>(32)</i>	353 (31)	392 (37)	429 (50)	452 (60)
	14-18	339	348	(25)	184 (26)	211 (26)	264 (27)	344 <i>(32)</i>	456 (44)	588 (63)	681 (78)
	19-30	237	333	(32)	165 (34) ^E	191 (32) ^E	240 (31)	304 (36)	380 (49)	460 (70)	513 (86) ^E
	31-50	423	355	(26)	168 (29) ^E	195 (28)	249 (26)	323 (27)	415 (35)	513 (50)	579 (63)
	51-70	387	329	(21)	155 (35) ^E	184 (32) ^E	239 (28)	313 (25)	407 (33)	516 (57)	597 (81)
	>70	132	278	(28)	130 (38) ^E	154 (38) ^E	202 (38) ^E	268 (40)	351 (46)	442 (58)	505 (70)
	19+	1179	336	(15)	153 (14)	181 (14)	236 (14)	312 (16)	406 (21)	508 (29)	579 (37)
Female	;										
	9-13	281	222	(13)	118 (19)	134 (18)	164 (16)	202 (15)	247 (19)	291 (27)	320 (34)
	14-18	321	215	(19)	161 (28) ^E	171 (25)	190 (20)	213 (18)	239 (25)	263 (37)	278 (48) ^E
	19-30	249	237	(16)	153 (27) ^E	169 (25)	198 (22)	233 (21)	273 (26)	313 (36)	339 (44)
	31-50	364	280	(22)	135 (33) ^E	160 (32) ^E	207 (29)	272 (27)	352 (32)	436 (46)	493 (59)
	51-70	467	252	(14)	147 (29) ^E	167 (26)	204 (21)	253 (18)	311 (24)	373 (38)	415 (51)
	>70	215		(11)	136 (19)	148 (18)	169 (16)	195 (16)	225 (20)	254 (28)	273 (34)
	19+	1295		(10)	148 (16)	167 (15)	204 (14)	252 (13)	308 (16)	367 (22)	405 (27)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² No DRIs have been established for cholesterol.

Table 9.6 Total cholesterol (mg/d): Usual intakes from food, by DRI age-sex group, household population, Ontario, 2004^{1,2}

										Percen	tiles (and	SE) of usu	al intake					
		n	Mean	(SE)	5th	(SE)	10th	n (SE)	25th	(SE)	50tl	n (SE)	75tl	(SE)	90th	(SE)	95tl	n (SE)
Sex	Age (years)																	
Both																		
	1-3	644	181	(8)	64	(10)	81	(9)	115	(9)	164	(9)	231	(12)	312	(21)	371	(28)
	4-8	956	188	(6)	83	(11)	100	(10)	132	(8)	177	(7)	235	(9)	301	(17)	348	(24)
Male																		
	9-13	589	266	(11)	151	(8)	170	(8)	208	(10)	257	(12)	316	(15)	380	(19)	425	(22)
	14-18	639	310	(13)	142	(22)	168	(21)	221	(18)	295	(15)	386	(19)	489	(31)	561	(43)
	19-30	481	342	(19)	F		177	$(52)^{E}$	236	$(41)^E$	317	(28)	419	(30)	535	(60)	618	(89)
	31-50	709	327	(16)	168	(11)	197	(13)	252	(15)	327	(18)	419	(23)	516	(29)	583	(33)
	51-70	758	283	(12)	152	$(35)^E$	173	$(31)^E$	213	(23)	265	(14)	328	(21)	394	(41)	438	(56)
	>70	734	245	(9)	106	$(22)^{E}$	126	(20)	167	(16)	225	(11)	298	(17)	380	(33)	436	(46)
	19+	2682	311	(9)	146	(23)	173	(22)	227	(17)	299	(11)	386	(15)	486	(29)	554	(42)
Female	•																	
	9-13	585	191	(7)	118	$(21)^E$	130	(18)	152	(13)	181	(8)	215	(13)	250	(25)	274	(34)
	14-18	645	215	(10)	154	$(29)^{E}$	166	(25)	187	(18)	212	(11)	241	(19)	271	(36)	289	$(48)^{E}$
	19-30	514	202	(10)	99	$(18)^{E}$	116	(17)	149	(15)	192	(12)	244	(15)	301	(24)	342	(34)
	31-50	758	233	(11)	97	$(17)^{E}$	117	(16)	158	(15)	216	(14)	291	(17)	375	(28)	432	(37)
	51-70	955	222	(10)	79	(13)	98	(12)	137	(11)	197	(10)	277	(14)	373	(25)	440	(35)
	>70	1345		(6)		(14)	114	(13)	143	(10)	184	, ,	234	(11)	286	(20)	320	(27)
	19+	3572		(6)		(8)	115	, ,	152	`	205		270		343	,		(16)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>

Footnotes

F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² No DRIs have been established for cholesterol.

Table 9.7 Total cholesterol (mg/d): Usual intakes from food, by DRI age-sex group, household population, Manitoba, 2004^{1,2}

							Percer	ntiles (and SE) of usu	al intake		
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)
Sex	Age (years)										
Both											
	1-3	324	156	(10)	70 (14)	82 (13)	107 (12)	143 (12)	191 (16)	240 (25)	274 (32)
	4-8	425	197	(11)	114 (26)	129 (23) ^E	156 (17)	191 (11)	234 (16)	281 (32)	313 (45)
Male											
	9-13	274	227	(8)	106 (24)	125 (22) ^E	163 (16)	214 (11)	277 (20)	344 <i>(37)</i>	389 (48)
	14-18	297	328	(21)	128 (22)	156 (22)	214 (22)	299 (24)	417 (34)	560 (55)	664 (76)
	19-30	249	349	(24)	167 (15)	194 (17)	247 (21)	323 (27)	414 (34)	507 (40)	566 (43)
	31-50	309	278	(16)	137 (30)	158 (26) ^E	196 (22)	245 (19)	313 (25)	387 (43)	436 (57)
	51-70	277	299	(18)	197 (43)	216 (39) ^E	250 (31)	293 (22)	341 (28)	391 (51)	423 (70)
	>70	136	238	(22)	89 (29)	108 (27) ^E	147 (24)	206 (21)	285 (33)	378 (63)	446 (91) ^E
	19+	971	295	(10)	147 (19)	169 (18)	212 (15)	270 (12)	344 (16)	428 (28)	487 (38)
Female	;										
	9-13	265	202	(13)	114 (12)	128 (12)	153 (14)	186 (17)	226 (20)	269 (26)	298 (30)
	14-18	290	211	(11)	116 (25)	132 (23) ^E	164 (19)	205 (14)	253 (16)	304 (25)	338 (33)
	19-30	197	207	(13)	123 (13)	136 (14)	158 (16)	186 (18)	218 (21)	250 (23)	270 (25)
	31-50	312	250	(22)	119 (32)	142 (31) ^E	185 (29)	239 (27)	294 (31)	352 (51)	396 (70) ^E
	51-70	312		(17)	175 (44) ¹	, ,	215 (28)	249 (20)	289 (30)	330 (54)	357 (73) ^E
	>70	239		(11)	88 (8)	101 (8)	125 (10)	159 (12)	200 (15)	245 (19)	276 (22)
				, ,		, ,		, ,			
	19+	1060	229	(10)	109 (17)	129 (16)	166 (14)	216 (12)	274 (16)	338 (25)	383 (33

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² No DRIs have been established for cholesterol.

Table 9.8 Total cholesterol (mg/d): Usual intakes from food, by DRI age-sex group, household population, Saskatchewan, 2004^{1,2}

							Percent	tiles (and SE) of usua	al intake		
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)
Sex	Age (years)										
Both											
	1-3	129	161	(12)	69 (13) ^E	83 (13)	108 (14)	143 (16)	191 (21)	249 (30)	295 (39)
	4-8	213	190	(13)	144 (25) ^E	152 (23)	167 (18)	185 (15)	206 (17)	226 (27)	240 (37)
Male											
	9-13	122	244	(26)	155 (36) ^E	170 (35) ^E	199 (33) ^E	237 (34)	283 (43)	334 (59) ^E	368 (74) ^E
	14-18	150	319	(30)	177 (39) ^E	201 (38) ^E	247 (37)	307 (40)	377 (51)	449 (67)	496 (80)
	19-30	106	374	(32)	130 (40) ^E	165 (40) ^E	239 (39)	347 (39)	489 (50)	650 (75)	764 (100)
	31-50	155	282	(19)	125 (32) ^E	151 (29) ^E	198 (24)	263 (22)	344 (30)	435 (52)	502 (72)
	51-70	122	400	(50)	144 (40) ^E	180 (40) ^E	249 (44) ^E	364 (49)	531 (68)	737 (127) ^E	913 (203) ^E
	>70	88	276	(32)	88 (29) ^E	112 (29) ^E	163 (30) ^E	242 (35)	349 (50)	476 (78)	568 (101) ^E
	19+	471	333	(18)	111 (14)	144 (14)	207 (15)	298 (18)	423 (26)	587 (45)	718 (66)
Female	:										
	9-13	103	210	(20)	138 (17)	150 (18)	174 (21)	204 (24)	239 (29)	275 (34)	300 (38)
	14-18	142	194	(17)	120 (27) ^E	132 (24) ^E	154 (21)	184 (20)	226 (28)	277 (47) ^E	313 (65) ^E
	19-30	111	244	(22)	122 (35) ^E	141 (33) ^E	178 (30) ^E	227 (29)	284 (34)	341 (47)	378 (59)
	31-50	146	224	(19)	F	F	144 (31) ^E	195 (26)	255 (27)	319 (42)	360 (55)
	51-70	184	245	(15)	163 (36) ^E	178 (32) ^E	207 (25)	242 (19)	282 (24)	322 (40)	349 (54)
	>70	143		(17)	98 (29) ^E	114 (28) ^E	148 (25) ^E	194 (23)	251 (31)	315 (49)	359 (65) ^E
	19+	584		(10)	112 (17)	131 (16)	168 (14)	216 (13)	272 (16)	329 (23)	367 (29)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>

Footnotes

F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² No DRIs have been established for cholesterol.

Table 9.9 Total cholesterol (mg/d): Usual intakes from food, by DRI age-sex group, household population, Alberta, 2004^{1,2}

										Percen	tiles (and	SE) of usu	al intake					
		n	Mean	(SE)	5th	(SE)	10th	n (SE)	25th	(SE)	50tl	h (SE)	75th	(SE)	90tl	n (SE)	95tl	n (SE)
Sex	Age (years)																	
Both																		
	1-3	169	151	(12)	52	$(16)^{E}$	71	$(14)^{E}$	97	(13)	142	(13)	197	(20)	252	(35)	306	$(52)^E$
	4-8	281	199	(15)	108	(8)	121	(9)	148	(11)	184	(15)	228	(21)	278	(29)	315	(35)
Male																		
	9-13	183	261	(22)	145	(14)	163	(16)	199	(19)	250	(24)	313	(30)	384	(37)	434	(42)
	14-18	187	320	(21)	163	(17)	190	(19)	243	(22)	314	(26)	400	(32)	493	(38)	555	(43)
	19-30	223	326	(22)	168	(17)	193	(18)	239	(21)	301	(26)	377	(31)	458	(38)	513	(42)
	31-50	229	335	(29)	170	(20)	200	(21)	257	(25)	333	(32)	426	(39)	525	(46)	592	(51)
	51-70	197	307	(27)	137	$(25)^{E}$	166	(26)	220	(28)	287	(32)	372	(39)	461	(49)	521	(58)
	>70	72	259	(31)	138	$(41)^{E}$	158	$(39)^{E}$	194	$(36)^{E}$	241	(36)	296	(46)	352	$(69)^{E}$	388	$(90)^{E}$
	19+	721	320	(15)	186	$(34)^E$	210	(30)	256	(24)	315	(19)	385	(25)	458	(43)	505	(56)
Female	:																	
	9-13	165	171	(10)	108	(11)	119	(12)	139	(13)	164	(14)	192	(16)	221	(18)	240	(20)
	14-18	206	216	(20)	105	$(29)^{E}$	123	$(27)^{E}$	159	(23)	209	(22)	272	(33)	344	(55)	395	$(75)^{E}$
	19-30	191	227	(18)	145	(16)	162	(18)	192	(21)	232	(25)	278	(30)	325	(35)	355	(38)
	31-50	258	285	(25)	150	(19)	174	(22)	220	(28)	282	(37)	360	(48)	444	(61)	498	(69)
	51-70	249		(18)		$(32)^E$		(29) ^E	180	(23)		(20)	296	(30)	366	(51)	414	(68)
	>70	128	230		139			(26)		(22)		(22)		(26)		(35)		(43)
	19+	826		(12)	183	. ,		(28)		(22)		(17)		(20)		(32)		(41)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² No DRIs have been established for cholesterol.

Table 9.10 Total cholesterol (mg/d): Usual intakes from food, by DRI age-sex group, household population, British Columbia, 2004^{1,2}

							Percent	tiles (and SE) of usua	al intake		
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)
Sex	Age (years)										
Both											
	1-3	192	211	(20)	99 (19) ^E	117 (19)	152 (20)	199 (22)	257 (29)	318 (39)	359 (47)
	4-8	321	189	(10)	118 (21) ^E	129 (19)	152 (15)	182 (12)	218 (18)	255 (31)	279 (40)
Male											
	9-13	226	271	(19)	141 (22)	163 (21)	206 (21)	265 (24)	338 (32)	412 (44)	461 (54)
	14-18	262	357	(30)	180 (38) ^E	209 (36) ^E	265 (33)	339 (32)	429 (42)	525 (60)	589 (76)
	19-30	197	383	(26)	203 (44) ^E	233 (41) ^E	293 (35)	373 <i>(32)</i>	465 (45)	562 (69)	627 (90)
	31-50	282	393	(35)	224 (58) ^E	252 (53) ^E	306 (44)	375 (39)	455 (52)	538 (83)	592 (107) ^E
	51-70	234	342	(19)	146 (24) ^E	172 (24)	225 (24)	305 (24)	407 (30)	512 (41)	580 (50)
	>70	119	275	(29)	123 (36) ^E	146 (36) ^E	195 (38) ^E	265 (40)	347 (45)	425 (53)	472 (59)
	19+	832	365	(16)	159 (16)	190 (17)	252 (17)	341 (19)	452 (25)	570 (37)	651 (48)
Female	2										
	9-13	226	227	(19)	119 (18)	136 (18)	170 (19)	217 (22)	277 (30)	344 (43)	393 (56)
	14-18	242	210	(14)	96 (16) ^E	114 (16)	151 (16)	203 (17)	265 (21)	333 (29)	380 (37)
	19-30	208	208	(14)	147 (29) ^E	160 (26)	184 (23)	213 (21)	245 (25)	275 (35)	294 (43)
	31-50	263	311	(34)	158 (42) ^E	184 (38) ^E	235 (34)	301 (34)	379 (47)	457 (67)	508 (82)
	51-70	322		(15)	114 (23) ^E	137 (22)	180 (20)	238 (20)	310 (25)	390 (37)	446 (49)
	>70	198		(15)	79 (19) ^E	98 (19) ^E	135 (19)	187 (20)	252 (25)	325 (36)	377 (46)
	19+	991		(15)	125 (14)	148 (14)	192 (14)	254 (16)	330 (22)	412 (33)	469 (43)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>

Footnotes

F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² No DRIs have been established for cholesterol.

Table 9.11 Total cholesterol (mg/d): Usual intakes from food, by DRI age-sex group, household population, Atlantic Region, 2004^{1,2}

										Percen	tiles (and	SE) of usu	al intake					
		n	Mean	(SE)	5th	(SE)	10th	n (SE)	25th	(SE)	50tl	n (SE)	75th	(SE)	90th	(SE)	95th	h (SE)
Sex	Age (years)																	
Both																		
	1-3	348	189	(10)	93	(12)	108	(12)	138	(12)	181	(13)	234	(16)	291	(22)	329	(28)
	4-8	554	212	(11)	119	(15)	134	(14)	164	(13)	204	(12)	253	(15)	308	(22)	348	(29)
Male																		
	9-13	409	274	(19)	140	(18)	160	(18)	197	(18)	250	(21)	322	(27)	404	(38)	460	(47)
	14-18	414	323	(21)	171	(26)	198	(24)	247	(23)	311	(23)	391	(29)	480	(43)	541	(55)
	19-30	311	340	(23)	182	$(33)^{E}$	208	(31)	259	(29)	329	(30)	421	(38)	527	(56)	600	(72)
	31-50	489	335	(17)	185	(30)	211	(27)	261	(22)	324	(21)	398	(31)	476	(48)	530	(62)
	51-70	575	317	(15)	183	(30)	204	(27)	245	(22)	300	(19)	364	(26)	429	(39)	469	(49)
	>70	239	293	(25)	146	$(32)^{E}$	169	$(32)^{E}$	215	(33)	279	(35)	356	(40)	435	(49)	485	(57)
	19+	1614	327	(10)	179	(13)	204	(13)	252	(13)	315	(13)	390	(17)	469	(23)	522	(28)
Female																		
	9-13	355	214	(18)	124	$(24)^{E}$	139	(22)	168	(20)	206	(21)	252	(27)	302	(41)	336	(54)
	14-18	410	189	(11)	90	$(19)^{E}$	108	(17)	142	(14)	186	(13)	236	(17)	293	(27)	333	(35)
	19-30	384	233	(21)	136	$(23)^{E}$	153	(22)	187	(21)	232	(22)	284	(28)	338	(37)	374	(44)
	31-50	585	222	(11)	106	(16)	125	(16)	162	(14)	212	(14)	272	(18)	336	(25)	379	(32)
	51-70	711	246	(12)	101	(14)	122	(14)	164	(14)	226	(15)	306	(19)	394		455	(36)
	>70	342		(18)		(24) ^E		(23)	170			(22)	247		291			(49)
	19+	2022		(8)	114		133	, ,	170	,	221	, ,	286	,		(16)		(20)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² No DRIs have been established for cholesterol.

Table 9.12 Total cholesterol (mg/d): Usual intakes from food, by DRI age-sex group, household population, Prairie Region, 2004^{1,2}

										Percen	tiles (and	SE) of usua	al intake					
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	(SE)	75th	(SE)	90th	(SE)	95tl	h (SE)
ex	Age (years)																	
Both																		
	1-3	622	154	(8)	62	(9)	75	(8)	102	(7)	142	(8)	193	(13)	249	(21)	293	(29)
	4-8	919	197	(9)	108	(5)	122	(6)	148	(8)	185	(10)	230	(14)	282	(19)	319	(23)
I ale																		
	9-13	579	251	(14)	140	$(24)^E$	158	(22)	193	(20)	240	(18)	299	(21)	364	(32)	409	(43)
	14-18	634	322	(14)	162	(23)	189	(21)	242	(19)	313	(19)	401	(24)	494	(36)	557	(46)
	19-30	578	338	(16)	170	$(30)^E$	195	(27)	245	(23)	314	(20)	400	(27)	494	(44)	556	(58)
	31-50	693	315	(18)	161	$(35)^E$	186	$(32)^E$	236	(27)	302	(21)	385	(26)	476	(43)	537	(57)
	51-70	596	323	(18)	143	$(35)^E$	174	$(32)^E$	226	(28)	306	(23)	402	(32)	515	(57)	589	(79)
	>70	296	258	(18)	86	$(18)^E$	111	(17)	159	(18)	226	(21)	319	(29)	430	(43)	506	(55)
	19+	2163	317	(10)	145	(13)	172	(12)	223	(12)	296	(12)	394	(15)	506	(23)	582	(30)
'emale																		
	9-13	533	185	(8)	114	(8)	125	(8)	148	(9)	176	(11)	209	(12)	243	(15)	266	(16)
	14-18	638	211	(13)	112	$(22)^{E}$	130	(20)	164	(16)	208	(14)	259	(19)	316	(32)	356	(43)
	19-30	499	226	(12)	137	$(26)^{E}$	153	(24)	182	(20)	220	(17)	264	(19)	308	(27)	336	(35)
	31-50	716	268	(17)	138	(12)	159	(14)	200	(17)	256	(22)	325	(29)	400	(36)	451	(41)
	51-70	745	246	(11)	126	(20)	145	(18)	183	(15)	235	(14)	302	(19)	375	(32)	423	(41)
	>70	510	204	(10)	111	(16)	127	(15)	157	(13)	198	(12)	247	(17)	302	(25)	338	(32)
	19+	2470		, ,		(13)	154	,	189	, ,		(10)		(13)		(18)		(23)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>

Footnotes

F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² No DRIs have been established for cholesterol.

Table 9.13 Total cholesterol (mg/d): Usual intakes from food, by DRI age-sex group, household population, Canada excluding territories, 2004^{1,2}

							Percen	tiles (and SE) of usua	al intake		
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)
Sex	Age (years)										
Both											
	1-3	2117	184	(5)	82 (5)	98 (5)	130 (5)	173 (6)	229 (7)	292 (11)	335 (14)
	4-8	3235	201	(5)	112 (8)	127 (7)	155 (6)	193 (6)	239 (7)	289 (12)	323 (16)
Male											
	9-13	2080	279	(7)	160 (11)	181 (11)	221 (10)	274 (10)	336 (12)	402 (17)	447 (22)
	14-18	2288	327	(9)	162 (10)	190 (10)	244 (10)	317 (10)	409 (14)	513 (20)	586 (25)
	19-30	1804	344	(12)	174 (17)	202 (17)	255 (15)	325 (14)	410 (18)	502 (28)	564 (36)
	31-50	2596	341	(11)	169 (16)	197 (15)	252 (13)	328 (12)	422 (17)	524 (28)	593 (37)
	51-70	2550	312	(8)	141 (12)	166 (12)	216 (11)	286 (10)	378 (12)	481 (20)	551 (27)
	>70	1520	263	(9)	112 (10)	135 (10)	179 (11)	242 (12)	324 (14)	413 (19)	474 (23)
	19+	8470	327	(6)	151 (6)	179 (6)	232 (6)	307 (7)	401 (9)	505 (13)	576 (17)
emale											
	9-13	1980	203	(5)	121 (9)	134 (8)	159 (6)	192 (6)	229 (8)	268 (13)	294 (18)
	14-18	2256	212	(6)	108 (8)	126 (8)	159 (7)	205 (8)	262 (10)	326 (15)	370 (20)
	19-30	1854	218	(6)	123 (10)	139 (10)	171 (9)	211 (9)	258 (10)	308 (14)	341 (18)
	31-50	2686	259	(9)	134 (13)	155 (12)	197 (12)	252 (11)	319 (13)	389 (18)	436 (23)
	51-70	3200	238	(6)	113 (8)	132 (7)	171 (7)	226 (7)	295 (9)	372 (13)	424 (18)
	>70	2610	200	(5)	109 (8)	124 (7)	153 (7)	192 (6)	239 (8)	287 (12)	319 (16)
	19+	10350	238		122 (5)	141 (5)	179 (5)	229 (5)	292 (6)	358 (9)	403 (11)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² No DRIs have been established for cholesterol.

10. Vitamin A	(RAE/d	l): Usual	intakes	from	food
---------------	--------	-----------	---------	------	------

Table 10.1 Vitamin A (RAE/d): Usual intakes from food, by DRI age-sex group, household population, Newfoundland and Labrador, 2004^{1,2}

										Percenti	iles (and S	SE) of usua	al intake	;							
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	(SE)	75th	(SE)	90th	(SE)	95th	(SE)	EAR ³	% <ear< th=""><th>(SE)</th></ear<>	(SE)
Sex	Age (years)																				
Both																					
	1-3	79	493	(49)	274	$(59)^{E}$	310	$(53)^E$	377	(48)	463	(54)	560	(77)	659	(108)	723	$(132)^E$	210	F	
	4-8	127	606	(49)	436	$(73)^{E}$	471	(68)	536	(60)	620	(57)	721	(73)	835	(117)	916	$(161)^E$	275	<3	
Male																					
	9-13	111	637	(57)	338	$(62)^E$	389	(59)	484	(57)	607	(65)	766	(93)	956	(140)	1091	(176)	445	F	
	14-18	107	568	(64)	F		281	$(79)^{E}$	395	$(70)^{E}$	558	(70)	766	(100)	997	(163)	1157	$(221)^E$	630	60.0	$(12.3)^{E}$
	19-30	77	429	(32)	214	(30)	252	(32)	323	(36)	408	(39)	506	(45)	612	(57)	687	(67)	625	91.1	(4.6)
	31-50	145	720	$(174)^{E}$	331	$(90)^{E}$	367	$(86)^{E}$	442	$(81)^E$	547	(84)	690	$(116)^{E}$	869	$(191)^E$	1005	$(266)^{E}$	625	65.3	$(19.6)^{E}$
	51-70	182	651	(63)	266	$(86)^{E}$	319	$(80)^{E}$	426	(69)	581	(68)	790	(114)	1043	$(227)^E$	1232	$(353)^E$	625	56.3	$(13.0)^{E}$
	>70	63	629	(59)	260	$(79)^{E}$	318	$(75)^{E}$	429	(70)	574	(72)	755	(104)	966	(148)	1118	$(186)^{E}$	625	58.2	$(13.2)^{E}$
	19+	467	631	(75)	256	(37)	302	(35)	385	(33)	509	(37)	694	(59)	940	(121)	1137	$(193)^{E}$	625	67.5	(6.2)
Female																					
	9-13	96	492	(38)	260	$(56)^{E}$	297	$(53)^E$	366	(48)	452	(47)	552	(59)	657	(80)	728	(96)	420	F	
	14-18	105	404	(41)	135	$(35)^E$	169	$(37)^{E}$	239	$(41)^E$	337	(49)	468	(65)	638	(91)	765	(113)	485	77.2	(9.0)
	19-30	91	459	(68)	F		198	$(60)^{E}$	281	$(58)^{E}$	400	(65)	554	$(100)^{E}$	733	$(170)^{E}$	867	$(235)^{E}$	500	67.6	$(14.2)^{E}$
	31-50	167	455	(50)	209	$(57)^{E}$	251	(55) ^E	327	(54) ^E	424	(65)	549	(91)	705	$(129)^{E}$	823	$(162)^{E}$	500	66.9	$(15.4)^{E}$
	51-70	198	F		249	$(78)^{E}$	292	$(79)^{E}$	364	(93) ^E	495	$(149)^{E}$	F		F		F		500	50.7	$(15.5)^{E}$
	>70	74	542	(92) ^E	290	(82) ^E	324	$(81)^{E}$		(82) ^E		(92) ^E	583	$(120)^{E}$	702	$(166)^{E}$	784	$(203)^{E}$	500	F	
	19+	530		(94)		(37)		(38)		(41)		(55)		(102)		$(257)^{E}$		$(470)^{E}$	500	55.3	(9.2) ^E

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² No prevalences of intakes above the UL are shown for vitamin A. The UL for vitamin A applies to preformed vitamin A only, and those estimates had not yet been conducted at the time these tables were produced.
- ³ EAR is the Estimated Average Requirement. For additional detail, see footnote 9 in Appendix A.

Table 10.2 Vitamin A (RAE/d): Usual intakes from food, by DRI age-sex group, household population, Prince Edward Island, 2004^{1,2}

										Percentile	es (and S	SE) of usu	al intake	;							
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	(SE)	75th	(SE)	90th	(SE)	95th	(SE)	EAR ³	% <ear< th=""><th>(SE)</th></ear<>	(SE)
ex	Age (years)																				
Both																					
	1-3	58	559	(65)	402	$(80)^{E}$	441	$(77)^{E}$	511	(75)	597	(80)	690	(95)	781	(120)	839	(139)	210	<3	
	4-8	110	610	(53)	392	$(87)^{E}$	438	$(79)^{E}$	518	(68)	611	(66)	704	(75)	787	(90)	838	(103)	275	<3	
I ale																					
	9-13	95	604	(46)	372	(49)	416	(52)	501	(60)	611	(69)	739	(79)	866	(92)	946	(102)	445	F	
	14-18	87	765	(70)	374	$(65)^E$	447	(70)	584	(80)	765	(96)	993	(122)	1256	(157)	1450	(187)	630	F	
	19-30	70	885	(91)	485	$(128)^E$	555	$(126)^{E}$	702	$(122)^E$	912	(126)	1146	(149)	1343	(179)	1453	(200)	625	F	
	31-50	109	623	(65)	F		F		393	$(83)^E$	596	(85)	861	(124)	1146	(188)	1335	$(234)^E$	625	53.3	(12.2
	51-70	128	759	(108)	312	$(66)^{E}$	370	$(70)^{E}$	498	(78)	686	(100)	924	$(153)^E$	1218	$(240)^E$	1441	$(312)^E$	625	42.0	(13.8
	>70	65	646	(54)	376	$(75)^{E}$	424	$(72)^{E}$	513	(68)	636	(72)	797	(91)	990	(133)	1136	(176)	625	47.8	(15.5
	19+	372	720	(47)	251	(31)	319	(33)	464	(40)	684	(53)	980	(81)	1328	(129)	1580	(172)	625	43.6	(5.7)
emale																					
	9-13	75	708	(106)	F		F		F		F		F		F		F		420	F	
	14-18	81	592	(78)	F		F		302	$(70)^{E}$	472	$(79)^{E}$	703	$(120)^{E}$	974	$(195)^{E}$	1169	$(261)^{E}$	485	51.8	(12.9
	19-30	101	668	(54)	388	$(91)^{E}$	447	(86) ^E	564	(80)	717	(85)	887	(109)	1048	(141)	1147	(164)	500	F	
	31-50	116	615	(82)	319	(98) ^E	371	(95) ^E	471	(92) ^E	608	(100)	774	$(130)^{E}$	949	$(175)^{E}$	1062	$(208)^{E}$	500	F	
	51-70	146	631	(38)	411	(86) ^E	453	$(77)^{E}$	532	(62)	632	(52)	750	(67)	875	(107)	960	(142)	500	F	
	>70	94		(41)		$(43)^E$		$(44)^E$		(47)		(51)		(71)	702	(111)		$(145)^{E}$	500	68.8	(10.2
	19+	457		(37)	295			(44)		(44)		(48)		(63)		(87)	1093		500		(8.3)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² No prevalences of intakes above the UL are shown for vitamin A. The UL for vitamin A applies to preformed vitamin A only, and those estimates had not yet been conducted at the time these tables were produced.
- ³ EAR is the Estimated Average Requirement. For additional detail, see footnote 9 in Appendix A.

F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Table 10.3 Vitamin A (RAE/d): Usual intakes from food, by DRI age-sex group, household population, Nova Scotia, 2004^{1,2}

										Percentile	es (and l	SE) of usua	al intake	2							
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	(SE)	75th	(SE)	90th	(SE)	95th	(SE)	EAR ³	% <ear< th=""><th>(SE)</th></ear<>	(SE)
Sex	Age (years)																				
Both																					
	1-3	112	479	(31)	294	$(67)^{E}$	328	$(60)^{E}$	389	(49)	462	(40)	541	(41)	616	(55)	663	(67)	210	<3	
	4-8	177	602	(40)	305	$(55)^E$	356	(50)	451	(44)	577	(43)	730	(58)	899	(91)	1018	(120)	275	F	
Male																					
	9-13	111	616	(40)	404	$(74)^{E}$	442	(68)	512	(58)	598	(52)	693	(65)	787	(93)	846	(117)	445	F	
	14-18	113	700	$(122)^E$	299	$(97)^E$	358	$(98)^{E}$	472	$(101)^E$	630	$(122)^E$	839	$(179)^{E}$	1082	$(262)^E$	1252	$(320)^{E}$	630	F	
	19-30	91	698	(75)	235	(56) ^E	301	$(63)^E$	434	$(73)^{E}$	619	(85)	848	(100)	1092	(119)	1256	(137)	625	50.7	(11
	31-50	101	593	(51)	287	$(88)^{E}$	332	$(82)^{E}$	421	$(72)^{E}$	542	(68)	688	(88)	839	(134)	940	$(181)^{E}$	625	65.5	(14
	51-70	134	738	(74)	438	$(108)^E$	490	$(100)^{E}$	584	(89)	700	(83)	826	(95)	950	(124)	1030	(150)	625	F	
	>70	56	665	$(112)^{E}$	F		F		F		575	$(155)^{E}$	798	$(160)^{E}$	1071	$(204)^E$	1276	$(271)^{E}$	625	F	
	19+	382	664	(34)	294	(47)	349	(46)	459	(45)	611	(44)	792	(92)	976	$(218)^E$	1095	$(328)^{E}$	625	52.3	(7.5)
emale																					
	9-13	105	526	(49)	318	(34)	353	(37)	416	(43)	496	(50)	586	(57)	676	(63)	734	(68)	420	F	
	14-18	120	501	(61)	232	$(60)^{E}$	294	(58) ^E	400	(59)	515	(72)	659	(101)	802	$(140)^{E}$	890	$(169)^{E}$	485	F	
	19-30	91	669	(102)	401	$(119)^{E}$	445	$(112)^{E}$	530	$(107)^{E}$	654	$(118)^{E}$	846	$(160)^{E}$	1114	$(256)^{E}$	1325	$(361)^{E}$	500	F	
	31-50	159	613	(49)	276	$(80)^{E}$	329	(76) ^E	434	(68)	573	(66)	735	(83)	908	(122)	1031	(161)	500	F	
	51-70	174	699	(93)	234	(59) ^E	285	$(62)^{E}$	391	$(70)^{E}$	571	(83)	826	(112)	1144	$(190)^{E}$	1420	$(305)^{E}$	500	40.8	(11.0
	>70	80		$(177)^{E}$	F			$(126)^{E}$		$(136)^{E}$		$(161)^{E}$		$(246)^{E}$		$(497)^{E}$	F	•	500	F	
	19+	504		(44)	289	(41)		(42)		(44)		(49)		(67)	1181		1431	(191)	500	33.1	(7.3)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² No prevalences of intakes above the UL are shown for vitamin A. The UL for vitamin A applies to preformed vitamin A only, and those estimates had not yet been conducted at the time these tables were produced.
- ³ EAR is the Estimated Average Requirement. For additional detail, see footnote 9 in Appendix A.

F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Table 10.4 Vitamin A (RAE/d): Usual intakes from food, by DRI age-sex group, household population, New Brunswick, 2004^{1,2}

										Percentil	es (and S	SE) of usu	al intake	.				
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	(SE)	75th	(SE)	90th (SE)	95th (SE)	EAR ³	%< EAR (SE)
Sex	Age (years)																	
Both																		
	1-3	99	567	(41)	367	$(74)^{E}$	404	(65)	472	(52)	556	(48)	654	(68)	758 (115)	828 (159) ^E	210	<3
	4-8	140	825	$(168)^{E}$	401	$(82)^{E}$	455	$(77)^{E}$	560	(72)	706	(76)	898	(114)	1136 (208) ^E	1321 (317) ^E	275	F
Male																		
	9-13	92	610	(57)	343	$(72)^{E}$	385	$(69)^{E}$	463	(64)	567	(67)	701	(89)	868 (142)	1001 (198) ^E	445	F
	14-18	107	903	(134)	457	$(146)^{E}$	527	$(139)^{E}$	665	$(127)^{E}$	850	(126)	1076	(162)	1320 (237) ^E	1485 (304) ^E	630	F
	19-30	73	738	(90)	282	$(71)^{E}$	339	$(72)^{E}$	455	$(78)^{E}$	635	(99)	923	$(158)^{E}$	1362 (298) ^E	1759 (460) ^E	625	48.8 (13.6) ^E
	31-50	134	684	(53)	306	$(60)^{E}$	360	(64) ^E	460	(72)	589	(80)	734	(84)	880 (93)	975 (105)	625	57.0 (14.8) ^E
	51-70	131	763	(99)	363	$(92)^{E}$	416	$(87)^{E}$	522	(79)	676	(80)	879	(118)	1116 (209) ^E	1289 (306) ^E	625	F
	>70	55	878	(128)	368	$(99)^{E}$	442	$(100)^{E}$	585	$(107)^{E}$	782	(127)	1047	$(198)^{E}$	1380 (452) ^E	F	625	F
	19+	393	736	(40)	359	$(61)^{E}$	413	(57)	516	(49)	658	(46)	839	(77)	1045 (167)	1195 (265) ^E	625	44.3 (8.3) ^E
Female	:																	
	9-13	79	677	(81)	305	$(67)^{E}$	348	$(70)^{E}$	440	$(80)^{E}$	596	(95)	822	(126)	1085 (188) ^E	1273 (248) ^E	420	F
	14-18	104	518	(67)	337	$(97)^{E}$	374	$(91)^{E}$	452	(83) ^E	561	(87)	688	(114)	808 (153) ^E	881 (182) ^E	485	F
	19-30	101	521	(79)	F		F		331	(94) ^E	474	$(100)^{E}$	657	$(122)^{E}$	855 (160) ^E	989 (194) ^E	500	54.3 (17.5) ^E
	31-50	143	764	$(145)^{E}$	F		F		373	$(93)^{E}$	585	$(98)^{E}$	891	$(148)^{E}$	1346 (324) ^E	1771 (577) ^E	500	40.4 (11.9) ^E
	51-70	193		(78)	251	(55) ^E	300	(54) ^E	396	(56)	549	(64)		(93)	1176 (194)	1524 (329) ^E	500	42.7 (9.8) ^E
	>70	94		(91)		$(80)^{E}$		$(81)^E$		$(83)^{E}$		(89)		(120)	1049 (227) ^E	1303 (364) ^E	500	F
	19+	531		(66)		(34)		(35)		(36)		(44)		(67)	1179 (134)	1505 (224)	500	41.5 (6.0)
	171	331	005	(00)	21)	(37)	217	(33)	371	(30)	331	(17)	007	(0/)	1117 (137)	1303 (224)	200	11.5 (0.0)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² No prevalences of intakes above the UL are shown for vitamin A. The UL for vitamin A applies to preformed vitamin A only, and those estimates had not yet been conducted at the time these tables were produced.
- ³ EAR is the Estimated Average Requirement. For additional detail, see footnote 9 in Appendix A.

F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Table 10.5 Vitamin A (RAE/d): Usual intakes from food, by DRI age-sex group, household population, Quebec, 2004^{1,2}

										Percentile	es (and S	SE) of usu	al intake	•							
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	(SE)	75th	(SE)	90th	(SE)	95th	(SE)	EAR ³	% <ear< th=""><th>(SE)</th></ear<>	(SE)
Sex	Age (years)																				
Both																					
	1-3	311	591	(37)	309	(47)	348	(46)	430	(46)	563	(50)	744	(67)	937	(94)	1061	(113)	210	<3	
	4-8	485	657	(33)	328	(23)	382	(26)	485	(31)	620	(41)	785	(55)	965	(74)	1089	(88)	275	F	
Male																					
	9-13	277	815	(52)	470	(73)	535	(72)	659	(70)	828	(73)	1040	(91)	1280	(126)	1451	(160)	445	F	
	14-18	339	791	(55)	361	$(61)^{E}$	429	(63)	568	(68)	769	(77)	1033	(108)	1335	(164)	1550	(190)	630	32.8	(8.4)
	19-30	237	756	(58)	393	$(102)^{E}$	452	$(97)^{E}$	561	(87)	714	(79)	922	(95)	1158	(149)	1318	(199)	625	F	
	31-50	423	949	(89)	439	(52)	530	(56)	708	(64)	928	(84)	1160	(106)	1408	(132)	1593	(153)	625	17.2	(5.6)
	51-70	387	1208	$(306)^{E}$	273	(41)	348	(45)	505	(56)	777	(73)	1281	(154)	2249	$(637)^{E}$	F		625	37.0	(6.1)
	>70	132	1117	(184)	280	$(79)^{E}$	348	$(87)^{E}$	506	$(108)^{E}$	794	$(153)^{E}$	1312	$(261)^{E}$	2171	$(524)^E$	3020	$(861)^{E}$	625	36.4	(10.5
	19+	1179	994	(99)	340	(39)	424	(41)	583	(50)	861	(64)	1244	(109)	1755	(215)	2185	(349)	625	28.8	(4.9)
Female																					
	9-13	281	673	(37)	291	(42)	347	(42)	456	(43)	609	(49)	809	(63)	1037	(88)	1196	(112)	420	19.5	(6.2)
	14-18	321	599	(44)	256	(32)	307	(34)	407	(41)	551	(53)	737	(70)	956	(104)	1129	(142)	485	38.6	(8.2)
	19-30	249	755	(77)	379	$(108)^{E}$	439	$(104)^{E}$	555	(96) ^E	716	(96)	924	(132)	1164	$(238)^{E}$	1340	$(365)^{E}$	500	F	
	31-50	364	755	(64)	399	$(103)^{E}$	461	(96) ^E	576	(82)	734	(73)	926	(91)	1149	(145)	1316	(196)	500	F	
	51-70	467	768	(45)	356	(62) ^E	416	(56)	520	(49)	674	(47)	900	(67)	1175	(131)	1378	(195)	500	F	
	>70	215	702	(60)	335	(38)	391	(43)	501	(55)	663	(73)	887	(99)	1169	(150)	1388	(208)	500	F	
	19+	1295	752	(34)	381	(42)	437	(40)	548	(39)	711	(41)	924	(52)	1177	(82)	1368	(113)	500	17.9	(5.5)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² No prevalences of intakes above the UL are shown for vitamin A. The UL for vitamin A applies to preformed vitamin A only, and those estimates had not yet been conducted at the time these tables were produced.
- ³ EAR is the Estimated Average Requirement. For additional detail, see footnote 9 in Appendix A.

Table 10.6 Vitamin A (RAE/d): Usual intakes from food, by DRI age-sex group, household population, Ontario, 2004^{1,2}

Both 1-3 4-8 Male		n 644 956		(18) (15)	212	(SE)	10th	(SE)		(SE)	50th (S	<i>SE</i>) 75th	n (SE)	90th	(SE)	95th	(SE)	EAR ³	% <ear< th=""><th>(SE)</th></ear<>	(SE)
Both 1-3 4-8 Male						(26)	264	(24)												
1-3 4-8 Male						(26)	264	(24)												
4-8 Male						(26)	264	(24)												
Male		956	565	(15)	290			(24)	362	(21)	492 (2	(1) 660	(27)	849	(42)	981	(58)	210	4.9	$(1.6)^{E}$
	3				270	(36)	337	(33)	427	(26)	547 (1)	9) 692	(24)	851	(44)	961	(62)	275	F	
0.40	3																			
9-13		589	631	(23)	307	(41)	362	(38)	468	(31)	607 (2	77) 76 9	(35)	936	(56)	1047	(73)	445	21.2	$(5.2)^{E}$
14-1	18	639	687	(30)	436	$(78)^{E}$	482	(69)	568	(53)	678 (3)	80 4	(49)	934	(88)	1020	(120)	630	39.0	$(11.7)^{E}$
19-3	30	481	653	(51)	270	$(85)^{E}$	323	$(79)^{E}$	431	(65)	586 (5.	(2) 803	(77)	1081	(169)	1288	$(259)^{E}$	625	55.6	(9.5) ^E
31-5	50	709	628	(41)	280	$(72)^{E}$	330	$(67)^{E}$	432	(57)	583 (4	782	(53)	1012	(107)	1179	(162)	625	56.3	(7.6)
51-7	70	758	664	(38)	374	$(76)^{E}$	423	$(71)^{E}$	521	(60)	659 (5)	(3) 82 9	(72)	1010	(119)	1134	(162)	625	43.9	$(11.6)^{E}$
>70	•	734	655	(54)	236	$(43)^E$	282	(42)	376	(43)	532 (4)	(5) 792	(67)	1183	(150)	1544	$(257)^{E}$	625	61.1	(5.9)
19+		2682	645	(23)	281	(33)	331	(33)	440	(36)	608 (3	(O) 82 4	(38)	1076	(65)	1265	(98)	625	52.7	(4.7)
Female																				
9-13	3	585	563	(20)	259	(36)	307	(33)	402	(27)	526 (2.	(3) 67 4	(30)	831	(48)	941	(65)	420	28.5	$(5.4)^{E}$
14-1	18	645	570	(26)	281	$(55)^{E}$	330	(50)	426	(40)	553 (3	706	(40)	871	(71)	985	(98)	485	36.5	$(8.0)^{E}$
19-3	30	514	505	(28)	224	$(51)^E$	266	(47) ^E	350	(39)	468 (3	(1) 619	(42)	791	(79)	914	(111)	500	56.3	(6.8)
31-5	50	758	645	(36)	241	(27)	298	(26)	413	(25)	563 (2	(6) 773	(39)	1074	(87)	1332	(160)	500	39.4	(4.2)
51-7	70	955		(33)	235	$(45)^E$	286	(44)	396	(39)	542 (3)	(5) 73 9	(40)	1023	(72)	1270	(126)	500		(6.6)
>70		1345		(30)		$(56)^E$	333	, ,	421		558 (4		(52)	989	,	1167	, ,	500		(9.7) ^E
19+		3572		(19)		(19)	309		404	, ,	567 (2)	•	(33)	1007	, ,	1195	,	500		(3.6)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² No prevalences of intakes above the UL are shown for vitamin A. The UL for vitamin A applies to preformed vitamin A only, and those estimates had not yet been conducted at the time these tables were produced.
- ³ EAR is the Estimated Average Requirement. For additional detail, see footnote 9 in Appendix A.

F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Table 10.7 Vitamin A (RAE/d): Usual intakes from food, by DRI age-sex group, household population, Manitoba, 2004^{1,2}

										Percent	iles (and S	E) of us	sual intake	e							
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	(SE)	75th	(SE)	90th	(SE)	95th	(SE)	EAR^3	% <ear< th=""><th>(SE)</th></ear<>	(SE)
Sex	Age (years)																				
Both																					
	1-3	324	477	(40)	227	(33)	267	(31)	345	(31)	454	(39)	592	(58)	752	(87)	867	(113)	210	F	
	4-8	425	532	(21)	264	$(77)^{E}$	310	$(67)^{E}$	396	(46)	505	(26)	626	(40)	751	(77)	838	(106)	275	F	
Male																					
	9-13	274	627	(31)	345	$(85)^{E}$	396	$(75)^{E}$	492	(57)	615	(38)	751	(45)	884	(77)	969	(103)	445	F	
	14-18	297	847	(70)	284	$(78)^{E}$	371	$(74)^{E}$	548	(68)	812	(72)	1161	(124)	1560	(215)	1864	(298)	630	33.0	$(7.1)^{E}$
	19-30	249	677	(80)	295	(30)	344	(35)	437	(44)	565	(57)	730	(74)	920	(100)	1055	(120)	625	60.5	(9.8)
	31-50	309	599	(55)	196	$(45)^E$	247	$(46)^{E}$	347	(51)	518	(58)	757	(74)	1001	(104)	1166	(136)	625	62.5	(7.6)
	51-70	277	655	(63)	297	$(62)^E$	345	$(60)^{E}$	444	(58)	598	(63)	813	(93)	1078	(175)	1280	$(269)^E$	625	53.9	$(10.3)^{E}$
	>70	136	589	(42)	339	$(85)^{E}$	380	$(78)^{E}$	461	(63)	571	(49)	705	(68)	851	(125)	952	$(177)^{E}$	625	61.4	$(13.0)^{E}$
	19+	971	631	(32)	262	(37)	310	(37)	408	(36)	556	(35)	770	(47)	1007	(78)	1166	(108)	625	59.5	(5.2)
Female																					
	9-13	265	570	(32)	251	$(44)^E$	298	(40)	390	(31)	514	(28)	653	(45)	786	(70)	871	(89)	420	30.8	(6.6) ^E
	14-18	290	555	(33)	175	$(50)^{E}$	224	$(51)^{E}$	324	(50)	467	(46)	659	(53)	893	(84)	1070	(110)	485	52.9	(8.3)
	19-30	197	665	(72)	F		387	$(105)^{E}$	522	$(94)^{E}$	699	(99)	908	(139)	1114	$(199)^{E}$	1239	$(245)^{E}$	500	F	
	31-50	312	587	(52)	229	(48) ^E	273	$(48)^{E}$	365	(50)	500	(57)	693	(78)	923	(122)	1107	(172)	500	50.0	(9.9) ^E
	51-70	312		(71)	357	(85) ^E		$(79)^{E}$	499	(68)	631	(61)	802	(82)	999	(149)	1142	$(217)^{E}$	500	F	
	>70	239		(43)		(87) ^E		$(80)^{E}$		(64)		(47)		(65)		(129)		$(188)^{E}$	500	F	
	19+	1060		(28)		(35)		(34)		(32)		(33)		(45)	1034	, ,		(108)	500	38.1	(5.8)
	-)			. /		. /		• /		. /		' '					-0	. /			. ,

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² No prevalences of intakes above the UL are shown for vitamin A. The UL for vitamin A applies to preformed vitamin A only, and those estimates had not yet been conducted at the time these tables were produced.
- ³ EAR is the Estimated Average Requirement. For additional detail, see footnote 9 in Appendix A.

Table 10.8 Vitamin A (RAE/d): Usual intakes from food, by DRI age-sex group, household population, Saskatchewan, 2004^{1,2}

										Percentile	es (and S	SE) of usua	al intake	:							
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	(SE)	75th	(SE)	90th	(SE)	95th	(SE)	EAR ³	% <ear< th=""><th>(SE)</th></ear<>	(SE)
ex	Age (years)																				
Both																					
	1-3	129	523	(41)	297	$(60)^{E}$	337	(56) ^E	413	(51)	508	(49)	615	(59)	723	(80)	792	(97)	210	F	
	4-8	213	600	(35)	303	$(56)^{E}$	354	(53)	457	(44)	584	(40)	706	(49)	825	(73)	910	(93)	275	F	
Male																					
	9-13	122	622	(45)	361	$(68)^{E}$	406	(62)	487	(55)	591	(56)	713	(70)	838	(97)	920	(117)	445	F	
	14-18	150	682	(49)	445	$(95)^{E}$	482	(85) ^E	548	(67)	628	(57)	715	(74)	799	(111)	852	(140)	630	F	
	19-30	106	754	(67)	289	$(77)^{E}$	358	$(80)^{E}$	504	$(85)^{E}$	719	(97)	1008	(134)	1372	(217)	1663	$(305)^{E}$	625	39.3	(11
	31-50	155	716	(111)	286	$(84)^{E}$	341	$(80)^{E}$	465	(72)	583	(83)	798	(128)	1170	$(286)^{E}$	F		625	57.2	(13.
	51-70	122	1049	$(280)^{E}$	472	(64)	528	(67)	634	(89)	832	$(177)^{E}$	F		F		F		625	F	
	>70	88	1049	$(217)^{E}$	447	$(131)^E$	518	$(129)^{E}$	663	$(131)^E$	882	$(159)^{E}$	1225	$(259)^{E}$	1762	$(495)^E$	F		625	F	
	19+	471	852	(90)	329	(43)	398	(42)	528	(40)	695	(52)	986	(100)	1502	(244)	2015	$(439)^{E}$	625	40.1	(6.3)
emale																					
	9-13	103	698	$(164)^E$	349	(43)	390	(51)	471	(70)	589	$(101)^E$	750	$(147)^{E}$	948	$(209)^E$	1100	$(260)^{E}$	420	F	
	14-18	142	495	(58)	191	$(59)^{E}$	226	$(64)^{E}$	302	$(72)^{E}$	428	$(79)^{E}$	599	(96)	786	$(135)^{E}$	915	$(170)^{E}$	485	59.7	(14
	19-30	111	588	(64)	240	$(77)^{E}$	295	$(72)^{E}$	406	(64)	561	(70)	753	(107)	961	$(164)^{E}$	1102	$(207)^{E}$	500	40.2	(13.
	31-50	146	587	(59)	F		251	$(69)^{E}$	344	(67) ^E	481	(68)	651	(85)	835	(127)	968	$(170)^{E}$	500	53.3	(13.
	51-70	184	717	(47)	510	$(118)^{E}$	554	$(106)^{E}$	636	(86)	740	(72)	862	(103)	989	$(178)^{E}$	1074	(244) ^E	500	F	
	>70	143	587	(64)	294	(79) ^E	337	(76) ^E	429	(72) ^E	567	(83)	753	$(139)^{E}$	972	(254) ^E	1138	$(377)^{E}$	500	F	
	19+	584		(29)		(42)	332	(41)		(39)		(38)		(48)	950		1094	(110)	500	39.0	(7.4)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² No prevalences of intakes above the UL are shown for vitamin A. The UL for vitamin A applies to preformed vitamin A only, and those estimates had not yet been conducted at the time these tables were produced.
- ³ EAR is the Estimated Average Requirement. For additional detail, see footnote 9 in Appendix A.

F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Table 10.9 Vitamin A (RAE/d): Usual intakes from food, by DRI age-sex group, household population, Alberta, 2004^{1,2}

										Percentile	es (and S	E) of usi	ual intake)							
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	(SE)	75th	(SE)	90th	(SE)	95th	(SE)	EAR ³	% <ear< th=""><th>(SE)</th></ear<>	(SE)
Sex	Age (years)																				
Both																					
	1-3	169	498	(36)	254	$(61)^{E}$	296	$(55)^E$	374	(45)	478	(40)	609	(60)	756	(111)	860	$(158)^E$	210	F	
	4-8	281	570	(28)	398	$(67)^{E}$	430	(58)	485	(44)	553	(34)	626	(43)	699	(69)	746	(88)	275	F	
Male																					
	9-13	183	906	(113)	459	$(115)^{E}$	524	$(109)^{E}$	654	(98)	842	(96)	1098	(139)	1415	$(242)^E$	1658	$(343)^E$	445	F	
	14-18	187	711	(50)	387	(41)	444	(45)	556	(52)	708	(62)	892	(79)	1091	(98)	1226	(113)	630	37.1	(9.6) ^E
	19-30	223	709	(73)	F		425	$(118)^E$	544	$(105)^{E}$	706	(96)	906	(143)	1129	$(225)^{E}$	1289	$(287)^{E}$	625	F	
	31-50	229	636	(52)	271	$(74)^{E}$	327	$(70)^{E}$	440	(62)	602	(60)	808	(82)	1034	(134)	1195	(183)	625	53.3	$(10.4)^{E}$
	51-70	197	680	(76)	F		334	$(93)^E$	441	(83) ^E	594	(78)	800	(106)	1047	$(187)^{E}$	1231	$(271)^E$	625	54.6	$(15.1)^{E}$
	>70	72	666	(65)	436	$(77)^{E}$	481	(80)	560	(84)	655	(87)	757	(92)	856	(98)	919	(103)	625	F	
	19+	721	667	(33)	306	$(55)^{E}$	362	(52)	471	(48)	625	(44)	834	(53)	1079	(90)	1257	(129)	625	50.0	(7.5)
Female																					
	9-13	165	611	(86)	408	$(122)^E$	449	$(116)^E$	525	$(106)^{E}$	619	(97)	725	(104)	831	(135)	899	$(164)^E$	420	F	
	14-18	206	521	(36)	217	$(47)^E$	263	$(47)^{E}$	356	(45)	485	(45)	655	(58)	861	(90)	1016	(126)	485	50.1	(8.7) ^E
	19-30	191	493	(45)	166	$(53)^E$	210	(52) ^E	298	(49)	423	(50)	577	(63)	744	(91)	857	(116)	500	63.8	(10.1)
	31-50	258	624	(51)	503	$(141)^{E}$	543	$(130)^{E}$	613	$(108)^{E}$	701	(87)	802	(96)	908	$(157)^{E}$	980	$(217)^{E}$	500	F	
	51-70	249	582	(41)	261	(45) ^E	309	(43)	402	(39)	530	(40)	697	(59)	895	(105)	1043	(153)	500	44.3	$(8.2)^{E}$
	>70	128	550	(74)	209	(68) ^E	248	$(71)^E$	330	(79) ^E	466	$(90)^{E}$	681	$(118)^{E}$	953	$(181)^{E}$	1161	(246) ^E	500		$(15.1)^{E}$
	19+	826	577	(28)	280	(41)	329	(39)	422	(36)	551	(34)	718	(44)	912	(71)	1049	(97)	500	40.3	$(7.0)^{E}$

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² No prevalences of intakes above the UL are shown for vitamin A. The UL for vitamin A applies to preformed vitamin A only, and those estimates had not yet been conducted at the time these tables were produced.
- ³ EAR is the Estimated Average Requirement. For additional detail, see footnote 9 in Appendix A.

Table 10.10 Vitamin A (RAE/d): Usual intakes from food, by DRI age-sex group, household population, British Columbia, 2004^{1,2}

										Percenti	les (and S	E) of usu	ıal intake	;							
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	(SE)	75th	(SE)	90th	(SE)	95th	(SE)	EAR ³	% <ear< th=""><th>(SE)</th></ear<>	(SE)
Sex	Age (years)																				
Both																					
	1-3	192	519	(25)	340	(53)	378	(47)	442	(39)	507	(35)	590	(46)	709	(76)	801	(106)	210	<3	
	4-8	321	546	(24)	374	(56)	406	(50)	467	(38)	545	(28)	633	(38)	719	(65)	773	(86)	275	<3	
Male																					
	9-13	226	701	(39)	315	(42)	379	(42)	507	(43)	681	(48)	896	(62)	1126	(87)	1283	(107)	445	17.0	(5.0)
	14-18	262	794	(75)	464	$(92)^{E}$	521	(86)	629	(76)	771	(73)	939	(93)	1114	(140)	1232	(180)	630	F	
	19-30	197	768	(78)	456	$(124)^E$	512	$(117)^{E}$	618	$(107)^{E}$	758	(107)	922	(133)	1096	$(188)^E$	1213	$(235)^E$	625	F	
	31-50	282	728	(41)	442	$(89)^{E}$	490	(78)	578	(60)	691	(48)	822	(65)	958	(105)	1047	(136)	625	F	
	51-70	234	833	(61)	363	$(75)^{E}$	436	(72)	581	(67)	782	(68)	1046	(94)	1359	(150)	1591	(203)	625	30.5	(8.6)
	>70	119	724	(73)	355	(96) ^E	410	$(91)^E$	519	(83)	667	(84)	851	(111)	1051	(160)	1189	$(201)^E$	625	F	
	19+	832	766	(28)	419	(49)	477	(46)	587	(40)	734	(36)	914	(47)	1109	(76)	1242	(101)	625	31.3	(6.7)
Female																					
	9-13	226	640	(40)	337	(46)	388	(46)	487	(48)	626	(54)	797	(66)	976	(84)	1095	(100)	420	F	
	14-18	242	609	(60)	209	$(42)^{E}$	258	$(45)^E$	367	(51)	539	(60)	775	(87)	1083	(152)	1337	$(224)^{E}$	485	42.5	(8.2)
	19-30	208	604	(49)	283	$(72)^{E}$	339	$(69)^{E}$	451	(62)	597	(62)	769	(82)	950	(121)	1074	(154)	500	F	
	31-50	263	594	(49)	249	(62) ^E	297	(58) ^E	393	(52)	521	(61)	664	(91)	803	$(135)^{E}$	891	$(167)^{E}$	500	45.8	(13.8
	51-70	322	635	(48)	246	(54) ^E	304	(55) ^E	423	(56)	597	(64)	824	(82)	1083	(115)	1267	(146)	500	36.2	(9.0)
	>70	198	561	(34)		(46)	344	(43)	416	(39)	511	(39)	624	(50)	742	(77)	821	(104)	500	47.0	(11.0
	19+	991		(25)	255	(26)		(27)		(30)		(33)		(43)		(61)	1061	(77)	500	41.0	

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² No prevalences of intakes above the UL are shown for vitamin A. The UL for vitamin A applies to preformed vitamin A only, and those estimates had not yet been conducted at the time these tables were produced.
- ³ EAR is the Estimated Average Requirement. For additional detail, see footnote 9 in Appendix A.

F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Table 10.11 Vitamin A (RAE/d): Usual intakes from food, by DRI age-sex group, household population, Atlantic Region, 2004^{1,2}

										Percer	ntiles (and S	E) of us	sual intake	;							
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	(SE)	75th	(SE)	90th	(SE)	95th	(SE)	EAR^3	% <ear< th=""><th>(SE)</th></ear<>	(SE)
Sex	Age (years)																				
Both																					
	1-3	348	516	(21)	284	(37)	325	(34)	402	(28)	498	(26)	611	(33)	732	(51)	814	(67)	210	<3	
	4-8	554	675	(57)	348	(30)	397	(30)	496	(27)	611	(30)	777	(42)	1014	(92)	1222	(164)	275	<3	
Male																					
	9-13	409	618	(27)	367	(37)	410	(35)	492	(34)	600	(35)	728	(44)	866	(63)	961	(79)	445	F	
	14-18	414	738	(67)	289	(42)	354	(45)	487	(51)	678	(63)	926	(88)	1212	(125)	1417	(155)	630	43.9	(7.8) ^E
	19-30	311	660	(42)	240	$(42)^{E}$	296	(42)	410	(43)	576	(48)	803	(70)	1083	(115)	1297	(159)	625	56.5	(7.0)
	31-50	489	653	(48)	298	$(56)^{E}$	345	(53)	441	(47)	582	(43)	757	(60)	941	(98)	1065	(134)	625	57.1	(8.3)
	51-70	575	727	(46)	306	(37)	363	(38)	485	(38)	644	(44)	863	(61)	1140	(102)	1358	(147)	625	46.9	(6.5)
	>70	239	725	(62)	280	$(55)^E$	343	$(58)^E$	473	(64)	661	(74)	909	(91)	1211	(135)	1446	(191)	625	45.4	(9.6) ^E
	19+	1614	683	(25)	266	(19)	320	(18)	424	(21)	600	(27)	829	(39)	1096	(60)	1295	(80)	625	53.3	(3.7)
Female																					
	9-13	355	579	(33)	323	(40)	363	(39)	439	(37)	541	(38)	667	(48)	804	(70)	897	(89)	420	F	
	14-18	410	491	(33)	230	(38)	275	(35)	354	(33)	463	(37)	611	(48)	777	(68)	888	(86)	485	54.6	(7.8)
	19-30	384	575	(51)	261	$(50)^{E}$	313	(49)	412	(51)	548	(61)	731	(85)	963	(130)	1138	(174)	500	41.4	(9.8) ^E
	31-50	585	623	(51)	235	(35)	292	(37)	398	(41)	551	(47)	785	(71)	1103	(142)	1358	$(228)^{E}$	500	42.1	$(7.3)^{E}$
	51-70	711	739	(82)	262	(31)	313	(31)	413	(31)	551	(41)	790	(74)	1213	(178)	1652	$(340)^{E}$	500	41.4	(6.4)
	>70	342	739	(80)	283	(44)	337	(47)	443	(53)	611	(67)	874	(107)	1238	$(210)^{E}$		$(337)^{E}$	500	34.1	$(9.2)^{E}$
	19+	2022		(35)		(19)		(20)		(22)	556	,		(40)	1149	, ,		(149)	500		(4.2)
				()		/		,		` '		/				, /		/			/

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² No prevalences of intakes above the UL are shown for vitamin A. The UL for vitamin A applies to preformed vitamin A only, and those estimates had not yet been conducted at the time these tables were produced.
- ³ EAR is the Estimated Average Requirement. For additional detail, see footnote 9 in Appendix A.

Table 10.12 Vitamin A (RAE/d): Usual intakes from food, by DRI age-sex group, household population, Prairie Region, 2004^{1,2}

										Percen	tiles (and SE) of usu	al intake					
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	EAR ³	% <ear< th=""><th>(SE)</th></ear<>	(SE)
Sex	Age (years)																
Both																	
	1-3	622	498	(25)	228	(30)	268	(28)	351	(27)	478 (29)	626 (39)	776 (57)	886 (76)	210	F	
	4-8	919	567	(18)	305	(38)	350	(34)	432	(28)	536 (23)	657 (28)	784 (45)	869 (60)	275	F	
Male																	
	9-13	579	793	(68)	469	(85) ^E	523	(78)	623	(67)	756 (59)	917 (70)	1094 (106	1217 (141)	445	F	
	14-18	634	734	(35)	373	$(63)^E$	439	(59)	565	(51)	730 (46)	926 (59)	1134 (92)	1278 (124)	630	34.6	$(8.0)^{E}$
	19-30	578	710	(50)	322	$(91)^E$	383	$(86)^{E}$	506	(74)	675 (63)	882 (96)	1113 (151	1278 (198)	625	42.7	$(11.4)^{E}$
	31-50	693	641	(40)	244	(31)	302	(30)	415	(32)	578 (40)	802 (57)	1063 (89)	1255 (130)	625	56.3	(5.9)
	51-70	596	743	(74)	318	$(66)^{E}$	376	(61)	486	(53)	616 (62)	865 (89)	1222 (192) 1528 (320) ^E	625	56.3	(5.9)
	>70	296	738	(61)	410	(76) ^E	457	(72)	551	(64)	680 (59)	848 (77)	1042 (130	1184 (185)	625	39.5	$(12.9)^{E}$
	19+	2163	692	(27)	285	(26)	347	(23)	451	(27)	638 (30)	882 (45)	1154 (73)	1371 (107)	625	48.2	(4.2)
Female	:																
	9-13	533	618	(58)	322	$(62)^E$	369	(60)	458	(56)	578 (56)	728 (70)	897 (104	1017 (136)	420	F	
	14-18	638	524	(25)	186	(23)	231	(25)	328	(27)	461 (32)	650 (40)	884 (58)	1064 (78)	485	54.0	(5.3)
	19-30	499	546	(34)	200	$(38)^{E}$	252	(37)	355	(36)	500 (38)	680 (52)	877 (76)	1011 (98)	500	50.0	(6.8)
	31-50	716	610	(35)	307	$(63)^{E}$	357	$(60)^{E}$	452	(55)	584 (52)	762 (59)	980 (96)	1139 (137)	500	34.2	$(10.3)^{E}$
	51-70	745	638	(30)	316	(43)	363	(41)	457	(37)	593 (34)	773 (48)	983 (88)	1139 (130)	500	33.0	$(7.2)^{E}$
	>70	510	565	(41)	255	(43) ^E	296	(44)	378	(47)	502 (54)	687 (68)	909 (104) 1072 (142)	500	49.6	$(10.1)^{E}$
	19+	2470		(18)	263	(21)		(21)	418	(19)	545 (23)	739 (29)	974 (44)	1143 (60)	500	41.5	(4.0)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² No prevalences of intakes above the UL are shown for vitamin A. The UL for vitamin A applies to preformed vitamin A only, and those estimates had not yet been conducted at the time these tables were produced.
- ³ EAR is the Estimated Average Requirement. For additional detail, see footnote 9 in Appendix A.

F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Table 10.13 Vitamin A (RAE/d): Usual intakes from food, by DRI age-sex group, household population, Canada excluding territories, 2004^{1,2}

										Perce	entiles (and S	E) of ı	usual intake)							
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	(SE)	75th	(SE)	90th	(SE)	95th	(SE)	EAR^3	% <ear< th=""><th>(SE)</th></ear<>	(SE)
Sex	Age (years)																				
Both																					
	1-3	2117	530	(12)	268	(15)	311	(14)	392	(13)	509	(14)	659	(19)	818	(27)	924	(34)	210	<3	
	4-8	3235	591	(12)	312	(15)	357	(14)	444	(13)	562	(13)	705	(18)	859	(29)	965	(41)	275	2.5	$(0.7)^{E}$
Male																					
	9-13	2080	709	(20)	375	(22)	431	(22)	538	(21)	682	(21)	861	(26)	1058	(36)	1195	(47)	445	11.6	$(2.5)^{E}$
	14-18	2288	736	(21)	354	(25)	416	(25)	539	(26)	711	(27)	927	(34)	1164	(48)	1329	(62)	630	38.3	(3.9)
	19-30	1804	703	(27)	324	(31)	382	(29)	489	(28)	643	(30)	860	(43)	1111	(79)	1293	(116)	625	47.4	(4.7)
	31-50	2596	722	(29)	317	(30)	376	(31)	498	(30)	680	(32)	918	(41)	1186	(69)	1380	(100)	625	42.7	(4.4)
	51-70	2550	842	(81)	305	(22)	369	(23)	497	(24)	683	(26)	941	(38)	1325	(129)	1776	$(323)^{E}$	625	42.5	(3.4)
	>70	1520	790	(49)	299	(24)	354	(24)	462	(27)	633	(36)	909	(61)	1321	(118)	1686	(187)	625	49.0	(4.6)
	19+	8470	756	(27)	306	(14)	367	(14)	491	(15)	666	(17)	895	(24)	1203	(46)	1485	(88)	625	44.3	(2.4)
Female																					
	9-13	1980	608	(17)	285	(18)	334	(17)	431	(17)	564	(19)	729	(25)	913	(38)	1044	(50)	420	23.1	(3.0)
	14-18	2256	567	(17)	235	(15)	285	(16)	386	(17)	532	(19)	719	(26)	931	(41)	1086	(56)	485	42.2	(3.1)
	19-30	1854	590	(24)	247	(21)	297	(21)	396	(23)	538	(27)	721	(35)	931	(51)	1083	(67)	500	43.4	(4.5)
	31-50	2686	657	(23)	273	(22)	329	(23)	446	(21)	591	(25)	812	(33)	1084	(60)	1290	(92)	500	34.1	(3.7)
	51-70	3200	672	(20)	289	(19)	342	(19)	448	(19)	595	(20)	788	(28)	1041	(49)	1267	(76)	500	33.8	(3.3)
	>70	2610	630	(22)	294	(20)	338	(20)	422	(22)	557	(27)	766	(35)	1032	(58)	1246	(87)	500	40.2	(4.6)
	19+	10350	645	(12)	281	(10)	333	(11)	437	(11)	584	(13)	777	(18)	1019	(30)	1220	(47)	500	35.8	(2.0)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² No prevalences of intakes above the UL are shown for vitamin A. The UL for vitamin A applies to preformed vitamin A only, and those estimates had not yet been conducted at the time these tables were produced.
- ³ EAR is the Estimated Average Requirement. For additional detail, see footnote 9 in Appendix A.

11. Vitamin C (mg/d): Usual intakes from foo	11.	Vitamin C	(mg/d): Usual	intakes f	from fo	od
--	-----	-----------	-------	----------	-----------	---------	----

Table 11.1 Vitamin C (mg/d): Usual intakes from food, by DRI age-sex group, household population, Newfoundland and Labrador, 2004¹

						Percentiles	s (and SE) of usu	ıal intake				%		%
		n	Mean (SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	EAR^2	$\langle EAR (SE) \rangle$	UL^3	>UL (SE)
Sex	Age (years)													
Both														
	1-3	79	172 (19)	77 (22) ^E	93 (21) ^E	124 (21) ^E	162 (23)	205 (28)	247 (35)	274 (41)	13	<3	400	<3
	4-8	127	182 (18)	F	F	113 (30) ^E	178 (26)	249 (29)	325 (46)	385 (68) ^E	22	<3	650	<3
Male														
	9-13	111	165 (16)	71 (21) ^E	84 (20) ^E	110 (18) ^E	145 (18)	188 (23)	235 (33)	267 (42)	39	<3	1200	0.0 (0.0)
	14-18	107	165 (21)	F	63 (19) ^E	97 (20) ^E	153 (24)	234 (36)	334 (63) ^E	410 (90) ^E	63	F	1800	<3
	19-30	77	129 (22) ^E	F	F	84 (23) ^E	125 (26) ^E	178 (34) ^E	232 (48) ^E	269 (60) ^E	75	F	2000	0.0 (0.0)
	31-50	145	110 (16)	F	57 (17) ^E	74 (18) ^E	98 (19) ^E	133 (23) ^E	175 (33) ^E	207 (43) ^E	75	F	2000	0.0 (0.0)
	51-70	182	123 (13)	27 (8) ^E	36 (9) ^E	58 (10) ^E	97 (11)	151 (19)	221 (33)	276 (45)	75	36.1 (7.2) ^E	2000	0.0 (0.0)
	>70	63	108 (14)	36 (11) ^E	44 (11) ^E	62 (12) ^E	88 (14)	122 (19)	163 (29) ^E	193 (38) ^E	75	F	2000	0.0 (0.0)
	19+	467	118 (9)	38 (7) ^E	48 (7)	70 (8)	103 (10)	150 (14)	207 (20)	249 (25)	75	28.9 (6.4) ^E	2000	0.0 (0.0)
Female														
	9-13	96	134 (10)	63 (20) ^E	76 (19) ^E	102 (17)	136 (15)	175 (18)	215 (24)	242 (30)	39	F	1200	0.0 (0.0)
	14-18	105	171 (16)	86 (25) ^E	103 (24) ^E	138 (23)	186 (24)	243 (31)	304 (44)	346 (56)	56	F	1800	0.0 (0.0)
	19-30	91	109 (15)	41 (9) ^E	50 (10) ^E	68 (13) ^E	93 (16) ^E	124 (21) ^E	158 (26) ^E	181 (30) ^E	60	F	2000	0.0 (0.0)
	31-50	167	102 (14)	F	42 (14) ^E	66 (15) ^E	101 (17) ^E	146 (22)	200 (32)	239 (43) ^E	60	F	2000	0.0 (0.0)
	51-70	198	98 (9)	F	F	55 (15) ^E	85 (12)	123 (13)	170 (24)	205 (35) ^E	60	F	2000	0.0 (0.0)
	>70	74	99 (9)	F	48 (14) ^E	67 (12) ^E	92 (12)	122 (15)	154 (21)	174 (27)	60	F	2000	0.0 (0.0)
	19+	530	102 (7)	31 (5)	41 (6)	61 (7)	94 (8)	137 (11)	185 (16)	219 (21)	60	24.0 (5.2) ^E		0.0 (0.0)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² EAR is the Estimated Average Requirement. For additional detail, see footnote 9 in Appendix A. The EAR for vitamin C used in this table is that for non-smokers.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 11.2 Vitamin C (mg/d): Usual intakes from food, by DRI age-sex group, household population, Prince Edward Island, 2004¹

							Percentiles	(and SE) of usu	al intake				%		%
		n	Mean (S	SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	EAR ²	$\langle EAR \ (SE) \rangle$	UL^3	> UL (SE)
Sex	Age (years)														
Both															
	1-3	58	108 (1	10)	44 (10) ^E	55 (10) ^E	76 (11)	106 (12)	143 (15)	183 (24)	211 (32)	13	<3	400	<3
	4-8	110	103 (9	9)	47 (7)	56 (8)	75 (11)	102 (13)	132 (16)	163 (19)	182 (20)	22	<3	650	0.0 (0.0)
Male															
	9-13	95	155 (1	15)	77 (22) ^E	90 (23) ^E	117 (23) ^E	153 (24)	196 (27)	244 (32)	276 (38)	39	<3	1200	0.0 (0.0)
	14-18	87	139 (2	21)	F	F	95 (25) ^E	144 (30) ^E	209 (41) ^E	280 (56) ^E	327 (67) ^E	63	F	1800	0.0 (0.0)
	19-30	70	108 (1	16)	F	53 (16) ^E	72 (17) ^E	96 (21) ^E	139 (29) ^E	183 (46) ^E	206 (66) ^E	75	F	2000	0.0 (0.0)
	31-50	109	112 (1	13)	50 (16) ^E	59 (15) ^E	78 (15) ^E	103 (17)	135 (23) ^E	169 (33) ^E	193 (41) ^E	75	F	2000	0.0 (0.0)
	51-70	128	112 (1	16)	F	F	64 (16) ^E	100 (18) ^E	149 (24)	205 (33)	242 (39)	75	F	2000	0.0 (0.0)
	>70	65	104 (1	11)	56 (12) ^E	65 (11) ^E	84 (11)	108 (14)	137 (19)	168 (28)	188 (34) ^E	75	F	2000	0.0 (0.0)
	19+	372	110 (7	7)	41 (6)	51 (7)	72 (7)	105 (9)	148 (12)	194 (16)	225 (21)	75	27.5 (6.1) ^E	2000	0.0 (0.0)
Female															
	9-13	75	122 (1	17)	F	61 (20) ^E	78 (21) ^E	100 (25) ^E	126 (30) ^E	151 (36) ^E	167 (41) ^E	39	F	1200	0.0 (0.0)
	14-18	81	121 (1	11)	50 (8)	62 (9)	85 (11)	117 (15)	155 (20)	196 (27)	223 (32)	56	F	1800	0.0 (0.0)
	19-30	101	103 (1	13)	F	F	59 (15) ^E	90 (17) ^E	133 (24) ^E	186 (36) ^E	225 (48) ^E	60	F	2000	0.0 (0.0)
	31-50	116	86 (1	10)	30 (8) ^E	36 (8) ^E	51 (10) ^E	75 (13) ^E	111 (18)	149 (25) ^E	174 (30) ^E	60	F	2000	0.0 (0.0)
	51-70	146	113 (1	15)	46 (15) ^E	54 (15) ^E	71 (14) ^E	95 (16) ^E	126 (22) ^E	163 (32) ^E	190 (42) ^E	60	F	2000	0.0 (0.0)
	>70	94	78 (9	9)	F	F	39 (10) ^E	57 (12) ^E	83 (14) ^E	112 (18)	134 (22) ^E	60	53.4 (14.7) ^E	2000	0.0 (0.0)
	19+	457	96 (7	7)	28 (4)	36 (4)	52 (5)	79 (8)	120 (12)	168 (17)	204 (22)	60	32.7 (5.4)	2000	0.0 (0.0)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² EAR is the Estimated Average Requirement. For additional detail, see footnote 9 in Appendix A. The EAR for vitamin C used in this table is that for non-smokers.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 11.3 Vitamin C (mg/d): Usual intakes from food, by DRI age-sex group, household population, Nova Scotia, 2004

						Percentiles	s (and SE) of usu	ıal intake				%		%
		n	Mean (SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	EAR ²	$\langle EAR (SE) \rangle$	UL^3	>UL (SE)
Sex	Age (years)													
Both														
	1-3	112	120 (9)	43 (13) ^E	54 (13) ^E	79 (13)	115 (14)	158 (18)	201 (25)	228 (30)	13	<3	400	<3
	4-8	177	117 (8)	68 (19) ^E	78 (17) ^E	97 (14)	122 (12)	153 (15)	186 (25)	209 (33)	22	<3	650	<3
Male														
	9-13	111	153 (18)	66 (11) ^E	79 (13) ^E	106 (17)	143 (21)	186 (26)	231 (31)	260 (36)	39	<3	1200	0.0 (0.0)
	14-18	113	126 (19)	40 (12) ^E	50 (15) ^E	71 (21) ^E	106 (30) ^E	160 (35) ^E	222 (39) ^E	261 (43)	63	F	1800	0.0 (0.0)
	19-30	91	136 (18)	F	80 (26) ^E	107 (26) ^E	144 (28) ^E	191 (38) ^E	243 (56) ^E	280 (73) ^E	75	F	2000	0.0 (0.0)
	31-50	101	109 (13)	F	38 (11) ^E	61 (12) ^E	95 (14)	141 (19)	193 (25)	230 (33)	75	35.4 (10.2) ^E	2000	0.0 (0.0)
	51-70	134	89 (9)	35 (11) ^E	42 (10) ^E	58 (10) ^E	80 (10)	109 (14)	140 (19)	162 (25)	75	44.4 (12.8) ^E	2000	0.0 (0.0)
	>70	56	111 (17)	F	F	74 (24) ^E	101 (24) ^E	135 (25) ^E	171 (30) ^E	194 (38) ^E	75	F	2000	0.0 (0.0)
	19+	382	108 (7)	35 (6)	44 (6)	65 (7)	98 (9)	143 (12)	194 (17)	231 (22)	75	32.7 (6.0) ^E	2000	0.0 (0.0)
Female														
	9-13	105	146 (20)	F	54 (16) ^E	84 (16) ^E	128 (19)	183 (28)	243 (41) ^E	282 (51) ^E	39	F	1200	<3
	14-18	120	122 (14)	F	59 (17) ^E	81 (17) ^E	111 (18)	147 (22)	184 (32) ^E	209 (41) ^E	56	F	1800	0.0 (0.0)
	19-30	91	103 (15)	42 (11) ^E	49 (13) ^E	59 (17) ^E	79 (23) ^E	116 (31) ^E	150 (39) ^E	163 (40) ^E	60	F	2000	0.0 (0.0)
	31-50	159	109 (10)	F	F	66 (15) ^E	106 (16)	155 (20)	208 (28)	246 (35)	60	F	2000	0.0 (0.0)
	51-70	174	87 (6)	29 (8) ^E	36 (8) ^E	52 (7)	76 (7)	108 (9)	148 (17)	177 (24)	60	34.0 (8.6) ^E	2000	0.0 (0.0)
	>70	80	88 (8)	43 (11) ^E	52 (11) ^E	67 (11)	87 (12)	112 (15)	141 (20)	162 (25)	60	F	2000	0.0 (0.0)
	19+	504	99 (6)	36 (7) ^E	45 (7)	64 (8)	93 (8)	129 (10)	168 (15)	195 (19)	60	21.3 (6.1) ^E	2000	0.0 (0.0)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² EAR is the Estimated Average Requirement. For additional detail, see footnote 9 in Appendix A. The EAR for vitamin C used in this table is that for non-smokers.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 11.4 Vitamin C (mg/d): Usual intakes from food, by DRI age-sex group, household population, New Brunswick, 2004¹

Male 9-13 14-18 19-30	99 140	Mean (SE) 142 (15)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	EAR ²	% <ear (se)<="" th=""><th>UL³</th><th>% >UL (SE)</th></ear>	UL ³	% >UL (SE)
(years) Both 1-3 4-8 Male 9-13 14-18 19-30			F										
1-3 4-8 Male 9-13 14-18 19-30			F										
4-8 Male 9-13 14-18 19-30			F										
Male 9-13 14-18 19-30	140			77 (25) ^E	102 (23) ^E	137 (21)	183 (26)	236 (42) ^E	274 (58) ^E	13	<3	400	F
9-13 14-18 19-30		173 (19)	84 (27) ^E	99 (25) ^E	130 (22) ^E	173 (22)	226 (31)	283 (47) ^E	323 (61) ^E	22	<3	650	<3
14-18 19-30													
19-30	92	114 (20) ^E	F	F	F	82 (23) ^E	118 (29) ^E	162 (40) ^E	194 (51) ^E	39	F	1200	<3
	107	131 (18)	F	F	77 (19) ^E	113 (20) ^E	161 (28) ^E	221 (47) ^E	268 (64) ^E	63	F	1800	<3
31-50	73	128 (21)	F	F	72 (22) ^E	116 (25) ^E	175 (32) ^E	241 (45) ^E	285 (58) ^E	75	F	2000	<3
	134	121 (22) ^E	F	F	67 (19) ^E	105 (21) ^E	154 (25)	205 (33)	238 (40) ^E	75	F	2000	0.0 (0.0)
51-70	131	80 (11)	20 (5) ^E	27 (7) ^E	42 (9) ^E	68 (13) ^E	105 (18) ^E	151 (24)	186 (30)	75	56.1 (11.8) ^E	2000	0.0 (0.0)
>70	55	92 (13)	F	F	56 (14) ^E	85 (15) ^E	122 (20)	165 (30) ^E	196 (39) ^E	75	F	2000	0.0 (0.0)
19+	393	108 (11)	32 (8) ^E	42 (8) ^E	62 (10)	96 (12)	143 (17)	197 (23)	235 (29)	75	35.0 (8.4) ^E	2000	0.0 (0.0)
Female													
9-13	79	105 (18) ^E	44 (15) ^E	51 (14) ^E	66 (14) ^E	89 (16) ^E	121 (23) ^E	160 (36) ^E	189 (49) ^E	39	F	1200	<3
14-18	104	125 (12)	67 (18) ^E	76 (17) ^E	92 (15)	112 (15)	135 (19)	158 (28) ^E	173 (35) ^E	56	F	1800	0.0 (0.0)
19-30	101	114 (15)	F	F	64 (20) ^E	108 (21) ^E	173 (27)	254 (41)	315 (54) ^E	60	F	2000	0.0 (0.0)
31-50	143	116 (14)	F	F	59 (15) ^E	99 (16)	152 (21)	213 (32)	256 (43) ^E	60	F	2000	0.0 (0.0)
51-70	193	94 (9)	32 (9) ^E	40 (9) ^E	55 (9)	79 (9)	112 (<i>12</i>)	149 (18)	176 (25)	60	30.2 (9.8) ^E	2000	0.0 (0.0)
>70	94	90 (9)	27 (8) ^E	34 (9) ^E	50 (9) ^E	74 (11)	104 (14)	137 (20)	161 (26)	60	35.3 (11.1) ^E		0.0 (0.0)
19+			24 (4) ^E	- ' /	/ /	` /	- 1 /	- ' /	- ' '		, ,		, ,

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² EAR is the Estimated Average Requirement. For additional detail, see footnote 9 in Appendix A. The EAR for vitamin C used in this table is that for non-smokers.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 11.5 Vitamin C (mg/d): Usual intakes from food, by DRI age-sex group, household population, Quebec, 2004¹

						Percentile	s (and SE) of us	ual intake				0/0		%	
		n	Mean (SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	EAR ²	$\langle EAR (SE) \rangle$	UL^3	>UL (5	SE)
Sex	Age (years)														
Both															
	1-3	311	132 (8)	50 (8) ^E	63 (9)	90 (9)	129 (11)	177 (14)	231 (20)	272 (27)	13	<3	400	<3	
	4-8	485	154 (9)	66 (14) ^E	80 (13)	108 (11)	144 (10)	188 (13)	234 (20)	265 (27)	22	<3	650	<3	
I ale															
	9-13	277	163 (12)	79 (18) ^E	93 (17) ^E	120 (16)	157 (17)	202 (24)	250 (36)	282 (46)	39	<3	1200	0.0	0.0
	14-18	339	178 (15)	58 (14) ^E	74 (15) ^E	111 (17)	162 (20)	220 (26)	279 (34)	321 (40)	63	F	1800	0.0	0.0
	19-30	237	200 (19)	87 (28) ^E	108 (27) ^E	150 (25) ^E	205 (25)	268 (30)	337 (41)	385 (52)	75	F	2000	0.0	0.0
	31-50	423	144 (7)	70 (13) ^E	84 (12)	111 (11)	146 (11)	187 (15)	232 (24)	266 (32)	75	F	2000	0.0	0.0
	51-70	387	137 (11)	43 (9) ^E	56 (10) ^E	85 (11)	130 (13)	189 (18)	257 (27)	305 (35)	75	19.2 (5.7) ^E	2000	0.0	0.0
	>70	132	88 (8)	31 (10) ^E	40 (10) ^E	58 (9)	83 (9)	114 (12)	149 (19)	172 (26)	75	42.2 (9.6) ^E	2000	0.0	0.0
	19+	1179	149 (6)	53 (6)	68 (6)	99 (7)	147 (8)	207 (10)	273 (14)	320 (18)	75	13.1 (2.7) ^E	2000	0.0	0.0
emale	:														
	9-13	281	148 (11)	84 (18) ^E	94 (17) ^E	112 (14)	135 (13)	159 (18)	183 (26)	197 (32)	39	<3	1200	0.0	0.0
	14-18	321	157 (11)	64 (12) ^E	79 (12)	107 (13)	145 (14)	189 (17)	237 (23)	270 (28)	56	F	1800	0.0	0.0
	19-30	249	157 (14)	68 (18) ^E	82 (17) ^E	110 (17)	149 (18)	196 (22)	243 (30)	274 (36)	60	F	2000	0.0	0.0
	31-50	364	133 (11)	51 (12) ^E	62 (12) ^E	86 (12)	121 (13)	168 (16)	224 (24)	264 (33)	60	F	2000	0.0	0.0
	51-70	467	126 (6)	53 (11) ^E	65 (10)	89 (9)	121 (8)	158 (10)	195 (15)	219 (20)	60	F	2000	0.0	0.0
	>70	215	98 (7)	30 (6) ^E	39 (6)	58 (7)	87 (8)	126 (11)	170 (16)	201 (21)	60	26.6 (5.9) ^E	2000	0.0	
	19+	1295	131 (6)	46 (5)	57 (5)	83 (6)	122 (7)	172 (9)	228 (12)	268 (16)	60	11.4 (2.6) ^E		0.0	

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² EAR is the Estimated Average Requirement. For additional detail, see footnote 9 in Appendix A. The EAR for vitamin C used in this table is that for non-smokers.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 11.6 Vitamin C (mg/d): Usual intakes from food, by DRI age-sex group, household population, Ontario, 2004¹

						Percentile	es (and SE) of us	ual intake				%		%	
		n	Mean (SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	EAR ²	$\langle EAR (SE) \rangle$	UL^3	>UL (S.	E)
Sex	Age (years)														
Both															
	1-3	644	141 (6)	46 (9) ^E	60 (9)	91 (8)	135 (7)	189 (9)	246 (15)	287 (20)	13	<3	400	<3	
	4-8	956	147 (5)	63 (10) ^E	77 (10)	104 (8)	140 (6)	182 (9)	228 (15)	259 (21)	22	<3	650	0.0 (0.).0)
Male															
	9-13	589	165 (9)	67 (16) ^E	81 (15) ^E	111 (13)	152 (10)	205 (13)	265 (24)	308 (35)	39	<3	1200	0.0 (0.).0)
	14-18	639	165 (8)	82 (22) ^E	97 (20) ^E	124 (15)	162 (10)	207 (15)	255 (30)	287 (41)	63	F	1800	0.0 (0.).0)
	19-30	481	145 (10)	64 (21) ^E	76 (20) ^E	102 (17)	138 (13)	184 (18)	233 (32)	267 (45) ^E	75	F	2000	0.0 (0.).0)
	31-50	709	113 (6)	F	53 (14) ^E	73 (11)	102 (8)	138 (10)	178 (20)	205 (28)	75	F	2000	0.0 (0.).0)
	51-70	758	136 (7)	43 (8) ^E	56 (8)	82 (8)	123 (8)	176 (11)	238 (20)	283 (28)	75	20.6 (4.8) ^E	2000	0.0 (0.).0)
	>70	734	120 (5)	36 (5)	47 (5)	72 (5)	109 (6)	156 (8)	209 (13)	246 (16)	75	26.9 (3.7)	2000	0.0 (0.).0)
	19+	2682	127 (4)	44 (6)	55 (6)	79 (5)	115 (4)	162 (6)	214 (11)	250 (16)	75	22.0 (3.7) ^E	2000	0.0 (0.	0.0)
Female	;														
	9-13	585	145 (7)	60 (5)	73 (5)	99 (7)	135 (8)	177 (9)	219 (10)	246 (11)	39	<3	1200	0.0).0)
	14-18	645	151 (7)	42 (11) ^E	56 (11) ^E	89 (9)	137 (8)	197 (12)	262 (21)	308 (29)	56	F	1800	0.0 (0.	0.0)
	19-30	514	128 (7)	45 (13) ^E	56 (12) ^E	80 (10)	114 (8)	157 (12)	202 (22)	233 (29)	60	F	2000	0.0 (0.	0.0)
	31-50	758	115 (5)	31 (5)	42 (5)	65 (6)	102 (6)	152 (8)	211 (13)	254 (17)	60	21.2 (3.9) ^E	2000	0.0 (0.).0)
	51-70	955	126 (6)	32 (5)	44 (5)	70 (6)	112 (7)	166 (9)	226 (14)	271 (18)	60	18.8 (3.2) ^E		0.0 (0.	0.0)
	>70	1345	116 (4)	39 (5)	50 (5)	73 (5)	105 (5)	145 (7)	188 (11)	218 (15)	60	16.0 (3.1) ^E		0.0 (0.	·
	19+	3572	121 (3)	34 (3)	45 (3)	70 (3)	107 (4)	157 (5)	212 (8)	251 (10)	60	18.7 (2.0)	2000	0.0 (0.	

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² EAR is the Estimated Average Requirement. For additional detail, see footnote 9 in Appendix A. The EAR for vitamin C used in this table is that for non-smokers.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 11.7 Vitamin C (mg/d): Usual intakes from food, by DRI age-sex group, household population, Manitoba, 2004¹

						Percentiles	s (and SE) of us	ual intake				%		%
		n	Mean (SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	EAR ²	$\langle EAR (SE) \rangle$	UL ³	>UL (SE)
Sex	Age (years)													
Both														
	1-3	324	129 (11)	35 (10) ^E	45 (10) ^E	69 (8)	104 (8)	154 (17)	216 (34)	264 (48) ^E	13	<3	400	<3
	4-8	425	135 (9)	45 (6)	58 (6)	87 (6)	125 (8)	166 (11)	211 (15)	246 (20)	22	<3	650	0.0 (0.0)
Male														
	9-13	274	116 (9)	43 (6)	53 (7)	73 (10)	103 (14)	141 (17)	181 (19)	208 (22)	39	F	1200	0.0 (0.0)
	14-18	297	150 (12)	62 (19) ^E	75 (18) ^E	102 (16)	140 (15)	190 (22)	247 (38)	288 (52) ^E	63	F	1800	0.0 (0.0)
	19-30	249	133 (15)	40 (6)	51 (7)	74 (10)	110 (14)	158 (20)	215 (29)	256 (37)	75	25.5 (7.2) ^E	2000	0.0 (0.0)
	31-50	309	122 (11)	F	68 (19) ^E	90 (16) ^E	121 (14)	158 (17)	197 (29)	223 (39) ^E	75	F	2000	0.0 (0.0)
	51-70	277	111 (9)	F	54 (14) ^E	74 (12)	102 (10)	137 (13)	174 (23)	200 (31)	75	F	2000	0.0 (0.0)
	>70	136	118 (17)	F	58 (18) ^E	80 (17) ^E	112 (18)	157 (28) ^E	210 (47) ^E	250 (64) ^E	75	F	2000	0.0 (0.0)
	19+	971	121 (6)	47 (12) ^E	58 (11) ^E	80 (10)	113 (8)	155 (11)	201 (20)	233 (27)	75	F	2000	0.0 (0.0)
Female	;													
	9-13	265	127 (14)	57 (9)	66 (11)	85 (13)	110 (15)	139 (18)	170 (21)	191 (23)	39	F	1200	0.0 (0.0)
	14-18	290	124 (7)	F	54 (17) ^E	78 (15) ^E	113 (13)	155 (14)	201 (21)	232 (29)	56	F	1800	0.0 (0.0)
	19-30	197	116 (13)	F	F	66 (16) ^E	94 (15)	131 (21)	172 (35) ^E	200 (46) ^E	60	F	2000	0.0 (0.0)
	31-50	312	96 (7)	36 (10) ^E	45 (10) ^E	62 (9)	87 (8)	119 (10)	154 (16)	179 (23)	60	F	2000	0.0 (0.0)
	51-70	312	117 (11)	45 (8) ^E	54 (8)	74 (10)	104 (13)	141 (17)	183 (23)	213 (28)	60	F	2000	0.0 (0.0)
	>70	239	97 (9)	24 (6) ^E	33 (7) ^E	52 (7)	84 (8)	126 (11)	175 (18)	210 (26)	60	31.2 (6.1) ^E	2000	0.0 (0.0)
	19+	1060	106 (5)	32 (5)	41 (5)	61 (5)	90 (5)	129 (7)	175 (11)	208 (15)	60	24.5 (4.1) ^E		0.0 (0.0)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² EAR is the Estimated Average Requirement. For additional detail, see footnote 9 in Appendix A. The EAR for vitamin C used in this table is that for non-smokers.
- 3 UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 11.8 Vitamin C (mg/d): Usual intakes from food, by DRI age-sex group, household population, Saskatchewan, 2004¹

		Ī					Percentile	es (and SE) of us	ual intake				0/0		%
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	EAR^2	<ear (se)<="" th=""><th>UL^3</th><th>>UL (SE)</th></ear>	UL^3	> UL (SE)
Sex	Age (years)														
Both															
	1-3	129	105	(10)	27 (8) ^E	37 (9) ^E	58 (11) ^E	93 (14)	140 (19)	192 (27)	227 (33)	13	<3	400	<3
	4-8	213	115	(10)	45 (14) ^E	55 (14) ^E	76 (13)	106 (12)	144 (16)	185 (26)	214 (35)	22	<3	650	<3
Male															
	9-13	122	134	(18)	F	F	81 (23) ^E	120 (24) ^E	173 (31) ^E	233 (52) ^E	276 (73) ^E	39	F	1200	<3
	14-18	150	162	$(42)^{E}$	71 (20) ^E	83 (23) ^E	107 (30) ^E	141 (40) ^E	183 (53) ^E	230 (68) ^E	262 (78) ^E	63	F	1800	0.0 (0.0)
	19-30	106	162	(22)	F	F	80 (24) ^E	141 (28) ^E	233 (41) ^E	351 (71) ^E	441 (103) ^E	75	F	2000	<3
	31-50	155	163	$(42)^E$	F	F	67 (20) ^E	116 (27) ^E	201 (54) ^E	F	F	75	F	2000	<3
	51-70	122	111	(13)	F	54 (17) ^E	75 (15) ^E	104 (15)	139 (21)	176 (32) ^E	200 (40) ^E	75	F	2000	0.0 (0.0)
	>70	88	119	(12)	39 (12) ^E	50 (13) ^E	72 (13) ^E	108 (15)	159 (22)	223 (37) ^E	271 (52) ^E	75	F	2000	0.0 (0.0)
	19+	471	144	(17)	31 (6) ^E	42 (7)	68 (9)	115 (11)	190 (19)	297 (47)	391 (90) ^E	75	28.9 (5.2) ^E	2000	<3
Female															
	9-13	103	126	(15)	42 (14) ^E	52 (14) ^E	74 (14) ^E	107 (17)	151 (25)	204 (38) ^E	243 (50) ^E	39	F	1200	<3
	14-18	142	140	(19)	35 (10) ^E	48 (11) ^E	76 (14) ^E	122 (19)	189 (30)	272 (47) ^E	335 (61) ^E	56	F	1800	0.0 (0.0)
	19-30	111	111	(16)	F	56 (18) ^E	76 (18) ^E	104 (20) ^E	140 (27) ^E	179 (40) ^E	206 (51) ^E	60	F	2000	0.0 (0.0)
	31-50	146			35 (8) ^E	44 (9) ^E	63 (11) ^E	90 (14)	124 (19)	163 (26)	192 (32)	60	F	2000	0.0 (0.0)
	51-70	184		-	F	F	86 (23) ^E	122 (20)	165 (20)	212 (29)	246 (41) ^E	60	F	2000	<3
	>70	143			53 (13) ^E	61 (12) ^E	78 (11)	98 (10)	103 (20) 123 (13)	147 (19)	164 (23)	60	F	2000	0.0 (0.0)
					, ,	, ,	, ,	, ,	, ,	, ,	, ,		F		
	19+	584	109	(0)	45 (13) ^E	55 (12) ^E	75 (11)	103 (10)	138 (10)	177 (15)	204 (19)	60	•	2000	0.0 (0.0)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² EAR is the Estimated Average Requirement. For additional detail, see footnote 9 in Appendix A. The EAR for vitamin C used in this table is that for non-smokers.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 11.9 Vitamin C (mg/d): Usual intakes from food, by DRI age-sex group, household population, Alberta, 2004¹

					Percentiles	s (and SE) of usu	ual intake				%		%
	n	Mean (SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	EAR ²	$\langle EAR (SE) \rangle$	UL^3	>UL (SE)
Age (years)													
1-3	169	122 (9)	32 (9) ^E	41 (9) ^E	63 (10) ^E	98 (12)	153 (16)	224 (26)	280 (39)	13	<3	400	<3
4-8	281	130 (8)	34 (10) ^E	47 (11) ^E	76 (10)	117 (9)	167 (12)	219 (18)	254 (24)	22	F	650	<3
9-13	183	165 (15)	F	F	88 (18) ^E	146 (18)	230 (27)	333 (49)	409 (70) ^E	39	F	1200	<3
14-18	187	145 (15)	72 (23) ^E	84 (22) ^E	109 (20) ^E	143 (19)	186 (25)	232 (40) ^E	263 (53) ^E	63	F	1800	0.0 (0.0)
19-30	223	144 (17)	F	F	83 (20) ^E	122 (18)	175 (24)	238 (43) ^E	283 (60) ^E	75	F	2000	0.0 (0.0)
31-50	229	127 (13)	F	F	71 (17) ^E	116 (17)	179 (24)	253 (40)	308 (56) ^E	75	F	2000	0.0 (0.0)
51-70	197	112 (18)	F	F	60 (16) ^E	91 (17) ^E	133 (21)	184 (32) ^E	221 (44) ^E	75	F	2000	0.0 (0.0)
>70	72	94 (10)	F	43 (12) ^E	61 (11) ^E	85 (10)	119 (14)	162 (26)	193 (37) ^E	75	39.7 (11.5)	E 2000	0.0 (0.0)
19+	721	125 (8)	34 (7) ^E	44 (8) ^E	69 (8)	109 (10)	167 (14)	239 (23)	292 (32)	75	29.1 (5.8) ^E	2000	0.0 (0.0)
9-13	165	165 (16)	90 (14)	105 (16)	134 (20)	173 (25)	220 (31)	269 (37)	302 (42)	39	<3	1200	0.0 (0.0)
14-18	206	132 (14)	70 (23) ^E	81 (22) ^E	103 (20) ^E	132 (18)	165 (19)	200 (27)	224 (35)	56	F	1800	0.0 (0.0)
19-30	191	123 (11)	F	58 (18) ^E	82 (17) ^E	118 (16)	164 (20)	215 (31)	251 (40)	60	F	2000	0.0 (0.0)
31-50	258	107 (9)	F	40 (11) ^E	63 (11) ^E	100 (11)	150 (16)	212 (28)	259 (37)	60	23.2 (7.5) ^E	2000	0.0 (0.0)
51-70	249	118 (10)	52 (15) ^E	61 (14) ^E	80 (13)	106 (12)	139 (16)	174 (26)	198 (35) ^E	60	F	2000	0.0 (0.0)
>70	128	, ,			, ,	, ,	, ,	, ,		60	F		0.0 (0.0)
		, ,					, ,	, ,			20.0 (3.8) ^E		0.0 (0.0)
	1-3 4-8 9-13 14-18 19-30 31-50 51-70 >70 19+ 9-13 14-18 19-30 31-50 51-70	Age (years) 1-3	1-3	Age (years) 1-3 169 122 (9) 32 (9) 4-8 281 130 (8) 34 (10) F 9-13 183 165 (15) 19-30 223 144 (17) 31-50 229 127 (13) 51-70 197 112 (18) >70 72 94 (10) 19+ 721 125 (8) 734 (7) F 9-13 165 165 (16) 90 (14) 14-18 206 132 (14) 70 (23) F F 9-30 191 123 (11) 31-50 258 107 (9) 51-70 249 118 (10) 52 (15) F F 52 (15) F F 52 (15) F F 53 (16) 52 (17) F F F F F F F F F F F F F	Age (years) 1-3 169 122 (9) 32 (9) 41 (9) 42 41 (9) 43 41 (10) 47 (11) 47 (11) 48 9-13 183 165 (15) F F F 14-18 187 145 (15) 72 (23) 51 84 (22) 61 61 61 61 61 61 61 61 61 61 61 61 61	Age (years) 1-3	Age (years) 1.3 169 122 (9) 32 (9) 41 (9) 47 (11) 76 (10) 117 (9) 9.13 183 165 (15) F F F 88 (18) 146 (18) 14-18 187 145 (15) 72 (23) F F 83 (20) 109 (20) 143 (19) 19-30 223 144 (17) F F 83 (20) F F 71 (17) 116 (17) 51-70 72 94 (10) 90 (14) 105 (16) 134 (20) 173 (25) 14-18 206 132 (14) 70 (23) F 81 (22) 81 (22) 109 (20) 143 (19) 165 165 (16) 90 (14) 105 (16) 134 (20) 173 (25) 14-18 206 132 (14) 70 (23) F 81 (22) 81 (22) 103 (20) 109 (10) 173 (25) 14-18 206 132 (14) 70 (23) F 81 (22) 81 (22) 103 (20) 132 (18) 19-30 191 123 (11) F 58 (18) 82 (17) 118 (16) 31-50 258 107 (9) F 40 (11) 63 (14) 60 (12) >70 128 94 (11) 29 (9) 37 (10) 65 55 (12) 81 (15) 61	Age (years) 1-3	Age (years) 1.3	Age (years) 1.3 169 122 (9) 32 (9) ^E 41 (9) ^E 63 (10) ^E 98 (12) 153 (16) 224 (26) 280 (39) 48 281 130 (8) 34 (10) ^E F F 88 (18) ^E 146 (18) 230 (27) 333 (49) 409 (70) ^E 14-18 187 145 (15) 72 (23) ^E 84 (22) ^E 109 (20) ^E 143 (19) 186 (25) 232 (40) ^E 263 (53) ^E 19-30 223 144 (17) F F F 83 (20) ^E 122 (18) 175 (24) 238 (43) ^E 283 (60) ^E 31-50 229 127 (13) F F F 60 (16) ^E 91 (17) ^E 116 (17) 179 (24) 253 (40) 308 (56) ^E 51-70 197 112 (18) F F 60 (16) ^E 91 (17) ^E 133 (21) 184 (32) ^E 221 (44) ^E >70 72 94 (10) F 43 (12) ^E 61 (11) ^E 85 (10) 119 (14) 162 (26) 193 (37) ^E 19-13 165 165 165 (16) 90 (14) 105 (16) 134 (20) 173 (25) 220 (31) 269 (37) 302 (42) 14-18 206 132 (14) 70 (23) ^E 81 (22) ^E 103 (20) ^E 132 (18) 165 (16) 164 (20) 215 (31) 251 (40) 31-50 258 107 (9) F 40 (11) ^E 63 (11) ^E 63 (11) ^E 118 (16) 164 (20) 215 (31) 251 (40) 31-50 258 107 (9) F 40 (11) ^E 63 (11) ^E 63 (11) ^E 61 (14) ^E 80 (13) 106 (12) 139 (16) 174 (26) 198 (35) ^E 570 128 94 (11) 29 (9) ^E 37 (10) ^E 58 (12) ^E 81 (15) ^E 81 (15) ^E 81 (15) ^E 81 (16) 117 118 (16) 119 (14) 150 (16) 119 110 110 117 110 110 110 110	Age (years) 1.3	Age (years) Mean (SE) 5th (SE) 10th (SE) 25th (SE) 50th (SE) 75th (SE) 90th (SE) 95th (SE) EAR ² < EAR (SE) 1-3 169 122 (9) 32 (9) ^E 41 (9) ^E 63 (10) ^E 98 (12) 153 (16) 224 (26) 280 (39) 13 3 4-8 281 130 (8) 34 (10) ^E 47 (11) ^E 76 (10) 117 (9) 167 (12) 219 (18) 254 (24) 22 F 9-13 183 (165 (15)) F F 88 (18) ^E 146 (18) 230 (27) 333 (49) 409 (70) ^E 39 F 14-18 187 (145 (15)) 72 (23) ^E 84 (22) ^E 109 (20) ^E 143 (19) 186 (25) 232 (40) ^E 263 (35) ^E 63 F 19-30 223 (44) (77) ^E 238 (43) ^E 283 (60) ^E 75 F 19-30 223 (44) (77) ^E 238 (43) ^E 283 (60) ^E 75 F 19-30 19-112 (18) F F 60 (16) ^E 91 (17) ^E 133 (21) 184 (32) ^E 221 (44) ^E 75 F F	Age (years) 1.3

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² EAR is the Estimated Average Requirement. For additional detail, see footnote 9 in Appendix A. The EAR for vitamin C used in this table is that for non-smokers.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 11.10 Vitamin C (mg/d): Usual intakes from food, by DRI age-sex group, household population, British Columbia, 2004¹

							Percentiles	(and SE) of usu	al intake				0/0		%
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	EAR ²	$\langle EAR (SE) \rangle$	UL^3	>UL (SE)
Sex	Age (years)														
Both															
	1-3	192	142	(10)	59 (14) ^E	72 (14) ^E	100 (15)	139 (16)	185 (18)	234 (23)	266 (28)	13	<3	400	<3
	4-8	321	141	(7)	66 (16) ^E	78 (15) ^E	102 (12)	134 (10)	170 (14)	206 (23)	229 (30)	22	<3	650	0.0 (0.0)
Male															
	9-13	226	139	(11)	49 (10) ^E	63 (11) ^E	92 (13)	133 (17)	182 (21)	237 (28)	275 (35)	39	F	1200	0.0 (0.0)
	14-18	262	170	(19)	31 (8) ^E	45 (10) ^E	79 (13)	138 (17)	226 (27)	338 (44)	424 (60)	63	17.6 (4.5) ^E	1800	<3
	19-30	197	156	(19)	F	72 (20) ^E	97 (19) ^E	132 (18)	178 (25)	231 (42) ^E	268 (57) ^E	75	F	2000	0.0 (0.0)
	31-50	282	136	(11)	61 (20) ^E	71 (19) ^E	94 (17) ^E	128 (15)	170 (19)	213 (28)	240 (37)	75	F	2000	0.0 (0.0)
	51-70	234	148	(12)	49 (14) ^E	64 (14) ^E	97 (15)	139 (15)	186 (18)	240 (29)	281 (40)	75	F	2000	0.0 (0.0)
	>70	119	134	(16)	33 (11) ^E	44 (12) ^E	69 (15) ^E	110 (19) ^E	168 (26)	234 (35)	280 (43)	75	F	2000	0.0 (0.0)
	19+	832	143	(7)	47 (7)	58 (7)	84 (8)	127 (8)	183 (11)	239 (16)	277 (21)	75	19.3 (4.3) ^E	2000	0.0 (0.0)
Female															
	9-13	226	154	(14)	70 (15) ^E	84 (15) ^E	113 (15)	153 (17)	203 (22)	260 (33)	299 (44)	39	<3	1200	<3
	14-18	242	145	(14)	72 (18) ^E	84 (17) ^E	109 (15)	142 (15)	183 (21)	227 (33)	257 (43) ^E	56	F	1800	0.0 (0.0)
	19-30	208	135	(14)	76 (25) ^E	88 (24) ^E	112 (21) ^E	144 (20)	182 (27)	223 (46) ^E	251 (59) ^E	60	F	2000	0.0 (0.0)
	31-50	263	117	(8)	39 (10) ^E	48 (10) ^E	69 (11)	102 (11)	147 (14)	197 (21)	234 (29)	60	F	2000	0.0 (0.0)
	51-70	322	123	(8)	43 (9) ^E	55 (9) ^E	80 (9)	116 (10)	158 (13)	203 (19)	234 (24)	60	F	2000	0.0 (0.0)
	>70	198	112	1	46 (9) ^E	58 (9)	80 (9)	108 (9)	138 (11)	169 (14)	190 (18)	60	F	2000	0.0 (0.0)
	19+	991	122		42 (6)	53 (6)	79 (7)	116 (7)	158 (8)	201 (13)	232 (17)	60	13.5 (3.3) ^E	2000	0.0 (0.0)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² EAR is the Estimated Average Requirement. For additional detail, see footnote 9 in Appendix A. The EAR for vitamin C used in this table is that for non-smokers.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 11.11 Vitamin C (mg/d): Usual intakes from food, by DRI age—sex group, household population, Atlantic Region, 2004¹

						Percentile	s (and SE) of us	ual intake				%		%	
		n	Mean (SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	EAR^2	$\langle EAR (SE) \rangle$	UL^3	>UL	(SE)
Sex	Age (years)														
Both															
	1-3	348	138 (8)	48 (8) ^E	60 (9)	88 (10)	132 (11)	187 (15)	240 (18)	274 (22)	13	<3	400	<3	
	4-8	554	148 (8)	62 (10) ^E	77 (10)	105 (10)	145 (10)	195 (13)	252 (21)	292 (27)	22	<3	650	<3	
Male															
	9-13	409	143 (10)	55 (11) ^E	67 (11) ^E	92 (12)	128 (12)	173 (15)	221 (21)	255 (27)	39	F	1200	0.0	(0.0
	14-18	414	138 (10)	42 (10) ^E	54 (11) ^E	82 (13)	125 (15)	183 (18)	249 (25)	295 (31)	63	F	1800	0.0	(0.0
	19-30	311	130 (11)	47 (10) ^E	58 (11) ^E	85 (12)	126 (16)	182 (21)	242 (28)	283 (34)	75	F	2000	0.0	(0.0
	31-50	489	113 (9)	37 (6) ^E	46 (7)	68 (8)	102 (10)	149 (14)	201 (20)	237 (24)	75	30.5 (6.4) ^E	2000	0.0	(0.0
	51-70	575	95 (6)	28 (4)	36 (4)	54 (5)	82 (7)	122 (9)	168 (13)	201 (17)	75	44.0 (5.5)	2000	0.0	(0.0
	>70	239	104 (9)	37 (7) ^E	46 (8) ^E	65 (9)	95 (12)	133 (15)	175 (16)	204 (20)	75	33.3 (8.3) ^E	2000	0.0	(0.0
	19+	1614	111 (5)	35 (3)	44 (3)	66 (4)	101 (6)	147 (8)	200 (11)	239 (14)	75	31.7 (3.6)	2000	0.0	(0.0
emale	;														
	9-13	355	129 (10)	45 (8) ^E	56 (8)	81 (9)	117 (11)	164 (16)	215 (22)	251 (27)	39	F	1200	0.0	(0.0
	14-18	410	134 (8)	53 (9) ^E	66 (9)	91 (10)	126 (11)	169 (13)	217 (19)	251 (25)	56	F	1800	0.0	(0.0
	19-30	384	108 (9)	40 (8) ^E	49 (9) ^E	67 (10)	96 (13)	136 (17)	178 (24)	206 (28)	60	F	2000	0.0	(0.0
	31-50	585	108 (7)	27 (5) ^E	38 (6)	63 (7)	102 (9)	153 (13)	210 (17)	251 (21)	60	23.3 (4.7) ^E		0.0	
	51-70	711	93 (4)	30 (3)	38 (4)	55 (4)	80 (5)	114 (6)	153 (9)	182 (12)	60	30.1 (4.3)	2000	0.0	
										, ,					
	>70	342	90 (5)	35 (5)	44 (5)	61 (6)	83 (7)	110 (8)	140 (11)	162 (13)	60	24.5 (5.7) ^E		0.0	
	19+	2022	102 (3)	31 (3)	40 (3)	60 (4)	92 (5)	135 (6)	182 (8)	216 (11)	60	24.7 (3.0)	2000	0.0	(0.0)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² EAR is the Estimated Average Requirement. For additional detail, see footnote 9 in Appendix A. The EAR for vitamin C used in this table is that for non-smokers.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 11.12 Vitamin C (mg/d): Usual intakes from food, by DRI age-sex group, household population, Prairie Region, 2004¹

							Percentiles	(and SE) of usi	ual intake				%			%
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	EAR ²	<ear< th=""><th>(SE) U</th><th>L³ :</th><th>>UL (SE)</th></ear<>	(SE) U	L ³ :	>UL (SE)
Sex	Age (years)															
Both																
	1-3	622	121	(6)	30 (4)	40 (4)	63 (6)	100 (8)	151 (11)	215 (17)	264 (24)	13	<3		100	<3
	4-8	919	128	(5)	44 (10) ^E	57 (10) ^E	83 (8)	120 (7)	162 (9)	206 (16)	237 (22)	22	<3		550	<3
Male																
	9-13	579	149	(10)	54 (15) ^E	67 (15) ^E	97 (13)	142 (12)	196 (16)	254 (27)	295 (36)	39	F	1:	200	0.0 (0.0)
	14-18	634	149	(12)	74 (21) ^E	87 (19) ^E	111 (17)	145 (16)	187 (20)	233 (32)	265 (41)	63	F	13	800	0.0 (0.0)
	19-30	578	145	(12)	44 (14) ^E	56 (14) ^E	83 (14) ^E	123 (13)	180 (18)	247 (30)	296 (42)	75	F	2	000	0.0 (0.0)
	31-50	693	132	(11)	35 (10) ^E	47 (11) ^E	73 (11)	118 (12)	184 (18)	266 (34)	330 (52)	75	26.4	(6.9) ^E 20	000	<3
	51-70	596	111	(11)	39 (11) ^E	48 (11) ^E	69 (11)	98 (11)	137 (13)	181 (19)	211 (25)	75	30.5	(8.8) ^E 20	000	0.0 (0.0)
	>70	296	106	(7)	32 (6) ^E	41 (7)	62 (7)	94 (8)	138 (11)	192 (17)	232 (23)	75	35.2	(5.9) ^E 20	000	0.0 (0.0)
	19+	2163	128	(6)	36 (5)	47 (5)	71 (6)	112 (7)	171 (10)	243 (19)	296 (30)	75	27.3	(3.8) 2	000	0.0 (0.0)
Female	;															
	9-13	533	150	(11)	73 (21) ^E	86 (20) ^E	111 (18)	146 (15)	187 (17)	231 (25)	260 (32)	39	<3	1:	200	0.0 (0.0)
	14-18	638	132	(9)	51 (9) ^E	63 (9)	88 (10)	125 (11)	171 (13)	221 (17)	256 (21)	56	F	1:	800	0.0 (0.0)
	19-30	499	119	(8)	43 (10) ^E	54 (10) ^E	77 (10)	111 (10)	155 (14)	203 (22)	236 (28)	60	F	2	000	0.0 (0.0)
	31-50	716	104	(6)	36 (10) ^E	45 (10) ^E	66 (9)	97 (8)	136 (10)	182 (16)	215 (23)	60	F	2	000	0.0 (0.0)
	51-70	745		(7)	49 (9) ^E	59 (9)	79 (8)	108 (8)	145 (10)	187 (15)	216 (20)	60	F	2	000	0.0 (0.0)
	>70	510		(6)	29 (5) ^E	38 (5)	59 (6)	87 (8)	124 (11)	168 (15)	200 (20)	60	26.2	_	000	0.0 (0.0)
	19+	2470		(4)	37 (3)	47 (4)	69 (4)	100 (5)	142 (6)	191 (9)	225 (11)	60	18.4		000	0.0 (0.0)
	17+	2470	110	(4)	31 (3)	4 / (4)	U9 (4)	100 (3)	142 (0)	191 (9)	223 (11)	00	10.4	(2.7)	000	0.0 (0.0)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² EAR is the Estimated Average Requirement. For additional detail, see footnote 9 in Appendix A. The EAR for vitamin C used in this table is that for non-smokers.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 11.13 Vitamin C (mg/d): Usual intakes from food, by DRI age-sex group, household population, Canada excluding territories, 2004¹

						Percentile	s (and SE) of us	ual intake				%		%
		n	Mean (SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	EAR ²	$\langle EAR (SE) \rangle$	UL^3	>UL (SE)
Sex	Age (years)													
Both														
	1-3	2117	135 (3)	45 (3)	58 (4)	86 (4)	128 (4)	180 (5)	237 (8)	276 (10)	13	<3	400	0.6 (0.2) ^E
	4-8	3235	145 (3)	57 (6)	71 (6)	100 (5)	137 (4)	180 (5)	227 (9)	260 (13)	22	<3	650	0.0 (0.0)
Male														
	9-13	2080	157 (5)	58 (5)	73 (5)	104 (5)	147 (6)	201 (9)	262 (14)	306 (19)	39	<3	1200	0.0 (0.0)
	14-18	2288	163 (6)	56 (5)	71 (5)	102 (6)	151 (7)	214 (10)	283 (14)	330 (17)	63	7.1 (1.6) ^E	1800	0.0 (0.0)
	19-30	1804	158 (7)	54 (6)	67 (7)	97 (7)	144 (8)	207 (11)	277 (16)	325 (20)	75	13.7 (3.2) ^E	2000	0.0 (0.0)
	31-50	2596	127 (4)	40 (4)	51 (4)	76 (5)	116 (5)	169 (6)	226 (10)	266 (14)	75	24.4 (3.0)	2000	0.0 (0.0)
	51-70	2550	131 (5)	38 (3)	50 (3)	77 (4)	118 (5)	173 (8)	237 (12)	284 (16)	75	24.0 (2.4)	2000	0.0 (0.0)
	>70	1520	111 (4)	32 (3)	43 (3)	66 (4)	101 (5)	148 (6)	201 (9)	238 (11)	75	31.5 (2.9)	2000	0.0 (0.0)
	19+	8470	133 (3)	41 (2)	52 (2)	79 (3)	120 (3)	177 (4)	243 (6)	289 (9)	75	22.5 (1.5)	2000	0.0 (0.0)
Female	2													
	9-13	1980	146 (4)	59 (5)	72 (5)	99 (5)	136 (5)	180 (7)	225 (9)	255 (12)	39	<3	1200	0.0 (0.0)
	14-18	2256	147 (4)	53 (4)	67 (5)	96 (5)	138 (5)	190 (7)	247 (10)	286 (13)	56	6.0 (1.5) ^E	1800	0.0 (0.0)
	19-30	1854	133 (5)	47 (5)	58 (5)	83 (5)	121 (6)	171 (8)	225 (12)	260 (14)	60	10.8 (2.5) ^E	2000	0.0 (0.0)
	31-50	2686	117 (4)	34 (3)	44 (3)	67 (3)	104 (4)	153 (5)	210 (8)	252 (10)	60	19.9 (2.2)	2000	0.0 (0.0)
	51-70	3200	122 (3)	41 (3)	52 (3)	77 (3)	111 (4)	156 (5)	206 (7)	240 (9)	60	14.2 (1.8)	2000	0.0 (0.0)
	>70	2610	106 (3)	34 (2)	44 (2)	66 (3)	98 (3)	137 (4)	180 (6)	210 (8)	60	20.8 (1.9)	2000	0.0 (0.0)
	19+	10350	120 (2)	38 (2)	49 (2)	73 (2)	109 (2)	157 (3)	210 (5)	247 (6)	60	16.7 (1.2)	2000	0.0 (0.0)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² EAR is the Estimated Average Requirement. For additional detail, see footnote 9 in Appendix A. The EAR for vitamin C used in this table is that for non-smokers.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Calcium (mg/d): Usual intakes from food	12.	Calcium	(mq/d)	: Usual	intakes	from food
---	-----	---------	--------	---------	---------	-----------

Table 12.1 Calcium (mg/d): Usual intakes from food, by DRI age-sex group, household population, Newfoundland and Labrador, 2004¹

						Percenti	les (and SE) of usu	al intake				%			%
		n	Mean (SE)	5th (<i>SE</i>)	10th (SE)	25th (SE)	50th (SE)	75th (<i>SE</i>)	90th (SE)	95th (SE)	AI ²	>AI	(SE)	UL ³	>UL (SE)
Sex	Age (years)														
Both															
	1-3	79	988 (72)	535 (111) ^E	621 (101)	784 (86)	994 (83)	1236 (117)	1482 (180)	1643 (229)	500	96.4	(3.0)	2500	<3
	4-8	127	1051 (70)	752 (119)	822 (108)	945 (91)	1090 (86)	1249 (108)	1414 (154)	1525 (192)	800	91.8	(8.1)	2500	<3
Male															
	9-13	111	1209 (129)	657 (138) ^E	743 (133) ^E	909 (124)	1135 (122)	1420 (217)	1750 (297) ^E	1992 (377) ^E	1300	F		2500	F
	14-18	107	1101 (100)	696 (144) ^E	781 (132) ^E	942 (115)	1153 (118)	1404 (164)	1667 (249)	1843 (312) ^E	1300	F		2500	<3
	19-30	77	980 (119)	451 (85) ^E	530 (102) ^E	715 (131) ^E	983 (161)	1277 (187)	1586 (224)	1808 (261)	1000	F		2500	<3
	31-50	145	896 (203) ^E	447 (105) ^E	496 (103) ^E	589 (101) ^E	723 (109)	907 (140)	1136 (209) ^E	1312 (278) ^E	1000	F		2500	<3
	51-70	182	687 (38)	364 (69) ^E	417 (65)	521 (56)	657 (51)	815 (60)	972 (85)	1072 (105)	1200	F		2500	<3
	>70	63	796 (102)	451 (124) ^E	505 (123) ^E	613 (120) ^E	763 (120)	955 (141)	1173 (192)	1328 (240) ^E	1200	F		2500	<3
	19+	467	842 (87)	430 (51)	488 (51)	606 (52)	774 (58)	989 (82)	1233 (128)	1408 (170)				2500	<3
Female															
	9-13	96	943 (82)	468 (87) ^E	543 (88)	690 (92)	888 (103)	1128 (127)	1387 (170)	1563 (205)	1300	F		2500	<3
	14-18	105	874 (121)	F	416 (120) ^E	564 (122) ^E	769 (127)	1062 (237) ^E	1477 (326) ^E	1835 (427) ^E	1300	F		2500	F
	19-30	91	676 (66)	308 (77) ^E	358 (76) ^E	461 (74)	611 (79)	810 (110)	1044 (173)	1214 (230) ^E	1000	F		2500	<3
	31-50	167	725 (74)	340 (98) ^E	415 (93) ^E	549 (86)	708 (84)	891 (98)	1078 (126)	1192 (148)	1000	F		2500	<3
	51-70	198	634 (47)	295 (66) ^E	348 (63) ^E	455 (57)	602 (55)	778 (73)	958 (112)	1073 (144)	1200	F		2500	<3
	>70	74	692 (94)	404 (103) ^E	443 (97) ^E	513 (87) ^E	602 (79)	703 (87)	805 (119)	872 (152) ^E	1200	F		2500	<3
	19+	530	686 (34)	309 (33)	370 (<i>33</i>)	490 (35)	649 (40)	839 (51)	1037 (68)	1169 (82)	1200			2500	0.0 (0.0)
	19+	330	000 (34)	309 (33)	310 (33)	490 (33)	149 (40)	(31)	1037 (00)	1109 (04)				2500	0.0 (0.0)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 12.2 Calcium (mg/d): Usual intakes from food, by DRI age-sex group, household population, Prince Edward Island, 2004¹

									Percent	tiles (and	SE) of usua	al intake							%			%	
		n	Mean	(SE)	5th (<i>SI</i>	E) 1	0th (<i>SE</i>)	25th	(SE)	50t	h (SE)	75th	(SE)	90th	(SE)	95th	(SE)	AI ²	>AI	(SE)	UL ³	>UL	(SE)
Sex Ag	ge ears)																						
Both																							
1-3	3	58	1160	(127)	645 (1)	(0) ^E	49 (108)	947	(115)	1202	(140)	1495	(188)	1794	(250)	1989	(294)	500	98.7	(1.2)	2500	<3	
4-8	8	110	1148	(129)	727 (13	58) ^E 8	06 (149) ^E	946	(141)	1116	(146)	1299	(170)	1476	(208)	1587	(238)	800	90.5	(11.8)	2500	<3	
Male																							
9-1	13	95	1152	(86)	661 (14	(2) ^E	52 (131) ^E	920	(120)	1131	(126)	1367	(156)	1602	(201)	1754	(235)	1300	F		2500	<3	
14-	-18	87	1250	(104)	526 (1)	(3) ^E	59 (112) ^E	917	(111)	1265	(132)	1706	(194)	2221	(284)	2597	(356)	1300	47.6	$(10.1)^{E}$	2500	F	
19-	-30	70	1653	(243)	720 (22	29) ^E 8	61 (233) ^E	1163	$(250)^{E}$	1609	$(305)^{E}$	2168	$(404)^E$	2747	(523) ^E	3117	$(609)^{E}$	1000	83.6	(11.9)	2500	F	
31-	-50	109	895	(100)	383 (89	<i>E</i> 4	56 (92) ^E	609	(98)	839	(111)	1153	(152)	1531	(235)	1814	$(313)^{E}$	1000	35.5	$(11.6)^{E}$	2500	<3	
51-	-70	128	915	(76)	596 (10	07) ^E 6	46 (99)	738	(87)	857	(84)	996	(104)	1139	(149)	1233	(190)	1200	F		2500	<3	
>70	0	65	687	(61)	313 (69	<i>E</i> 3	67 (69) ^E	477	(69)	635	(73)	841	(100)	1078	(162)	1248	$(217)^{E}$	1200	F		2500	<3	
19-	+	372	1037	(71)	414 (5)	!) 4	98 (54)	677	(61)	947	(75)	1330	(114)	1819	(190)	2192	(257)				2500	F	
Female																							
9-1	13	75	1085	(107)	700 (10	51) ^E 7	81 (155) ^E	927	(150)	1108	(162)	1307	(200)	1504	(255) ^E	1629	$(297)^{E}$	1300	F		2500	<3	
14-	-18	81	961	(105)	F	4	04 (109) ^E	594	$(114)^{E}$	878	(135)	1228	(181)	1581	(230)	1802	(260)	1300	F		2500	<3	
19-	-30	101	921	(80)	443 (7)	7) ^E 5	33 (81)	710	(89)	954	(102)	1255	(134)	1579	(182)	1800	(219)	1000	45.6	$(10.9)^{E}$	2500	<3	
31-	-50	116	847	(95)	336 (72	?) ^E 4	13 (72) ^E	564	(81)	787	(114)	1124	(175)	1495	(252) ^E	1740	(304) ^E	1000	F		2500	<3	
	-70	146	730		291 (43		58 (47)		(49)		(51)	914	, ,	1143		1304	,	1200	7.8	$(2.5)^{E}$	2500	<3	
>70		94	659	` ′	363 (62	,	03 (60)		(57)		(61)	775	, ,		$(164)^E$		$(213)^{E}$	1200	7.0 F	(2.5)	2500	<3	
				,	,	,	, ,		,		, ,		,		,		,	1200					
19-	+	457	803	(44)	342 (29	<i>')</i> 4	07 (33)	549	(42)	767	(57)	1040	(80)	1346	(108)	1561	(131)				2500	<3	

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- ^F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 12.3 Calcium (mg/d): Usual intakes from food, by DRI age-sex group, household population, Nova Scotia, 2004¹

						Percentil	les (and SE) of usua	ıl intake				%		%
		n	Mean (SE)	5th (<i>SE</i>)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	AI ²	> AI (SE)	UL ³	>UL (SE)
Sex	Age (years)													
Both														
	1-3	112	1013 (55)	667 (117) ^E	745 (101)	884 (77)	1046 (69)	1212 (93)	1377 (140)	1490 (183)	500	99.4 (1.4)	2500	<3
	4-8	177	1137 (66)	743 (108)	824 (95)	966 (76)	1143 (66)	1348 (84)	1561 (128)	1703 (164)	800	91.7 (5.6)	2500	<3
Male														
	9-13	111	1232 (85)	585 (122) ^E	684 (119) ^E	882 (109)	1152 (103)	1470 (132)	1803 (194)	2029 (246)	1300	37.2 (10.5) ^E	2500	F
	14-18	113	1146 (109)	518 (159) ^E	634 (157) ^E	844 (155) ^E	1088 (165)	1355 (186)	1630 (212)	1812 (234)	1300	F	2500	<3
	19-30	91	1280 (131)	541 (169) ^E	644 (161) ^E	856 (145) ^E	1159 (144)	1552 (206)	1999 (332)	2317 (438) ^E	1000	63.0 (13.3) ^E	2500	F
	31-50	101	929 (70)	742 (140) ^E	776 (121)	834 (91)	904 (70)	977 (89)	1047 (144)	1090 (191) ^E	1000	F	2500	<3
	51-70	134	895 (58)	458 (81) ^E	535 (79)	687 (75)	879 (75)	1088 (86)	1294 (109)	1429 (130)	1200	F	2500	<3
	>70	56	797 (96)	399 (71) ^E	446 (87) ^E	555 (114) ^E	759 (109)	1000 (115)	1175 (128)	1285 (142)	1200	F	2500	<3
	19+	382	978 (42)	491 (48)	567 (47)	716 (44)	918 (42)	1158 (52)	1418 (80)	1605 (107)			2500	<3
Female	:													
	9-13	105	893 (89)	507 (109) ^E	564 (102) ^E	673 (93)	820 (95)	997 (124)	1189 (185)	1320 (242) ^E	1300	F	2500	<3
	14-18	120	906 (83)	F	415 (124) ^E	620 (108) ^E	879 (94)	1153 (108)	1417 (149)	1590 (181)	1300	F	2500	<3
	19-30	91	922 (91)	564 (132) ^E	636 (128) ^E	772 (122)	948 (126)	1152 (153)	1362 (210)	1503 (260) ^E	1000	F	2500	<3
	31-50	159	870 (66)	387 (68) ^E	460 (69)	618 (71)	846 (78)	1133 (107)	1453 (163)	1683 (213)	1000	35.2 (8.7) ^E	2500	<3
	51-70	174	781 (65)	400 (85) ^E	460 (80) ^E	574 (71)	730 (69)	929 (94)	1146 (139)	1292 (175)	1200	F	2500	<3
	>70	80	787 (96)	338 (72) E	400 (78) ^E	532 (96) E	740 (132) ^E	1041 (191) ^E	1384 (249) ^E	1605 (281) ^E	1200	F	2500	<3
			, ,	382 (34)	,	600 (41)	809 (48)	(' '	1387 (89)		1200			
	19+	504	843 (38)	382 (34)	454 (36)	000 (41)	OUY (40)	1079 (63)	138/ (09)	1605 (112)			2500	<3

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- ^F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 12.4 Calcium (mg/d): Usual intakes from food, by DRI age-sex group, household population, New Brunswick, 2004¹

						Percent	iles (and SE) of usu	al intake				%		%
		n	Mean (SE)	5th (<i>SE</i>)	10th (SE)	25th (SE)	50th (SE)	75th (<i>SE</i>)	90th (SE)	95th (SE)	AI^2	> AI (SE)	UL^3	>UL (SE)
Sex	Age (years)													
Both														
	1-3	99	1177 (100)	748 (132) ^E	825 (121)	971 (106)	1163 (107)	1392 (146)	1634 (217)	1798 (269)	500	100.0 (1.2)	2500	<3
	4-8	140	1040 (54)	634 (79)	705 (74)	840 (64)	1016 (60)	1223 (80)	1440 (120)	1585 (150)	800	80.1 (7.5)	2500	<3
Male														
	9-13	92	1132 (103)	617 (110) ^E	700 (116)	861 (126)	1072 (138)	1311 (150)	1542 (164)	1684 (178)	1300	F	2500	<3
	14-18	107	1412 (134)	905 (198) ^E	1008 (189) ^E	1202 (173)	1452 (171)	1743 (246)	2044 (315)	2243 (371)	1300	65.5 (18.0) ^E	2500	F
	19-30	73	1304 (124)	645 (147) ^E	761 (149) ^E	994 (151)	1324 (166)	1743 (241)	2215 (346)	2546 (433) ^E	1000	74.6 (11.6)	2500	F
	31-50	134	929 (78)	478 (90) ^E	547 (87)	681 (84)	868 (85)	1092 (98)	1328 (133)	1500 (176)	1000	34.1 (10.8) ^E	2500	<3
	51-70	131	824 (64)	481 (96) ^E	536 (91) ^E	644 (83)	790 (81)	972 (100)	1171 (144)	1311 (185)	1200	F	2500	<3
	>70	55	707 (57)	339 (62) ^E	392 (62)	499 (65)	646 (74)	831 (88)	1038 (107)	1182 (130)	1200	F	2500	<3
	19+	393	956 (47)	452 (43)	527 (46)	682 (52)	906 (61)	1199 (79)	1539 (107)	1787 (132)			2500	<3
Female														
	9-13	79	1049 (87)	565 (103) ^E	639 (103)	779 (111)	989 (125)	1281 (145)	1593 (191)	1796 (231)	1300	F	2500	<3
	14-18	104	893 (56)	680 (79)	760 (79)	872 (76)	967 (73)	1056 (80)	1155 (93)	1230 (103)	1300	F	2500	0.0 (0.0)
	19-30	101	728 (83)	F	355 (101) ^E	476 (99) ^E	658 (100)	904 (130)	1198 (182)	1415 (228)	1000	F	2500	<3
	31-50	143	846 (57)	387 (90) ^E	457 (83) ^E	593 (71)	774 (64)	986 (89)	1220 (162)	1397 (222)	1000	F	2500	<3
	51-70	193	692 (37)	322 (54) ^E	380 (51)	493 (46)	637 (47)	817 (59)	1032 (93)	1185 (124)	1200	F	2500	<3
	>70	94	677 (58)	426 (89) ^E	466 (85) ^E	543 (80)	645 (83)	774 (103)	917 (144)	1019 (181) ^E	1200	F	2500	<3
	19+	531	, ,	362 (35)	423 (35)	544 (35)	716 (39)	925 (49)	1148 (68)	1304 (86)			2500	<3

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 12.5 Calcium (mg/d): Usual intakes from food, by DRI age-sex group, household population, Quebec, 2004¹

										Percen	tiles (and	SE) of us	ual intak	e						%			%
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25t	h (SE)	50t	h (SE)	75	th (SE)	90t	h (SE)	95th	n (SE)	AI ²	>AI	(SE)	UL ³	>UL (SE)
Sex	Age (years)																						
Both																							
	1-3	311	1093	(45)	609	(57)	706	(59)	883	(60)	1100	(61)	135	4 (74)	1626	(97)	1803	(112)	500	98.2	(1.1)	2500	<3
	4-8	485	1071	(52)	571	(82)	656	(71)	811	(56)	1014	(54)	127	0 (89)	1559	(152)	1755	(199)	800	76.3	(6.9)	2500	<3
Male																							
	9-13	277	1318	(76)	734	(93)	833	(88)	1019	(84)	1269	(93)	158	3 (130)	1930	(195)	2169	(248)	1300	47.1	$(10.2)^{E}$	2500	F
	14-18	339	1356	(71)	859	$(143)^{E}$	958	(130)	1137	(108)	1358	(93)	160	8 (108)	1872	(160)	2055	(212)	1300	56.7	$(12.4)^{E}$	2500	F
	19-30	237	1210	(109)	826	$(149)^{E}$	894	(140)	1019	(128)	1187	(130)	140	4 (165)	1643	(233)	1804	(290)	1000	77.7	$(15.4)^{E}$	2500	<3
	31-50	423	1053	(54)	554	(90)	646	(82)	819	(69)	1037	(60)	128	8 (73)	1559	(109)	1749	(143)	1000	54.3	(7.8)	2500	<3
	51-70	387	866	(42)	502	(67)	563	(61)	680	(52)	839	(50)	104	1 (74)	1257	(120)	1398	(154)	1200	F		2500	<3
	>70	132	840	(131)	305	(94) ^E	372	$(98)^{E}$	514	$(102)^{E}$	729	(109)	102	3 (152)	1376	$(234)^{E}$	1636	$(303)^{E}$	1200	F		2500	<3
	19+	1179	1016	(34)	511	(43)	594	(42)	759	(38)	980	(37)	124	5 (49)	1535	(74)	1738	(96)				2500	<3
Female																							
	9-13	281	1052	(70)	527	(82)	613	(82)	788	(79)	1015	(78)	128	7 (95)	1587	(137)	1792	(177)	1300	24.1	$(7.1)^{E}$	2500	<3
	14-18	321	918	(38)	561	(63)	623	(59)	742	(53)	913	(48)	111	5 (59)	1333	(93)	1481	(122)	1300	F		2500	<3
	19-30	249	985	(76)	478	(71)	561	(70)	728	(71)	962	(82)	124	8 (115)	1539	(163)	1723	(196)	1000	46.2	(9.8) ^E	2500	<3
	31-50	364	937	(49)	611	$(116)^{E}$	676	(105)	799	(85)	955	(69)	113	2 (78)	1315	(119)	1440	(157)	1000	42.9	$(13.7)^{E}$	2500	<3
	51-70	467	791	(27)	372	(40)	447	(38)	589	(34)	772	(33)	97	9 (41)	1201	(59)	1359	(78)	1200	10.0	$(2.5)^{E}$	2500	<3
	>70	215	702	(49)	399	(61)	456	(62)	565	(63)	708	(66)	87	7 (75)	1053	(92)	1171	(106)	1200	F		2500	<3
	19+	1295	874	(27)	455	(29)	530	(30)	675	(31)	864	(35)	109	4 (44)	1342	(61)	1522	(80)				2500	<3

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- ^F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 12.6 Calcium (mg/d): Usual intakes from food, by DRI age-sex group, household population, Ontario, 2004¹

Sex Age (years Both 1-3 4-8 Male	644	Mean (SE) 1034 (27) 1026 (22)	5th (SE) 519 (50)	10th (SE) 619 (44)	25th (SE) 800 (35)	50th (SE)	75th (<i>SE</i>)	90th (SE)	95th (<i>SE</i>)	AI ²	% >AI (SE)	UL ³	% >UL (SE)
(years Both 1-3 4-8	644	+ + ' '	-	619 (44)	800 (35)								
1-3 4-8		+ + ' '	-	619 (44)	800 (35)								
4-8		+ + ' '	-	619 (44)	800 (35)								
	956	1026 (22)	E(1 (52)		000 (33)	1024 (31)	1288 (40)	1580 (65)	1786 (88)	500	95.7 (1.6)	2500	<3
Male			561 (52)	647 (46)	804 (35)	1001 (26)	1231 (36)	1475 (62)	1641 (84)	800	75.4 (4.3)	2500	<3
9-13	589	1160 (40)	534 (54)	636 (52)	831 (48)	1094 (49)	1426 (59)	1784 (87)	2020 (112)	1300	33.2 (4.0)	2500	<3
14-18	639	1235 (44)	664 (84)	765 (77)	959 (63)	1218 (51)	1527 (69)	1854 (114)	2074 (152)	1300	42.4 (5.0)	2500	<3
19-30	481	981 (43)	418 (77) ^E	502 (73)	673 (63)	914 (54)	1222 (71)	1566 (122)	1806 (166)	1000	41.9 (5.5)	2500	<3
31-50	709	822 (27)	405 (70) ^E	471 (65)	603 (52)	787 (37)	1014 (47)	1258 (89)	1422 (123)	1000	26.2 (5.0) ^E	2500	<3
51-70	758	800 (30)	332 (28)	391 (30)	524 (29)	710 (30)	963 (42)	1287 (71)	1532 (106)	1200	12.8 (2.4) ^E	2500	<3
>70	734	692 (21)	322 (28)	379 (26)	490 (23)	644 (22)	835 (30)	1043 (48)	1186 (63)	1200	4.7 (1.5) ^E	2500	0.0 (0.0)
19+	2682	840 (18)	367 (21)	433 (21)	572 (22)	777 (21)	1042 (27)	1342 (43)	1561 (59)			2500	<3
Female													
9-13	585	968 (33)	522 (64)	597 (57)	739 (45)	921 (36)	1131 (49)	1345 (81)	1485 (106)	1300	F	2500	<3
14-18	645	938 (42)	449 (70)	532 (66)	694 (55)	918 (46)	1192 (66)	1490 (116)	1694 (160)	1300	18.2 (4.9) ^E	2500	<3
19-30	514	772 (30)	390 (73) ^E	454 (65)	577 (48)	739 (35)	931 (52)	1132 (91)	1266 (120)	1000	18.6 (5.8) ^E	2500	<3
31-50	758	784 (28)	387 (41)	451 (39)	573 (34)	740 (31)	952 (40)	1186 (65)	1345 (87)	1000	21.0 (3.7) ^E	2500	<3
51-70	955	730 (23)	347 (34)	406 (32)	523 (29)	683 (26)	884 (34)	1113 (57)	1276 (79)	1200	6.9 (2.0) ^E	2500	<3
>70	1345	678 (18)	326 (23)	380 (23)	488 (22)	636 (21)	820 (26)	1022 (40)	1161 (53)	1200	4.1 (1.2) ^E	2500	0.0 (0.0)
19+	3572	754 (15)	364 (18)	426 (17)	547 (16)	712 (16)	920 (21)	1148 (33)	1304 (43)			2500	0.0 (0.0)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 12.7 Calcium (mg/d): Usual intakes from food, by DRI age-sex group, household population, Manitoba, 2004¹

										Percen	tiles (and	SE) of us	ual intak	е						%			0/0
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	501	h (SE)	7:	th (SE)	90t	h (SE)	95th	(SE)	AI ²	>AI	(SE)	UL ³	>UL (SE)
Sex	Age (years)																						
Both																							
	1-3	324	1015	(52)	569	(94)	651	(87)	807	(75)	1009	(65)	124	4 (136)	1487	$(307)^{E}$	1646	(461) ^E	500	97.6	(2.8)	2500	F
	4-8	425	988	(42)	682	(108)	736	(90)	835	(59)	957	(46)	109	2 (80)	1225	(133)	1310	(174)	800	81.1	(9.9)	2500	<3
Male																							
	9-13	274	1176	(53)	580	(82)	682	(74)	876	(61)	1128	(57)	142	2 (75)	1723	(113)	1921	(145)	1300	34.2	$(6.1)^{E}$	2500	<3
	14-18	297	1450	(99)	577	$(101)^{E}$	713	(106)	989	(111)	1374	(122)	185	2 (165)	2397	(250)	2796	(331)	1300	54.7	(8.5)	2500	F
	19-30	249	1221	(169)	518	$(136)^{E}$	607	$(128)^{E}$	790	(113)	1059	(112)	142	8 (187)	1884	$(342)^{E}$	2233	(476) ^E	1000	55.2	$(12.0)^{E}$	2500	F
	31-50	309	885	(54)	459	$(98)^{E}$	528	(89) ^E	661	(75)	854	(68)	110	1 (104)	1359	(169)	1526	(218)	1000	33.9	$(10.5)^{E}$	2500	<3
	51-70	277	727	(38)	303	(40)	362	(41)	484	(42)	665	(46)	90	6 (59)	1191	(88)	1398	(117)	1200	9.7	$(2.9)^{E}$	2500	<3
	>70	136	709	(49)	334	(50)	389	(49)	500	(47)	661	(51)	87	1 (77)	1115	(125)	1291	(166)	1200	F		2500	<3
	19+	971	901	(47)	366	(34)	435	(35)	580	(35)	803	(38)	111	5 (60)	1481	(109)	1750	(160)				2500	<3
Female																							
	9-13	265	1001	(47)	520	$(91)^{E}$	601	(81)	747	(65)	937	(56)	117	1 (72)	1415	(107)	1568	(133)	1300	F		2500	<3
	14-18	290	903	(54)	453	$(115)^{E}$	525	$(108)^{E}$	667	(93)	857	(79)	108	1 (91)	1316	(134)	1473	(173)	1300	F		2500	<3
	19-30	197	972	(82)	504	$(139)^{E}$	592	$(128)^{E}$	752	(109)	949	(98)	118	4 (129)	1455	(211)	1651	(285) ^E	1000	43.7	$(13.7)^{E}$	2500	<3
	31-50	312	765	(44)	358	(48)	415	(49)	537	(51)	716	(53)	91	8 (60)	1137	(83)	1308	(113)	1000	17.8	$(4.8)^{E}$	2500	<3
	51-70	312	866	(88)	374	(54)	438	(53)	563	(54)	745	(67)	100	1 (106)	1307	(177)	1529	(241)	1200	F		2500	<3
	>70	239		(40)	282	(57) ^E	336	(56) ^E	449	(52)	620	(47)	85	4 (60)	1141	(107)		(155)	1200	F		2500	<3
	19+	1060	820	(34)	339	(29)		(28)	544	(29)	742	2 (33)	100	4 (47)	1322	(79)	1561	(111)				2500	<3

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.
- $^{\rm 3}$ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 12.8 Calcium (mg/d): Usual intakes from food, by DRI age-sex group, household population, Saskatchewan, 2004¹

						Percent	iles (and SE) of usua	al intake				%		%
		n	Mean (SE)	5th (<i>SE</i>)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	AI ²	> AI (SE)	UL ³	>UL (SE)
Sex	Age (years)													
Both														
	1-3	129	1112 (88)	543 (75)	640 (78)	832 (86)	1096 (102)	1424 (136)	1783 (182)	2030 (220)	500	96.6 (2.3)	2500	F
	4-8	213	944 (36)	599 (75)	659 (66)	771 (52)	912 (45)	1072 (61)	1232 (94)	1337 (120)	800	70.2 (9.4)	2500	<3
Male														
	9-13	122	1110 (62)	633 (114) ^E	729 (103)	904 (87)	1112 (81)	1331 (146)	1545 (250)	1689 (333) ^E	1300	F	2500	F
	14-18	150	1305 (72)	662 (94)	770 (94)	978 (95)	1254 (106)	1584 (132)	1931 (183)	2164 (231)	1300	46.0 (9.9) ^E	2500	F
	19-30	106	1134 (87)	477 (121) ^E	587 (114) ^E	813 (101)	1114 (106)	1452 (151)	1806 (241)	2059 (328)	1000	59.7 (9.8)	2500	F
	31-50	155	958 (78)	380 (88) ^E	469 (87) ^E	653 (88)	916 (96)	1218 (117)	1508 (148)	1705 (182)	1000	42.3 (10.0) ^E	2500	<3
	51-70	122	820 (60)	416 (95) ^E	487 (87) ^E	625 (74)	811 (71)	1038 (100)	1281 (154)	1446 (198)	1200	F	2500	<3
	>70	88	894 (81)	389 (63)	456 (68)	599 (76)	820 (87)	1136 (115)	1536 (191)	1845 (277)	1200	21.6 (6.9) ^E	2500	F
	19+	471	954 (41)	381 (35)	466 (36)	649 (40)	921 (49)	1257 (63)	1610 (85)	1851 (106)			2500	<3
Female														
	9-13	103	1010 (75)	673 (114) ^E	739 (105)	857 (94)	1005 (96)	1178 (121)	1366 (170)	1496 (212)	1300	F	2500	<3
	14-18	142	854 (74)	363 (64) ^E	440 (67)	591 (78)	804 (101)	1090 (139)	1418 (194)	1644 (238)	1300	F	2500	<3
	19-30	111	871 (112)	472 (92) ^E	532 (95) ^E	650 (104)	813 (128)	1017 (171) ^E	1245 (230) ^E	1406 (275) ^E	1000	F	2500	<3
	31-50	146	834 (84)	415 (123) ^E	472 (112) ^E	582 (93)	733 (84)	917 (114)	1119 (183)	1255 (239) ^E	1000	F	2500	<3
	51-70	184	775 (40)	485 (35)	535 (38)	628 (45)	751 (56)	899 (68)	1052 (80)	1151 (87)	1200	F	2500	0.0 (0.0)
	>70	143	689 (43)	314 (45)	370 (45)	482 (45)	644 (49)	856 (64)	1099 (94)	1274 (121)	1200	F	2500	<3
	19+	584	803 (39)	410 (43)	468 (40)	576 (38)	728 (41)	935 (60)	1178 (92)	1347 (118)			2500	<3

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- ^F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 12.9 Calcium (mg/d): Usual intakes from food, by DRI age-sex group, household population, Alberta, 2004¹

									Percenti	les (and	SE) of usu	al intake							%			%	
		n	Mean	(SE)	5th	(SE)	10th (SE)	25th	(SE)	50th	(SE)	75th	(SE)	90th	(SE)	95th	(SE)	AI^2	>AI	(SE)	UL^3	>UL	(SE)
Sex	Age (years)																						
Both																							
	1-3	169	1008	(46)	504	(66)	596 (62)	765	(58)	976	(60)	1230	(79)	1521	(118)	1731	(156)	500	95.2	(2.4)	2500	<3	
	4-8	281	1005	(41)	620	(40)	694 (40)	823	(42)	978	(46)	1152	(57)	1334	(72)	1457	(84)	800	78.2	(5.7)	2500	0.0	(0.0)
Male																							
	9-13	183	1267	(94)	629	$(145)^{E}$	724 (133) ^E	914	(112)	1187	(100)	1564	(148)	2041	(284)	2416	$(418)^{E}$	1300	41.0	$(10.7)^{E}$	2500	F	
	14-18	187	1297	(66)	667	(79)	784 (79)	1011	(79)	1307	(91)	1629	(102)	1926	(112)	2116	(126)	1300	50.6	(8.0)	2500	<3	
	19-30	223	1014	(59)	433	$(110)^{E}$	518 (103) ^E	693	(87)	942	(69)	1250	(91)	1576	(152)	1792	(201)	1000	44.6	$(7.8)^{E}$	2500	<3	
	31-50	229	871	(71)	435	(41)	502 (45)	636	(52)	816	(60)	1043	(78)	1323	(130)	1548	(197)	1000	28.7	$(6.8)^{E}$	2500	<3	
	51-70	197	825	(63)	325	$(104)^{E}$	398 (102) ^E	554	(92)	784	(80)	1070	(96)	1376	(156)	1581	(212)	1200	F		2500	<3	
	>70	72	787	(52)	561	$(97)^{E}$	614 (85)	708	(69)	821	(62)	948	(82)	1076	(121)	1159	(153)	1200	F		2500	<3	
	19+	721	890	(38)	414	(42)	489 (42)	640	(42)	849	(41)	1110	(47)	1406	(68)	1619	(93)				2500	<3	
Female																							
	9-13	165	939	(51)	551	(92) ^E	623 (85)	756	(74)	928	(73)	1136	(96)	1364	(144)	1524	(187)	1300	F		2500	<3	
	14-18	206	864	(43)	415	(59)	486 (57)	623	(52)	811	(51)	1041	(72)	1290	(112)	1459	(144)	1300	F		2500	<3	
	19-30	191	927	(109)	536	$(139)^{E}$	601 (135) ^E	725	(127) ^E	889	(127)	1083	(151)	1288	(207)	1426	(260) ^E	1000	F		2500	<3	
	31-50	258	808	(63)	376	$(104)^{E}$	440 (102) ^E	569	(95) ^E	753	(85)	988	(86)	1254	(120)	1443	(154)	1000	24.1	(7.9) ^E	2500	<3	
	51-70	249	719			(29)	458 (31)		(37)		(46)		(61)	1019	, ,		(100)	1200	F		2500		(0.0)
	>70	128	692			(62) ^E	398 (67) ^E		(74)		(92)		(128)		(171)		(199)	1200	F		2500	<3	(212)
	19+	826				(52)	470 (52)		, ,		, ,		,		,	1362	,	1200					
	17+	020	799	(33)	408	(34)	47 0 (32)	390	(49)	/58	(45)	907	(47)	1199	(04)	1302	(02)				2500	<3	

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.
- $^{\rm 3}$ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 12.10 Calcium (mg/d): Usual intakes from food, by DRI age-sex group, household population, British Columbia, 2004¹

									Perce	ntiles (and	SE) of usu	ıal intake							%			%	
		n	Mean	(SE)	5th	(SE)	10th (SE)	25t	h (SE)	50tl	n (SE)	75th	(SE)	90th	(SE)	95th	(SE)	AI ²	>AI	(SE)	UL ³	>UL	(SE)
Sex Ag	ge ears)																						
Both																							
1-3	3	192	1053	(62)	520	(82)	617 (80)	800	(77)	1029	(79)	1287	(95)	1542	(125)	1706	(148)	500	95.8	(2.6)	2500	<3	
4-8	8	321	1039	(31)	656	(52)	729 (47)	863	(39)	1029	(39)	1224	(54)	1436	(82)	1584	(107)	800	83.0	(4.8)	2500	<3	
Male																							
9-1	13	226	1242	(72)	646	(94)	755 (91)	957	(87)	1235	(90)	1579	(144)	1965	(219)	2245	(279)	1300	44.5	(8.7) ^E	2500	F	
14	1-18	262	1408	(87)	839	$(166)^{E}$	952 (153	1166	(127)	1445	(106)	1775	(131)	2118	(206)	2347	(270)	1300	63.2	$(12.0)^{E}$	2500	F	
19	9-30	197	1270	(92)	567	$(184)^{E}$	672 (172) ^E 892	(140)	1223	(110)	1634	(182)	2053	(301)	2328	(382)	1000	66.7	$(12.1)^{E}$	2500	F	
31	1-50	282	1152	(77)	546	(99) ^E	646 (93)	844	(81)	1105	(84)	1431	(121)	1793	(190)	2034	(244)	1000	60.1	(8.7)	2500	<3	
51	1-70	234	891	(49)	453	(53)	524 (53)	664	(53)	853	(58)	1085	(75)	1335	(105)	1506	(133)	1200	16.7	$(5.2)^{E}$	2500	<3	
>7	70	119	792	(74)	302	$(71)^{E}$	367 (73)	^E 514	(76)	718	(89)	988	(114)	1302	(159)	1501	(191)	1200	F		2500	<3	
19)+	832	1069	(41)	490	(34)	579 (36)	758	(38)	1012	(45)	1337	(65)	1704	(96)	1963	(122)				2500	<3	
emale																							
9-1	13	226	1021	(63)	485	(73)	572 (71)	740	(68)	958	(73)	1226	(97)	1532	(140)	1747	(175)	1300	20.2	$(6.6)^{E}$	2500	<3	
14	1 -18	242	925	(56)	328	(56) ^E	411 (61)	589	(69)	854	(75)	1190	(89)	1548	(115)	1785	(136)	1300	19.2	(4.7) ^E	2500	<3	
19	9-30	208	894	(70)	480	$(100)^{E}$	552 (95)	E 690	(85)	870	(86)	1076	(113)	1284	(156)	1417	(187)	1000	F		2500	<3	
31	1-50	263	789	(42)	397	(52)	463 (49)	586	(45)	751	(46)	950	(64)	1168	(98)	1319	(129)	1000	20.5	(5.8) ^E	2500	<3	
		322	655			(31)	329 (31)		(31)		(34)	838	, ,	1082	, ,	1256	. ,	1200		$(1.8)^{E}$	2500	<3	
>7		198	686			(36)	387 (37)		(41)		(49)	795	, ,		(100)		(129)	1200	F.	(2.0)	2500	<3	
						(/	,		, ,		, ,		, ,		,		, ,	1200					
19) +	991	756	(22)	338	(26)	405 (26)	539	(26)	714	(26)	936	(30)	1179	(32)	1350	(08)				2500	<3	

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 12.11 Calcium (mg/d): Usual intakes from food, by DRI age-sex group, household population, Atlantic Region, 2004¹

										Perce	entiles (and SE) o	f usual intake							%			%	
		n	Mean	(SE)	5th	(SE)	10th	n (SE)	25tl	n (SE)	50th (SE) 75th	n (SE)	90t	h (SE)	95tl	n (SE)	AI ²	>AI	(SE)	UL ³	>UL	(SE)
Sex	Age (years)																						
Both																							
	1-3	348	1071	(42)	613	(57)	707	(53)	875	(48)	1069 (50)	1295	(67)	1558	(103)	1748	(135)	500	98.3	(1.0)	2500	<3	
	4-8	554	1088	(36)	715	(50)	790	(46)	925	(40)	1095 (40)	1290	(52)	1491	(73)	1623	(90)	800	89.2	(3.8)	2500	<3	
Male																							
	9-13	409	1190	(55)	595	(58)	690	(59)	879	(62)	1128 (67)	1412	(82)	1708	(111)	1911	(139)	1300	33.7	$(6.6)^{E}$	2500	<3	
	14-18	414	1225	(65)	582	(72)	699	(74)	924	(78)	1212 (91)	1556	(111)	1933	(138)	2193	(159)	1300	42.7	$(7.6)^{E}$	2500	F	
	19-30	311	1241	(68)	520	(61)	627	(65)	856	(73)	1190 (88)	1613	(114)	2085	(156)	2419	(193)	1000	64.1	(6.2)	2500	F	
	31-50	489	920	(58)	454	(38)	523	(38)	657	(39)	843 (44)	1078	(61)	1348	(95)	1549	(131)	1000	32.0	$(5.5)^{E}$	2500	<3	
	51-70	575	826	(33)	448	(45)	511	(44)	632	(42)	802 (41)	993	(50)	1192	(71)	1322	(87)	1200	F		2500	0.0	(0.0)
	>70	239	762	(48)	378	(41)	432	(44)	548	(51)	729 (58)	960	(69)	1195	(92)	1359	(115)	1200	F		2500	<3	
	19+	1614	943	(29)	426	(20)	501	(21)	657	(23)	877 (26)	1154	(36)	1488	(59)	1738	(82)				2500	<3	
Female																							
	9-13	355	966	(49)	536	(53)	606	(53)	738	(55)	917 (62)	1137	(77)	1373	(102)	1531	(123)	1300	F		2500	<3	
	14-18	410	899	(45)	439	$(79)^{E}$	546	(81)	743	(81)	964 (83)	1156	(69)	1338	(96)	1502	(140)	1300	F		2500	<3	
	19-30	384	806	(49)	370	(43)	437	(45)	573	(51)	774 (59)	1027	(76)	1295	(99)	1473	(117)	1000	27.2	(5.9) ^E	2500	<3	
	31-50	585	828	(36)	339	(33)	411	(36)	577	(40)	818 (49)	1074	(61)	1356	(86)	1573	(112)	1000	31.4	(5.0)	2500	<3	
	51-70	711	716	(31)	316	(28)	375	(31)	500	(35)	674 (35)	871	(73)	1101	(85)	1277	(100)	1200	F		2500	<3	
	>70	342	725	·		(47)		(48)		(51)	678 (63)		(88)		(123)		(150)	1200	F		2500	<3	
	19+	2022	778	,		(16)		(18)		(21)	747 (26)		(32)		(43)		(53)				2500	<3	
	17+	2022	110	(17)	343	(10)	410	(10)	540	(41)	747 (20)	907	(34)	1240	(43)	1430	(22)				2300	⟨3	

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 12.12 Calcium (mg/d): Usual intakes from food, by DRI age-sex group, household population, Prairie Region, 2004¹

										Perce	entiles (and	SE) of us	sual intake							%			%
		n	Mean	(SE)	5th	(SE)	10th	n (SE)	25tl	n (SE)	50th	(SE)	751	th (SE)	90t	h (SE)	95th	n (SE)	AI ²	>AI	(SE)	UL ³ :	•UL (SE)
Sex	Age (years)																						
Both																							
	1-3	622	1028	(33)	526	(40)	619	(40)	794	(40)	1012	(42)	1267	(54)	1550	(82)	1748	(102)	500	96.0	(1.5)	2500	<3
	4-8	919	991	(28)	606	(65)	679	(54)	809	(38)	967	(31)	1142	2 (51)	1320	(85)	1440	(112)	800	76.2	(6.0)	2500	<3
Male																							
	9-13	579	1218	(58)	651	(56)	746	(53)	929	(51)	1176	(60)	1485	(89)	1834	(167)	2082	(232)	1300	38.6	(6.0)	2500	F
	14-18	634	1330	(47)	668	(73)	787	(69)	1009	(65)	1307	(67)	1678	(81)	2051	(111)	2284	(140)	1300	50.6	(5.7)	2500	F
	19-30	578	1075	(51)	437	(59)	524	(59)	709	(54)	979	(50)	1311	(67)	1680	(114)	1945	(159)	1000	48.1	(4.8)	2500	<3
	31-50	693	888	(48)	416	(49)	491	(49)	645	(45)	839	(45)	1088	(58)	1395	(97)	1620	(138)	1000	32.2	(4.9)	2500	<3
	51-70	596	802	(39)	315	(50)	389	(50)	542	(50)	764	(50)	1050	(58)	1358	(82)	1562	(104)	1200	16.4	$(3.4)^{E}$	2500	<3
	>70	296	793	(35)	388	(38)	454	(38)	588	(38)	768	(40)	981	(56)	1248	(90)	1458	(127)	1200	11.8	$(3.5)^{E}$	2500	<3
	19+	2163	904	(26)	376	(23)	455	(24)	615	(26)	845	(27)	1137	(33)	1488	(51)	1744	(73)				2500	<3
Female																							
	9-13	533	965	(36)	543	(49)	620	(47)	762	(45)	944	(49)	1160	(63)	1395	(86)	1558	(108)	1300	14.7	$(4.4)^{E}$	2500	<3
	14-18	638	871	(32)	402	(30)	477	(32)	623	(34)	820	(39)	1068	(52)	1346	(72)	1539	(89)	1300	11.7	$(2.8)^{E}$	2500	<3
	19-30	499	926	(70)	496	(95) ^E	566	(92)	704	(85)	889	(79)	1107	(92)	1334	(131)	1486	(168)	1000	36.1	$(10.1)^{E}$	2500	<3
	31-50	716	804	(43)	364	(64) ^E	432	(64)	565	(61)	739	(56)	961	(59)	1228	(80)	1423	(105)	1000	21.9	$(5.0)^{E}$	2500	<3
	51-70	745	763	(31)	421	(48)	478	(44)	586	(38)	728	(35)	899	(47)	1087	(76)	1219	(102)	1200	F		2500	<3
	>70	510	683	(38)	322	(29)	379	(32)	501	(38)	671	(48)	881	(65)	1132	(91)	1306	(106)	1200	F		2500	<3
	19+	2470	804	(23)		(24)		(24)	569	(26)	748	(28)	980	(33)	1254	(45)	1448	(56)				2500	<3

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 12.13 Calcium (mg/d): Usual intakes from food, by DRI age-sex group, household population, Canada excluding territories, 2004¹

,						Percent	iles (and SE) of usu	al intake				%		%
		n	Mean (SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (SE)	90th (SE)	95th (SE)	AI ²	> AI (SE)	UL ³	>UL (SE)
Sex	Age (years)													
Both														
	1-3	2117	1051 (18)	552 (23)	650 (23)	826 (22)	1041 (22)	1292 (27)	1567 (37)	1753 (44)	500	96.8 (0.7)	2500	<3
	4-8	3235	1036 (16)	585 (21)	666 (19)	814 (17)	1003 (18)	1228 (26)	1472 (39)	1635 (49)	800	76.7 (2.1)	2500	<3
Male														
	9-13	2080	1219 (27)	620 (27)	718 (27)	906 (27)	1164 (31)	1482 (41)	1827 (57)	2066 (75)	1300	38.0 (2.9)	2500	1.4 (0.4) ^E
	14-18	2288	1300 (28)	670 (38)	785 (37)	1002 (35)	1288 (35)	1633 (43)	2001 (60)	2249 (75)	1300	49.0 (3.0)	2500	2.4 (0.7) ^E
	19-30	1804	1107 (35)	516 (31)	606 (32)	784 (33)	1029 (38)	1340 (54)	1691 (81)	1934 (104)	1000	52.9 (3.7)	2500	<3
	31-50	2596	938 (22)	440 (24)	518 (24)	680 (24)	893 (24)	1156 (31)	1458 (47)	1675 (62)	1000	38.4 (2.6)	2500	<3
	51-70	2550	832 (17)	390 (18)	457 (18)	588 (18)	776 (20)	1025 (27)	1304 (41)	1498 (54)	1200	14.3 (1.7)	2500	<3
	>70	1520	762 (33)	336 (20)	398 (21)	523 (23)	702 (29)	932 (40)	1193 (57)	1377 (72)	1200	9.7 (2.2) ^E	2500	<3
	19+	8470	931 (13)	413 (11)	489 (12)	647 (13)	868 (15)	1151 (20)	1475 (30)	1708 (39)			2500	0.5 (0.1) ^E
Female	e													
	9-13	1980	993 (24)	515 (23)	596 (22)	749 (23)	950 (26)	1188 (33)	1440 (46)	1611 (58)	1300	17.0 (2.4)	2500	<3
	14-18	2256	917 (21)	420 (21)	500 (22)	660 (23)	888 (25)	1166 (33)	1459 (51)	1659 (68)	1300	16.8 (2.1)	2500	<3
	19-30	1854	867 (27)	407 (25)	479 (25)	622 (26)	820 (28)	1063 (36)	1323 (51)	1498 (63)	1000	30.4 (3.2)	2500	<3
	31-50	2686	827 (19)	389 (21)	457 (22)	599 (22)	785 (23)	1027 (28)	1287 (40)	1477 (53)	1000	27.2 (2.4)	2500	<3
	51-70	3200	740 (13)	344 (14)	410 (14)	534 (14)	702 (15)	910 (19)	1138 (27)	1302 (36)	1200	7.7 (1.0)	2500	<3
	>70	2610	690 (17)	341 (17)	397 (18)	509 (20)	661 (22)	849 (26)	1060 (34)	1211 (42)	1200	5.3 (1.0) ^E	2500	<3
	19+	10350	793 (10)	373 (10)	440 (10)	572 (10)	752 (12)	982 (15)	1234 (21)	1413 (28)	1200	(1.0)	2500	<3
	19+	10330	193 (10)	3/3 (10)	440 (10)	312 (10)	134 (14)	704 (13)	1434 (21)	1413 (20)			2500	<u> </u>

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

13. Sodium (mg/d): Usual intakes from food

Table 13.1 Sodium (mg/d): Usual intakes from food, by DRI age-sex group, household population, Newfoundland and Labrador, 2004¹

										Percent	iles (and	SE) of usu	ıal intake							%			%	
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	(SE)	75th	(SE)	90th	(SE)	95th	n (SE)	AI^2		(SE)	UL ³	>UL	(SE)
Sex	Age (years)																							
Both																								
	1-3	79	2020	(207)	1409	$(260)^{E}$	1517	$(253)^{E}$	1712	(228)	1949	(207)	2210	(266)	2471	(341)	2641	(408)	1000	100.0	(3.0)	1500	90.9	(15.1)
	4-8	127	3041	(209)	2298	(372)	2459	(351)	2747	(314)	3097	(288)	3492	(307)	3891	(385)	4150	(464)	1200	100.0	(0.2)	1900	99.5	(5.2)
Male																								
	9-13	111	3709	(233)	2434	$(421)^{E}$	2663	(393)	3083	(344)	3609	(306)	4214	(331)	4845	(443)	5267	(550)	1500	100.0	(0.2)	2200	98.0	(3.3)
	14-18	107	3941	(248)	2593	(226)	2881	(231)	3406	(249)	4062	(297)	4820	(364)	5613	(429)	6148	(475)	1500	100.0	(0.1)	2300	97.9	(1.9)
	19-30	77	3998	(266)	3004	(316)	3256	(316)	3694	(318)	4182	(332)	4667	(363)	5110	(407)	5380	(439)	1500	100.0	(0.0)	2300	99.6	(1.1)
	31-50	145	3146	(215)	2056	(161)	2245	(167)	2527	(176)	2886	(194)	3361	(233)	3842	(303)	4207	(366)	1500	99.8	(0.3)	2300	87.9	(7.4)
	51-70	182	3016	(208)	1686	(168)	1878	(187)	2253	(215)	2756	(254)	3359	(302)	3992	(362)	4411	(414)	1300	99.4	(0.7)	2300	72.8	(9.4)
	>70	63	3712	(510)	2350	(318)	2563	(363)	3005	(457)	3704	(611)	4750	(898) ^E	6168	$(1423)^{E}$	7367	$(1953)^{E}$	1200	100.0	(0.0)	2300	95.9	(6.2)
	19+	467	3331	(125)	2466	(285)	2637	(251)	2941	(194)	3306	(151)	3704	(186)	4095	(299)	4350	(394)				2300	97.8	(4.3)
Female																								
	9-13	96	3047	(159)	1980	(256)	2200	(238)	2598	(217)	3083	(219)	3614	(269)	4131	(354)	4459	(422)	1500	99.4	(0.8)	2200	90.0	(6.0)
	14-18	105	2913	(165)	2196	(324)	2345	(295)	2603	(247)	2907	(215)	3240	(260)	3572	(389)	3791	(491)	1500	100.0	(1.2)	2300	91.8	(10.5)
	19-30	91	2533	(213)	1757	(181)	1882	(191)	2102	(208)	2364	(229)	2645	(251)	2913	(273)	3081	(288)	1500	99.3	(2.0)	2300	F	
	31-50	167	2902	(245)	1870	$(329)^{E}$	2076	(325)	2461	(325)	2963	(348)	3558	(409)	4172	(505)	4571	(585)	1500	99.1	(2.2)	2300	82.0	(12.7)
	51-70	198	2315	(104)	1317	(209)	1511	(179)	1851	(135)	2261	(116)	2735	(162)	3251	(267)	3614	(365)	1300	95.3	(3.0)	2300	47.6	(8.8) ^E
	>70	74	2290	(229)	1412	(175)	1550	(183)	1810	(198)	2123	(220)	2445	(241)	2757	(265)	2968	(288)	1200	98.9	(3.0)	2300	F	
	19+	530	2593	(111)	1719	(171)	1886	(159)	2186	(144)	2557	(141)	2977	(163)	3408	(213)	3696	(259)				2300	67.7	(9.6)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 13.2 Sodium (mg/d): Usual intakes from food, by DRI age-sex group, household population, Prince Edward Island, 2004¹

										Percent	iles (and	SE) of usu	al intake							%			%	
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	(SE)	75tl	n (SE)	90t	h (SE)	95th	(SE)	AI ²		(SE)	UL ³	>UL	(SE)
Sex	Age (years)																							
Both																								
	1-3	58	1899	(167)	1199	$(238)^{E}$	1326	(219)	1552	(193)	1824	(187)	2120	(222)	2405	(290)	2584	(345)	1000	98.8	(2.2)	1500	79.1	$(14.8)^{E}$
	4-8	110	2521	(99)	1894	(118)	2007	(122)	2221	(135)	2484	(155)	2761	(173)	3008	(187)	3151	(194)	1200	100.0	(0.1)	1900	94.8	(5.2)
Male																								
	9-13	95	3303	(201)	2274	(284)	2456	(273)	2788	(264)	3198	(277)	3656	(324)	4112	(400)	4407	(459)	1500	100.0	(0.2)	2200	96.4	(5.1)
	14-18	87	4103	(299)	2204	$(412)^{E}$	2606	(406)	3372	(396)	4305	(405)	5282	(462)	6280	(592)	6988	(726)	1500	99.2	(0.8)	2300	94.0	(4.0)
	19-30	70	4350	(405)	2907	(510) ^E	3203	(491)	3758	(468)	4450	(492)	5204	(596)	5927	(749)	6380	(862)	1500	100.0	(0.1)	2300	99.4	(2.0)
	31-50	109	3582	(205)	2231	(330)	2487	(301)	2937	(269)	3512	(267)	4201	(325)	4899	(433)	5330	(510)	1500	99.6	(0.6)	2300	93.9	(4.4)
	51-70	128	3049	(154)	2334	(305)	2487	(262)	2761	(201)	3087	(177)	3432	(233)	3755	(338)	3952	(421)	1300	100.0	(0.4)	2300	95.8	(6.6)
	>70	65	2583	(156)	1578	(338) ^E	1767	$(301)^{E}$	2115	(248)	2562	(228)	3098	(296)	3689	(453)	4104	(593)	1200	99.3	(1.3)	2300	64.9	$(15.5)^{E}$
	19+	372	3486	(121)	2152	(162)	2397	(152)	2857	(143)	3462	(157)	4169	(210)	4905	(295)	5395	(363)				2300	92.3	(3.0)
Female																								
	9-13	75	2773	(234)	1664	$(293)^E$	1861	(282)	2232	(275)	2712	(306)	3271	(390)	3851	(516)	4235	(623)	1500	97.6	(2.8)	2200	76.5	$(14.3)^{E}$
	14-18	81	2698	(136)	1738	$(326)^E$	1930	(283)	2266	(216)	2661	(175)	3077	(209)	3468	(294)	3710	(360)	1500	98.3	(2.6)	2300	73.1	$(13.0)^{E}$
	19-30	101	3076	(212)	2077	(281)	2301	(271)	2709	(268)	3211	(297)	3767	(367)	4316	(468)	4666	(546)	1500	99.7	(0.7)	2300	90.0	(7.7)
	31-50	116	2625	(244)	1611	(253)	1807	(246)	2177	(262)	2667	(278)	3228	(378)	3776	(495)	4120	(581)	1500	96.9	(3.4)	2300	69.0	$(13.9)^{E}$
	51-70	146	2844	(158)	1899	(267)	2091	(253)	2450	(229)	2909	(212)	3432	(232)	3958	(298)	4299	(357)	1300	99.9	(0.6)	2300	82.1	(10.1)
	>70	94	2279	(134)	1539	(255)	1668	(231)	1911	(189)	2232	(157)	2616	(208)	3026	(359)	3306	(499)	1200	99.7	(1.9)	2300	44.9	$(14.9)^{E}$
	19+	457	2729	(117)	1744	(133)	1936	(133)	2300	(137)	2779	(151)	3336	(190)	3903	(253)	4276	(308)				2300	75.0	(6.9)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 13.3 Sodium (mg/d): Usual intakes from food, by DRI age-sex group, household population, Nova Scotia, 2004¹

										Percenti	les (and	SE) of usu	al intake							%			%	
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	(SE)	75tl	n (SE)	90t	h (SE)	95tl	n (SE)	AI^2		(SE)	UL^3	>UL	(SE)
Sex	Age (years)																							
Both																								
	1-3	112	1942	(91)	1256	(107)	1386	(104)	1607	(103)	1867	(108)	2155	(126)	2452	(155)	2652	(177)	1000	99.1	(0.8)	1500	83.3	(6.9)
	4-8	177	2680	(113)	1870	(158)	2018	(150)	2279	(144)	2586	(147)	2912	(156)	3221	(167)	3413	(174)	1200	100.0	(0.2)	1900	94.2	(4.7)
Male																								
	9-13	111	3536	(155)	2574	(167)	2746	(170)	3054	(174)	3430	(177)	3844	(184)	4252	(200)	4513	(217)	1500	100.0	(0.0)	2200	99.4	(0.8)
	14-18	113	3537	(315)	2187	(547) ^E	2417	(526) ^E	2840	$(510)^{E}$	3424	(510)	4202	(530)	4956	(655)	5347	(780)	1500	100.0	(0.7)	2300	92.8	(6.4)
	19-30	91	4085	(338)	2593	$(513)^E$	2848	$(476)^{E}$	3327	(413)	3949	(387)	4678	(496)	5440	(748)	5950	(966)	1500	100.0	(0.5)	2300	98.2	(4.4)
	31-50	101	3772	(258)	2149	$(467)^{E}$	2440	$(428)^{E}$	2993	(359)	3690	(321)	4436	(391)	5112	(527)	5504	(620)	1500	99.5	(0.6)	2300	92.7	(5.2)
	51-70	134	3418	(256)	2049	$(432)^E$	2287	$(386)^{E}$	2738	(309)	3330	(269)	3990	(355)	4607	(505)	4984	(621)	1300	99.8	(0.8)	2300	89.7	(7.7)
	>70	56	3044	(280)	2267	(188)	2406	(199)	2664	(229)	3000	(287)	3410	(379)	3864	(499)	4183	(591)	1200	100.0	(0.1)	2300	94.0	(8.2)
	19+	382	3660	(146)	2137	(219)	2396	(202)	2887	(171)	3535	(160)	4295	(227)	5065	(344)	5561	(431)				2300	92.1	(3.6)
Female																								
	9-13	105	2927	(215)	2050	(195)	2213	(204)	2520	(224)	2921	(251)	3397	(303)	3902	(382)	4243	(444)	1500	100.0	(0.4)	2200	90.5	(8.6)
	14-18	120	2706	(273)	1896	(369) ^E	2048	(342) ^E	2321	(302)	2657	(284)	3029	(386)	3406	(515)	3657	(628) ^E	1500	99.7	(4.0)	2300	76.4	$(17.0)^{E}$
	19-30	91	2895	(169)	2223	(259)	2371	(228)	2623	(193)	2910	(196)	3215	(261)	3535	(372)	3755	(460)	1500	100.0	(0.6)	2300	92.7	(8.0)
	31-50	159	3101	(223)	1549	(225)	1826	(219)	2347	(223)	2990	(261)	3697	(348)	4440	(495)	4968	(629)	1500	95.7	(2.7)	2300	76.6	(8.3)
	51-70	174	2440	(95)	1666	(251)	1801	(215)	2042			(115)		(155)	2963	(264)		(355)	1300		(2.0)	2300		$(13.4)^{E}$
	>70		2351			(261)	1725	,	1977	, ,		(230)		(279)		(392)		(511)	1200		(2.3)	2300	F	(,
				, ,		,		,		, ,		, ,		, ,		,		, ,	1200	77.1	(2.3)			(6.0)
	19+	504	2773	(100)	1561	(116)	1793	(111)	2182	(111)	2070	(128)	3233	(171)	3831	(246)	4245	(316)				2300	69.3	(0.0)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 13.4 Sodium (mg/d): Usual intakes from food, by DRI age-sex group, household population, New Brunswick, 2004¹

										Percei	ntiles (and	SE) of us	ual intake							%			%	
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	(SE)	75th	(SE)	90tl	n (SE)	95tl	n (SE)	AI ²	>AI	(SE)	UL ³	>UL	(SE)
Sex	Age (years)																							
Both																								
	1-3	99	2198	(154)	1367	(176)	1505	(171)	1791	(165)	2169	(175)	2591	(233)	3083	(351)	3464	(458)	1000	99.7	(0.7)	1500	90.2	(6.4)
	4-8	140	2905	(195)	2108	(139)	2257	(152)	2524	(178)	2855	(220)	3238	(283)	3645	(371)	3925	(443)	1200	100.0	(0.0)	1900	98.5	(1.5)
Male																								
	9-13	92	3324	(250)	2271	(300)	2434	(299)	2728	(299)	3089	(305)	3494	(316)	3905	(334)	4174	(349)	1500	100.0	(0.2)	2200	96.5	(7.4)
	14-18	107	4399	(373)	2573	(385)	2889	(388)	3536	(384)	4485	(389)	5662	(509)	7181	(817)	8365	(1117)	1500	99.8	(0.3)	2300	97.6	(1.9)
	19-30	73	4966	(422)	3734	$(672)^{E}$	4032	(625)	4569	(570)	5226	(582)	5952	(716)	6668	(978)	7126	$(1218)^{E}$	1500	100.0	(0.1)	2300	100.0	(1.0)
	31-50	134	3771	(281)	2441	(469) ^E	2671	(432)	3098	(376)	3656	(350)	4337	(430)	5096	(659)	5635	(888)	1500	100.0	(0.5)	2300	97.0	(5.0)
	51-70	131	3164	(176)	2250	(319)	2420	(284)	2724	(238)	3098	(227)	3521	(295)	3958	(433)	4250	(546)	1300	100.0	(0.3)	2300	93.8	(7.0)
	>70	55	3016	(191)	2095	(344)	2283	(315)	2625	(274)	3057	(254)	3535	(295)	4018	(413)	4359	(535)	1200	100.0	(0.2)	2300	89.4	(9.3)
	19+	393	3774	(159)	2318	(280)	2582	(258)	3071	(220)	3711	(203)	4501	(266)	5395	(425)	6030	(571)				2300	95.3	(3.0)
Female																								
	9-13	79	3084	(292)	2077	(319)	2275	(331)	2629	(348)	3055	(372)	3558	(428)	4130	(508)	4531	(573)	1500	99.9	(0.2)	2200	92.2	(8.7)
	14-18	104	2864	(148)	2165	(180)	2317	(184)	2577	(194)	2874	(210)	3189	(237)	3494	(271)	3688	(296)	1500	100.0	(0.2)	2300	90.7	(7.4)
	19-30	101	2635	(196)	1803	$(382)^{E}$	1981	(357) ^E	2302	(317)	2693	(285)	3120	(297)	3536	(370)	3799	(442)	1500	99.0	(3.9)	2300	75.1	$(16.6)^{E}$
	31-50	143	2610	(188)	1871	(291)	2007	(257)	2239	(212)	2516	(214)	2820	(303)	3123	(442)	3321	(541)	1500	99.6	(3.6)	2300	69.9	(18.7) ^E
	51-70	193	2635	(150)	1562	(112)	1730	(117)	2045	(133)	2468	(166)	3001	(219)	3622	(308)	4081	(392)	1300	98.9	(0.9)	2300	59.9	(9.3)
	>70	94	2337	(151)	1475	(215)	1624	(207)	1899	(201)	2245	(211)	2637	(251)	3032	(321)	3289	(377)	1200	99.2	(1.8)	2300	F	
	19+	531	2586	(92)	1638	(149)	1821	(133)	2135	(112)	2508	(110)	2962	(146)	3436	(217)	3757	(276)				2300	64.1	(7.5)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- ^F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 13.5 Sodium (mg/d): Usual intakes from food, by DRI age-sex group, household population, Quebec, 2004¹

										Percen	tiles (and	SE) of usu	ıal intake							%			%	
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	n (SE)	75th	(SE)	90th	(SE)	95th	n (SE)	AI ²		(SE)	UL ³	>UL	(SE)
Sex	Age (years)																							
Both																								
	1-3	311	2018	(82)	1305	(171)	1465	(156)	1750	(134)	2090	(123)	2454	(138)	2801	(174)	3018	(204)	1000	99.2	(1.4)	1500	88.6	(6.6)
	4-8	485	2962	(130)	1915	(246)	2113	(228)	2461	(201)	2908	(176)	3468	(191)	4085	(291)	4508	(386)	1200	99.8	(0.2)	1900	95.3	(3.5)
Male																								
	9-13	277	4019	(223)	2812	(361)	3069	(329)	3540	(285)	4139	(278)	4842	(359)	5592	(526)	6106	(673)	1500	100.0	(0.1)	2200	99.5	(1.0)
	14-18	339	4415	(192)	2915	(297)	3209	(283)	3775	(262)	4552	(267)	5492	(335)	6475	(467)	7138	(585)	1500	100.0	(0.0)	2300	99.3	(0.7)
	19-30	237	4490	(310)	3123	(484)	3412	(457)	3948	(426)	4634	(433)	5439	(531)	6283	(724)	6851	(889)	1500	100.0	(0.0)	2300	99.8	(0.7)
	31-50	423	3981	(201)	2302	(306)	2617	(279)	3188	(243)	3886	(236)	4716	(285)	5601	(398)	6199	(497)	1500	99.7	(0.5)	2300	95.0	(3.1)
	51-70	387	3570	(148)	1973	(206)	2267	(188)	2807	(168)	3487	(174)	4276	(234)	5104	(340)	5663	(425)	1300	99.5	(0.5)	2300	89.3	(3.9)
	>70	132	3012	(170)	2058	(317)	2250	(299)	2615	(269)	3070	(258)	3560	(295)	4026	(369)	4317	(430)	1200	100.0	(0.2)	2300	88.4	(8.4)
	19+	1179	3892	(118)	2261	(161)	2560	(155)	3124	(148)	3854	(153)	4703	(187)	5597	(253)	6207	(316)				2300	94.5	(2.0)
Female																								
	9-13	281	3145	(176)	1855	(200)	2078	(190)	2486	(185)	3022	(206)	3675	(266)	4361	(353)	4807	(414)	1500	98.8	(1.2)	2200	86.3	(6.3)
	14-18	321	3126	(125)	2264	(237)	2465	(213)	2828	(179)	3261	(174)	3728	(224)	4186	(311)	4482	(380)	1500	100.0	(0.2)	2300	94.3	(4.6)
	19-30	249	3050	(208)	2006	(174)	2190	(182)	2516	(200)	2909	(229)	3337	(266)	3756	(305)	4023	(331)	1500	99.7	(0.6)	2300	85.8	(9.4)
	31-50	364	2891	(103)	2109	(279)	2279	(249)	2588	(196)	2966	(152)	3385	(179)	3800	(280)	4065	(367)	1500	100.0	(1.0)	2300	89.2	(8.3)
	51-70	467	2875	(101)	1888	(219)	2079	(193)	2426	(150)	2860	(120)	3357	(161)	3870	(263)	4213	(348)	1300	99.8	(0.4)	2300	81.3	(7.4)
	>70	215	2210	(97)	1531	(131)	1652	(128)	1867	(128)	2132	(141)	2435	(174)	2753	(228)	2970	(275)	1200	99.7	(0.6)	2300	F	
	19+	1295	2832	(68)	1866	(111)	2053	(102)	2392	(89)	2816	(85)	3294	(103)	3779	(145)	4100	(182)				2300	79.8	(4.6)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 13.6 Sodium (mg/d): Usual intakes from food, by DRI age-sex group, household population, Ontario, 2004¹

										Percent	tiles (and	SE) of usu	al intake							%			%	
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	n (SE)	75th	n (SE)	90t	h (SE)	95	th (SE)	AI^2		(SE)	UL ³	>UL	(SE)
Sex	Age (years)																							
Both																								
	1-3	644	1810	(50)	1103	(149)	1238	(129)	1482	(94)	1788	(61)	2127	(76)	2465	(136)	2687	7 (187)	1000	97.4	(2.2)	1500	73.7	(7.8)
	4-8	956	2565	(58)	1717	(139)	1876	(121)	2161	(91)	2525	(66)	2960	(91)	3428	(169)	3740	6 (234)	1200	99.8	(0.3)	1900	89.0	(4.3)
Male																								
	9-13	589	3360	(94)	2273	(228)	2464	(206)	2824	(164)	3298	(117)	3858	(135)	4439	(237)	4827	7 (327)	1500	100.0	(0.2)	2200	96.3	(3.1)
	14-18	639	3932	(116)	2757	(370)	2996	(318)	3426	(225)	3957	(147)	4552	(215)	5151	(394)	5543	3 (531)	1500	100.0	(0.2)	2300	99.2	(2.3)
	19-30	481	3797	(181)	2466	(155)	2716	(161)	3164	(176)	3718	(201)	4347	(240)	4995	(293)	5427	7 (336)	1500	100.0	(0.1)	2300	97.1	(1.5)
	31-50	709	3267	(118)	2486	(364)	2642	(314)	2926	(224)	3274	(147)	3658	(226)	4039	(409)	4282	2 (545)	1500	100.0	(0.7)	2300	98.3	(6.6)
	51-70	758	3070	(92)	1739	(226)	1969	(197)	2388	(147)	2912	(104)	3523	(139)	4175	(256)	4624	1 (356)	1300	99.2	(0.9)	2300	78.7	(6.7)
	>70	734	2582	(64)	1393	(118)	1603	(104)	1981	(82)	2459	(69)	3019	(91)	3623	(150)	4047	7 (208)	1200	97.7	(1.1)	2300	58.5	(4.0)
	19+	2682	3271	(70)	1848	(144)	2089	(131)	2546	(105)	3156	(83)	3895	(108)	4675	(190)	5197	7 (260)				2300	83.9	(3.8)
Female	:																							
	9-13	585	2793	(76)	1730	(158)	1927	(138)	2277	(104)	2707	(85)	3197	(121)	3711	(205)	4058	3 (279)	1500	98.2	(1.5)	2200	78.9	(5.5)
	14-18	645	2912	(75)	1836	(255)	2054	(217)	2450	(149)	2933	(96)	3468	(150)	4010	(273)	4373	3 (370)	1500	98.8	(1.4)	2300	81.5	(7.2)
	19-30	514	2440	(87)	1660	(226)	1801	(195)	2051	(139)	2352	(96)	2678	(138)	2996	(235)	3197	7 (307)	1500	98.1	(3.3)	2300	54.5	$(10.7)^{E}$
	31-50	758	2657	(95)	1375	(120)	1596	(113)	2013	(104)	2546	(105)	3199	(136)	3926	(208)	4433	3 (277)	1500	92.4	(2.6)	2300	61.7	(4.9)
	51-70	955	2402	(61)	1236	(130)	1446	(115)	1835	(89)	2311	(73)	2851	(89)	3428	(142)	3818	3 (190)	1300	93.7	(2.3)	2300	50.6	(4.2)
	>70	1345	2288	(55)	1332	(122)	1498	(105)	1792	(78)	2168	(59)	2637	(85)	3156	(161)	3512	2 (224)	1200	97.4	(1.4)	2300	41.9	(3.8)
	19+	3572		,	1393	,	1587	, ,	1944	, ,	2402	, ,	2951	, ,		(102)		7 (134)			. ,	2300		,
	17	3312	2301	(17)	1373	(37)	1507	(37)	1/77	(33)	4704	(34)	2/31	(00)	3333	(102)	373	(137)				2500	33.0	(2.7)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 13.7 Sodium (mg/d): Usual intakes from food, by DRI age-sex group, household population, Manitoba, 2004¹

							Percenti	iles (and SE) of usua	al intake				%			%
		n	Mean	(SE)	5th (SE)	10th (SE)	25th (SE)	50th (SE)	75th (<i>SE</i>)	90th (SE)	95th (SE)	AI ²	>AI	(SE)	UL ³	>UL (SE)
Sex	Age (years)															
Both																
	1-3	324	1946	(89)	942 (96)	1112 (92)	1448 (89)	1859 (99)	2332 (126)	2857 (182)	3226 (243)	1000	93.5	(2.2)	1500	72.2 (5.2)
	4-8	425	2591	(127)	1893 (200)	2017 (171)	2239 (131)	2509 (130)	2810 (201)	3111 <i>(313)</i>	3307 (397)	1200	100.0	(0.3)	1900	94.8 (6.3)
Male																
	9-13	274	3343	(113)	1781 (192)	2081 (173)	2624 (146)	3287 (142)	4015 (165)	4723 (228)	5170 (272)	1500	97.8	(1.3)	2200	87.4 (3.9)
	14-18	297	4334	(216)	2242 (278)	2589 (277)	3276 (277)	4183 (294)	5241 (352)	6408 (481)	7217 (596)	1500	99.5	(0.5)	2300	94.3 (3.3)
	19-30	249	4423	(255)	3092 (206)	3347 (217)	3808 (242)	4384 (281)	5044 (331)	5717 (385)	6159 (423)	1500	100.0	(0.0)	2300	99.8 (0.3)
	31-50	309	3532	(158)	2236 (428) ^E	2492 (365)	2947 (263)	3498 (192)	4107 (261)	4718 (429)	5118 (561)	1500	99.7	(0.6)	2300	94.0 (4.8)
	51-70	277	3297	(147)	1837 (251)	2068 (221)	2469 (198)	3084 (201)	4007 (262)	4946 (417)	5458 (502)	1300	99.3	(1.0)	2300	82.1 (6.7)
	>70	136	2743	(137)	1500 (233)	1715 (210)	2118 (173)	2635 (165)	3232 (225)	3841 <i>(337)</i>	4240 (429)	1200	98.7	(1.3)	2300	66.5 (8.9)
	19+	971	3591	(96)	2169 (277)	2423 (245)	2902 (181)	3532 (119)	4257 (178)	4982 (316)	5454 (422)				2300	92.7 (3.8)
Female																
	9-13	265	2960	(146)	1753 (245)	1955 (215)	2318 (171)	2786 (157)	3344 (227)	3928 (370)	4325 (492)	1500	98.3	(2.3)	2200	80.6 (8.2)
	14-18	290	2786	(143)	1695 (253)	1896 (220)	2259 (166)	2707 (140)	3215 (201)	3747 <i>(317)</i>	4103 (406)	1500	97.9	(1.6)	2300	72.9 (8.7)
	19-30	197	2884	(163)	1577 (161)	1822 (167)	2276 (181)	2831 (196)	3438 (211)	4059 (246)	4486 (291)	1500	96.1	(1.8)	2300	74.0 (7.2)
	31-50	312	2878	(199)	1814 (275)	1995 (250)	2319 (215)	2751 (200)	3312 (263)	3965 (434)	4434 (597)	1500	99.0	(2.1)	2300	76.1 (11.0)
	51-70	312	2581	(88)	2038 (251)	2158 (215)	2360 (153)	2595 (105)	2847 (143)	3095 (247)	3256 (326)	1300	100.0	(0.6)	2300	80.3 (11.9)
	>70	239	2110	(98)	1177 (92)	1325 (97)	1621 (103)	2016 (110)	2469 (123)	2935 (147)	3251 (173)	1200	94.3	(2.6)	2300	33.2 (6.2) ^E
	19+	1060	2683	(87)	1774 (160)	1937 (141)	2235 (111)	2626 (91)	3102 (134)	3621 (242)	3976 (334)				2300	71.0 (7.1)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 13.8 Sodium (mg/d): Usual intakes from food, by DRI age-sex group, household population, Saskatchewan, 2004¹

•										Percen	entiles (and SE) of usual intake									%			%	
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	(SE)	75th	n (SE)	90tl	n (SE)	95tl	n (SE)	AI ²		(SE)	UL ³	>UL	(SE)
Sex	Age (years)																							
Both																								
	1-3	129	2087	(132)	1230	(147)	1390	(138)	1681	(132)	2053	(147)	2507	(210)	3025	(339)	3400	(469)	1000	98.7	(1.3)	1500	85.2	(6.3)
	4-8	213	2787	(104)	2163	(255)	2300	(225)	2542	(172)	2829	(132)	3133	(168)	3423	(263)	3606	(340)	1200	100.0	(0.0)	1900	99.2	(3.1)
Male																								
	9-13	122	3754	(288)	3125	(399)	3273	(374)	3534	(338)	3843	(320)	4174	(352)	4492	(429)	4691	(494)	1500	100.0	(0.0)	2200	100.0	(0.7)
	14-18	150	4572	(239)	2850	(456)	3215	(416)	3882	(353)	4684	(325)	5526	(379)	6324	(501)	6829	(604)	1500	100.0	(0.2)	2300	98.8	(1.7)
	19-30	106	3807	(226)	2071	$(377)^{E}$	2367	(348)	2938	(288)	3650	(262)	4415	(344)	5177	(515)	5695	(658)	1500	99.4	(0.9)	2300	91.3	(5.3)
	31-50	155	3725	(217)	1895	$(359)^{E}$	2231	(316)	2815	(260)	3563	(256)	4514	(398)	5580	(635)	6312	(784)	1500	98.1	(1.9)	2300	88.7	(5.2)
	51-70	122	3441	(216)	2102	$(360)^{E}$	2405	(314)	2947	(257)	3620	(272)	4406	(415)	5256	(655)	5846	(853)	1300	99.7	(0.5)	2300	92.0	(4.8)
	>70	88	3400	(164)	2109	(304)	2339	(288)	2782	(260)	3378	(254)	4108	(333)	4904	(497)	5455	(635)	1200	100.0	(0.2)	2300	91.0	(6.3)
	19+	471	3630	(117)	1905	(148)	2232	(138)	2824	(130)	3564	(143)	4438	(192)	5391	(282)	6054	(357)				2300	88.7	(2.7)
Female																								
	9-13	103	3235	(251)	2533	(359)	2681	(335)	2941	(304)	3253	(293)	3596	(321)	3938	(389)	4160	(450)	1500	100.0	(0.1)	2200	99.4	(4.0)
	14-18	142	3110	(164)	2095	(225)	2350	(218)	2796	(215)	3306	(234)	3881	(298)	4507	(397)	4936	(472)	1500	99.5	(0.7)	2300	91.2	(5.6)
	19-30	111	2842	(253)	1434	(220)	1633	(215)	2006	(220)	2520	(254)	3257	(347)	4275	(596)	5131	$(907)^{E}$	1500	93.6	(4.1)	2300	60.5	$(12.3)^{E}$
	31-50	146	2634	(132)	1825	(249)	1967	(220)	2218	(179)	2524	(159)	2868	(190)	3221	(283)	3457	(369)	1500	99.4	(2.5)	2300	68.7	$(13.7)^{E}$
	51-70	184	2697	(126)	1699	(278)	1875	(253)	2213	(205)	2667	(170)	3222	(231)	3827	(398)	4245	(549)	1300	99.6	(0.6)	2300	70.4	(11.3)
	>70	143	2348	(114)	1598	(205)	1759	(188)	2053	(163)	2415	(153)	2817	(181)	3215	(243)	3471	(296)	1200	99.6	(0.8)	2300	58.2	$(12.0)^{E}$
	19+	584	2649	(71)	1607	(104)	1792	(94)	2120	(82)	2549	(83)	3084	(105)	3670	(167)	4078	(234)				2300	64.6	(4.8)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 13.9 Sodium (mg/d): Usual intakes from food, by DRI age-sex group, household population, Alberta, 2004¹

•									%		%				
		n	Mean (S	SE)	5th (<i>SE</i>)	10th (SE)	25th (SE)	50th (SE)	75th (<i>SE</i>)	90th (SE)	95th (SE)	AI ²	> AI (SE)	UL ³	>UL (SE)
Sex	Age (years)														
Both															
	1-3	169	1728 (1	124)	741 (185) ^E	897 (182) ^E	1246 (155)	1725 (143)	2195 (171)	2750 (257)	3187 (346)	1000	86.0 (6.4)	1500	62.3 (9.1)
	4-8	281	2560 (1	102)	1880 (84)	1999 (90)	2216 (100)	2485 (114)	2788 (128)	3088 (142)	3279 (151)	1200	100.0 (0.0)	1900	94.3 (3.2)
Male															
	9-13	183	3578 (2	216)	2778 (356)	2940 (322)	3236 (266)	3609 (230)	4041 (288)	4492 (453)	4796 (603)	1500	100.0 (0.1)	2200	100.0 (2.1)
	14-18	187	4124 (1	188)	3071 (442)	3297 (389)	3698 (299)	4181 (240)	4705 (324)	5212 (517)	5533 (673)	1500	100.0 (0.1)	2300	99.9 (1.9)
	19-30	223	3793 (1	176)	2797 (464) ^E	3001 <i>(399)</i>	3357 (289)	3777 (207)	4225 (270)	4653 (444)	4922 (590)	1500	100.0 (0.8)	2300	99.5 (3.8)
	31-50	229	3555 (2	237)	2148 (186)	2424 (203)	2948 (233)	3615 (269)	4354 (307)	5056 (343)	5484 (365)	1500	99.6 (0.3)	2300	92.5 (3.9)
	51-70	197	3389 (1	168)	1985 (154)	2264 (159)	2758 (176)	3371 (214)	4101 (269)	4911 (336)	5484 (392)	1300	99.5 (0.3)	2300	89.2 (3.9)
	>70	72	3121 (3	309)	2609 (427)	2756 (402)	3017 (372)	3328 <i>(373)</i>	3664 (426)	3987 (521)	4191 (597)	1200	100.0 (0.1)	2300	99.3 (8.7)
	19+	721	3543 (1	120)	2422 (302)	2663 (265)	3101 (198)	3641 (145)	4240 (187)	4832 (303)	5211 (392)			2300	96.7 (3.1)
Female															
	9-13	165	2918 (1	150)	2135 (164)	2302 (172)	2598 (190)	2963 (215)	3372 (246)	3782 (277)	4045 (298)	1500	100.0 (0.2)	2200	93.3 (5.9)
	14-18	206	2843 (1	173)	1620 (302) ^E	1825 (279)	2214 (241)	2725 (219)	3330 (269)	3966 (405)	4393 (529)	1500	97.0 (2.7)	2300	71.0 (11.6)
	19-30	191	2975 (2	214)	1834 (402) ^E	2056 (376) ^E	2468 (332)	2989 (297)	3582 (322)	4181 (435)	4570 (546)	1500	98.8 (3.6)	2300	81.9 (12.7)
	31-50	258	2542 (1	108)	1828 (294)	1972 (262)	2225 (204)	2525 (154)	2842 (168)	3152 (254)	3352 (332)	1500	99.5 (3.1)	2300	69.2 (14.7) ^E
	51-70	249	2397 (1	113)	1706 (104)	1832 (110)	2058 (120)	2337 (134)	2652 (155)	2973 (181)	3185 (202)	1300	99.8 (0.2)	2300	53.4 (11.8) ^E
	>70	128	2067 (1	118)	1124 (129)	1261 (131)	1539 (138)	1941 (137)	2418 (161)	2947 (233)	3342 (309)	1200	92.5 (3.6)	2300	30.2 (7.9) ^E
	19+	826	2550 (7	75)	1550 (143)	1736 (134)	2079 (117)	2501 (104)	2967 (110)	3453 (149)	3785 (190)			2300	62.3 (6.7)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 13.10 Sodium (mg/d): Usual intakes from food, by DRI age-sex group, household population, British Columbia, 2004¹

					Percentiles (and SE) of usual intake										%			%						
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	(SE)	75th	(SE)	90tl	n (SE)	95th	(SE)	AI ²	>AI	(SE)	UL ³	>UL	(SE)
Sex	Age (years)																							
Both																								
	1-3	192	2039	(147)	1200	$(216)^{E}$	1364	(200)	1652	(178)	1997	(171)	2400	(208)	2851	(308)	3174	(401)	1000	98.3	(1.5)	1500	83.9	(8.3)
	4-8	321	2573	(85)	1906	(213)	2048	(180)	2293	(126)	2577	(95)	2876	(139)	3161	(220)	3342	(278)	1200	100.0	(0.3)	1900	95.2	(5.0)
Male																								
	9-13	226	3353	(127)	2075	(227)	2329	(209)	2776	(180)	3293	(172)	3873	(210)	4507	(289)	4948	(359)	1500	99.5	(0.6)	2200	92.8	(3.9)
	14-18	262	4294	(250)	2634	$(454)^{E}$	2934	(417)	3508	(351)	4270	(300)	5157	(364)	6061	(551)	6661	(718)	1500	100.0	(0.3)	2300	98.2	(2.0)
	19-30	197	4265	(231)	2631	(381)	2888	(350)	3381	(309)	4118	(291)	4939	(389)	5723	(555)	6206	(677)	1500	100.0	(0.4)	2300	98.2	(2.5)
	31-50	282	4190	(220)	2467	$(417)^{E}$	2807	(365)	3408	(287)	4127	(251)	4972	(337)	5860	(505)	6408	(617)	1500	99.8	(0.4)	2300	96.7	(2.7)
	51-70	234	3715	(232)	1952	(274)	2238	(262)	2789	(247)	3527	(261)	4458	(352)	5545	(550)	6348	(747)	1300	99.6	(0.5)	2300	88.7	(5.3)
	>70	119	3049	(215)	2001	$(333)^{E}$	2200	(296)	2565	(247)	3044	(253)	3636	(381)	4272	(602)	4706	$(786)^{E}$	1200	100.0	(0.5)	2300	86.6	(8.6)
	19+	832	3960	(119)	2153	(142)	2477	(134)	3070	(124)	3829	(136)	4779	(186)	5837	(277)	6547	(349)				2300	93.0	(2.0)
Female																								
	9-13	226	3129	(253)	1714	(207)	1956	(210)	2414	(217)	3021	(243)	3791	(323)	4703	(479)	5380	(629)	1500	97.8	(1.5)	2200	82.8	(6.6)
	14-18	242	2838	(139)	1619	(199)	1816	(196)	2200	(190)	2752	(182)	3419	(208)	4070	(267)	4479	(317)	1500	96.9	(2.2)	2300	70.5	(8.6)
	19-30	208	2850	(183)	1943	(165)	2110	(178)	2415	(205)	2800	(241)	3242	(280)	3690	(317)	3981	(339)	1500	99.7	(0.6)	2300	81.4	(10.6)
	31-50	263	3068	(180)	1722	(203)	1937	(197)	2363	(186)	2950	(201)	3684	(277)	4520	(432)	5147	(584)	1500	97.9	(1.3)	2300	77.5	(7.0)
	51-70	322	2709	(239)	1516	(278) ^E	1736	(255)	2160	(223)	2672	(226)	3305	(323)	3965	(533)	4382	(662)	1300	98.2	(2.1)	2300	68.6	$(11.9)^{E}$
	>70	198	2608	(264)	1375	(219)	1589	(223)	2001	(237)	2547	(271)	3198	(337)	3882	(437)	4341	(517)	1200	97.6	(2.3)	2300	61.4	$(13.1)^{E}$
	19+	991	2867	(106)	1693	(116)	1899	(112)	2292	(111)	2816	(127)	3471	(177)	4191	(269)	4693	(349)				2300	74.6	(5.0)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.

² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.

³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 13.11 Sodium (mg/d): Usual intakes from food, by DRI age-sex group, household population, Atlantic Region, 2004¹

										Percenti	Percentiles (and SE) of usual intake									%			%	
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	(SE)	75th	(SE)	90tl	n (<i>SE</i>)	95th	(SE)	AI ²	>AI	(SE)	UL ³	>UL	(SE)
Sex	Age (years)																							
Both																								
	1-3	348	2040	(77)	1268	(109)	1399	(105)	1642	(102)	1969	(99)	2371	(115)	2809	(173)	3115	(230)	1000	99.3	(0.7)	1500	84.6	(5.6)
	4-8	554	2819	(92)	2083	(213)	2230	(190)	2500	(152)	2840	(123)	3227	(143)	3617	(213)	3872	(272)	1200	100.0	(0.1)	1900	98.3	(2.5)
Male																								
	9-13	409	3490	(118)	2402	(233)	2595	(220)	2946	(184)	3373	(144)	3842	(206)	4311	(384)	4615	(521)	1500	100.0	(1.4)	2200	98.0	(3.1)
	14-18	414	3933	(184)	2357	(274)	2667	(268)	3261	(256)	4039	(245)	4935	(274)	5844	(365)	6446	(453)	1500	99.8	(0.2)	2300	95.7	(2.3)
	19-30	311	4367	(202)	3068	(355)	3339	(316)	3826	(260)	4424	(252)	5095	(345)	5778	(508)	6229	(636)	1500	100.0	(0.0)	2300	99.7	(0.7)
	31-50	489	3618	(147)	2210	(240)	2451	(227)	2902	(196)	3471	(174)	4146	(206)	4883	(310)	5386	(409)	1500	99.8	(0.2)	2300	93.4	(3.8)
	51-70	575	3224	(126)	2035	(243)	2242	(214)	2619	(166)	3096	(136)	3655	(182)	4235	(282)	4616	(357)	1300	100.0	(0.4)	2300	88.2	(5.8)
	>70	239	3146	(168)	2218	(190)	2390	(180)	2719	(173)	3164	(196)	3713	(268)	4332	(418)	4781	(583)	1200	100.0	(0.0)	2300	92.9	(5.0)
	19+	1614	3612	(84)	2205	(121)	2454	(115)	2921	(100)	3521	(98)	4238	(119)	5016	(174)	5546	(225)				2300	93.3	(2.1)
Female																								
	9-13	355	2992	(135)	2049	(195)	2229	(187)	2568	(171)	3003	(168)	3512	(202)	4043	(274)	4398	(335)	1500	99.8	(0.3)	2200	91.0	(5.1)
	14-18	410	2801	(124)	2046	(221)	2209	(192)	2486	(152)	2806	(137)	3156	(170)	3512	(241)	3751	(299)	1500	99.8	(0.5)	2300	86.0	(7.8)
	19-30	384	2743	(106)	2062	(127)	2216	(130)	2478	(133)	2774	(137)	3079	(144)	3370	(154)	3554	(162)	1500	99.9	(0.2)	2300	86.1	(7.3)
	31-50	585	2876	(126)	1558	(120)	1790	(121)	2226	(132)	2794	(162)	3474	(222)	4210	(310)	4718	(383)	1500	95.9	(1.7)	2300	71.9	(6.0)
	51-70	711	2496	(66)	1532	(91)	1696	(82)	1995	(74)	2383	(77)	2849	(100)	3338	(144)	3670	(187)	1300	98.5	(0.9)	2300	55.3	(5.1)
	>70	342	2330	(100)	1488	(124)	1633	(120)	1903	(119)	2245	(131)	2638	(163)	3040	(212)	3305	(255)	1200	99.3	(1.0)	2300	46.0	$(10.0)^{E}$
	19+	2022	2671	(60)	1633	(67)	1822	(66)	2172	(67)	2617	(78)	3130	(102)	3661	(139)	4022	(173)				2300	68.1	(4.0)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 13.12 Sodium (mg/d): Usual intakes from food, by DRI age-sex group, household population, Prairie Region, 2004¹

					Percentiles (and SE) of usual intake												%			%				
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	(SE)	75th	(SE)	90th	(SE)	95th	n (SE)	AI ²		(SE)	UL ³	>UL	(SE)
Sex	Age (years)																							
Both																								
	1-3	622	1838	(79)	869	(95)	1055	(89)	1378	(84)	1804	(89)	2259	(110)	2801	(162)	3193	(209)	1000	91.7	(2.8)	1500	68.0	(5.1)
	4-8	919	2608	(69)	1924	(209)	2048	(178)	2272	(123)	2546	(81)	2850	(130)	3150	(226)	3341	(295)	1200	100.0	(0.1)	1900	95.7	(4.5)
Male																								
	9-13	579	3559	(140)	2281	(175)	2509	(164)	2936	(155)	3506	(161)	4209	(205)	4995	(310)	5564	(417)	1500	100.0	(0.2)	2200	96.3	(2.1)
	14-18	634	4251	(130)	2589	(205)	2903	(193)	3488	(176)	4231	(176)	5082	(212)	5946	(286)	6510	(352)	1500	100.0	(0.2)	2300	97.8	(1.5)
	19-30	578	3919	(129)	2724	(358)	2958	(308)	3374	(226)	3876	(165)	4429	(210)	4977	(345)	5331	(453)	1500	100.0	(0.1)	2300	99.1	(1.7)
	31-50	693	3578	(157)	2166	(298)	2446	(271)	2968	(221)	3623	(183)	4342	(220)	5027	(313)	5454	(386)	1500	99.6	(0.6)	2300	92.9	(4.1)
	51-70	596	3378	(113)	1945	(185)	2228	(168)	2736	(149)	3382	(149)	4158	(184)	4998	(263)	5573	(337)	1300	99.4	(0.4)	2300	88.3	(3.7)
	>70	296	3094	(165)	1973	(242)	2192	(224)	2599	(199)	3115	(196)	3703	(239)	4300	(318)	4690	(385)	1200	100.0	(0.3)	2300	86.7	(6.4)
	19+	2163	3569	(78)	2107	(135)	2386	(126)	2908	(111)	3582	(96)	4359	(111)	5144	(155)	5656	(198)				2300	91.8	(2.4)
Female																								
	9-13	533	2985	(109)	2068	(188)	2241	(174)	2549	(156)	2949	(150)	3426	(173)	3922	(233)	4248	(286)	1500	99.8	(0.5)	2200	91.4	(5.5)
	14-18	638	2881	(113)	1609	(135)	1831	(135)	2262	(132)	2827	(139)	3466	(172)	4116	(237)	4563	(300)	1500	96.7	(1.5)	2300	73.4	(5.6)
	19-30	499	2932	(142)	1550	(224)	1797	(212)	2251	(194)	2839	(181)	3549	(197)	4300	(261)	4803	(326)	1500	95.7	(2.6)	2300	73.0	(7.9)
	31-50	716	2626	(83)	1783	(222)	1939	(197)	2220	(151)	2574	(109)	2986	(128)	3422	(221)	3722	(304)	1500	99.1	(1.7)	2300	69.6	(10.3)
	51-70	745	2496	(69)	1806	(183)	1940	(159)	2180	(119)	2475	(91)	2805	(123)	3139	(202)	3361	(266)	1300	100.0	(0.4)	2300	65.2	(10.1)
	>70	510	2145	(69)	1236	(107)	1386	(107)	1687	(97)	2081	(83)	2512	(89)	2941	(123)	3231	(154)	1200	95.9	(1.8)	2300	36.3	(5.2)
	19+	2470	2598	(50)	1568	(79)	1754	(74)	2098	(66)	2536	(63)	3046	(76)	3587	(111)	3960	(144)				2300	63.7	(3.7)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Table 13.13 Sodium (mg/d): Usual intakes from food, by DRI age-sex group, household population, Canada excluding territories, 2004¹

					Percentiles (and SE) of usual intake														%			%		
		n	Mean	(SE)	5th	(SE)	10th	(SE)	25th	(SE)	50th	(SE)	75th	n (SE)	90th	(SE)	95th	(SE)	AI ²	>AI	(SE)	UL ³	>UL	(SE)
Sex	Age (years)																							
Both																								
	1-3	2117	1903	(38)	1071	(53)	1235	(50)	1529	(46)	1887	(47)	2291	(53)	2715	(73)	3009	(92)	1000	96.5	(1.0)	1500	76.8	(2.9)
	4-8	3235	2677	(41)	1816	(68)	1977	(62)	2274	(53)	2650	(53)	3080	(73)	3521	(110)	3815	(141)	1200	100.0	(0.1)	1900	92.7	(2.0)
Male																								
	9-13	2080	3555	(67)	2366	(94)	2581	(88)	2983	(80)	3510	(77)	4133	(94)	4789	(137)	5235	(177)	1500	100.0	(0.1)	2200	97.4	(1.1)
	14-18	2288	4142	(80)	2510	(113)	2823	(107)	3403	(100)	4151	(100)	5035	(123)	5967	(172)	6592	(213)	1500	99.9	(0.1)	2300	97.2	(0.9)
	19-30	1804	4083	(112)	2705	(199)	2965	(178)	3443	(150)	4046	(142)	4735	(188)	5440	(282)	5905	(360)	1500	100.0	(0.0)	2300	98.8	(1.0)
	31-50	2596	3634	(81)	2126	(136)	2405	(125)	2914	(109)	3565	(98)	4321	(117)	5113	(168)	5645	(212)	1500	99.5	(0.3)	2300	92.2	(2.3)
	51-70	2550	3345	(65)	1891	(88)	2146	(82)	2614	(74)	3213	(76)	3944	(98)	4733	(152)	5274	(202)	1300	99.5	(0.2)	2300	85.8	(2.3)
	>70	1520	2874	(64)	1771	(88)	1970	(83)	2334	(78)	2808	(82)	3382	(103)	3995	(143)	4411	(180)	1200	99.8	(0.2)	2300	76.7	(3.7)
	19+	8470	3587	(47)	2030	(61)	2311	(59)	2826	(55)	3479	(59)	4286	(73)	5143	(104)	5731	(134)				2300	90.2	(1.2)
Female	•																							
	9-13	1980	2962	(63)	1798	(77)	2009	(73)	2394	(67)	2885	(70)	3471	(91)	4099	(132)	4530	(169)	1500	98.7	(0.5)	2200	83.4	(2.7)
	14-18	2256	2936	(49)	1850	(79)	2068	(75)	2468	(66)	2962	(64)	3518	(79)	4073	(110)	4435	(140)	1500	99.0	(0.4)	2300	82.2	(2.7)
	19-30	1854	2743	(71)	1806	(114)	1971	(102)	2268	(83)	2635	(79)	3042	(107)	3446	(157)	3707	(195)	1500	99.1	(0.7)	2300	73.0	(5.5)
	31-50	2686	2778	(55)	1617	(73)	1826	(70)	2213	(65)	2714	(67)	3326	(82)	3989	(118)	4447	(153)	1500	96.9	(1.0)	2300	70.8	(3.2)
	51-70	3200	2587	(46)	1594	(72)	1775	(66)	2106	(56)	2527	(53)	3026	(69)	3551	(108)	3908	(145)	1300	98.9	(0.5)	2300	63.7	(3.2)
	>70	2610	2294	(49)	1365	(54)	1526	(52)	1823	(50)	2207	(58)	2671	(77)	3179	(111)	3534	(141)	1200	97.9	(0.6)	2300	44.2	(3.8)
	19+	10350	2658	(30)	1588	(36)	1779	(35)	2129	(32)	2582	(34)	3125	(44)	3701	(64)	4097	(83)				2300	65.7	(1.8)

Symbol Legend

- Data with a coefficient of variation (CV) from 16.6% to 33.3%; interpret with caution.
- <3 Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval entirely between 0 and 3%; interpret with caution.</p>
- F Data with a coefficient of variation (CV) greater than 33.3% with a 95% confidence interval not entirely between 0 and 3%; suppressed due to extreme sampling variability.

Footnotes

- ¹ Intakes are based on food consumption only. For additional detail, see footnote 4 in Appendix A.
- ² AI is the Adequate Intake. For additional detail, see footnote 10 in Appendix A.
- ³ UL is the Tolerable Upper Intake Level. For additional detail, see footnote 11 in Appendix A.

Appendix A: Table Footnotes

The following footnotes apply to all of the summary data tables presented in Section III of this report.

- 1. The survey excludes from its target population those living in the three territories, individuals living on Indian reserves or on Crown lands, residents of institutions, full-time members of the Canadian Armed Forces and residents of certain remote regions.
- 2. The tables exclude pregnant and breastfeeding females, subject to another set of nutritional recommendations. The sample of pregnant and breastfeeding females is not large enough to allow for reliable estimates.
- 3. Sample size and mean intake are based on the first 24-hour dietary recall (first day of interview) only.
- 4. Intakes are based on food consumption only. Intakes from vitamin and mineral supplements are not included. Inferences about the prevalence of nutrient excess or inadequacy based on intakes from food alone may respectively underestimate or overestimate the prevalences based on total nutrient intakes from both food and supplements.
- 5. The intake distribution (percentiles and percentage above or below a cut-off when applicable) was adjusted to remove within-individual variability using Software for Intake Distribution Estimation (SIDE) (Iowa State University, 1996) and the method presented in Nusser SM, Carriquiry AL, Dodd KW, Fuller WA: A semiparametric transformation approach to estimating usual daily intake distributions. *J Am Stat Assoc* 1996; 91: 1440-1449.
- 6. In some cases, within-individual variance was estimated at the regional or national level and applied at the provincial level. See section II.4: Measuring Sampling Variability with Bootstrap Replication for more details.
- 7. Bootstrapping techniques were used to produce the coefficient of variation (CV) and the standard error (SE).
- 8. AMDR is the Acceptable Macronutrient Distribution Range, expressed as a percentage of total energy intake. Intakes inside the range (shown in the AMDR columns) are associated with a reduced risk of chronic disease while

providing adequate intakes of essentials nutrients. For further information on AMDR see the Health Canada publication *Canadian Community Health Survey, Cycle 2.2, Nutrition* (2004)—*A Guide to Accessing and Interpreting the Data,* Section 2.1.5, p. 27.

The applications of the AMDRs for essential fatty acids to group assessment are not the same as for the other macronutrients. The lower boundaries for the AMDR for linoleic and alpha-linolenic acids are not based on the same type of endpoints as the boundaries for total fat and carbohydrate. The boundaries for fat and carbohydrate are set based on evidence indicating increased risk for coronary heart diseases and the lower bound of the AMDR for both n-6 (linoleic) and n-3 (alpha-linolenic) fatty acids is based on the percent of energy from these fatty acids needed to provide the AI for these nutrients. The AI, in turn, is based on the median intake of both linoleic and alpha-linolenic acid in the United States, where essential fatty acid deficiency is non-existent in the healthy population.

Thus, by definition about half the population has intakes of these fatty acids below the AI and therefore outside the AMDR. In other words, based on the AI, one would conclude that the population is "adequate" with respect to linoleic and alpha-linolenic acids, while based on the AMDR a different conclusion (i.e. that 50% of the population has intakes below the AMDR) would be reached. Therefore, the lower bound of the AMDRs for linoleic and alpha-linolenic acids should not be used in the assessment of population intakes.

- 9. EAR is the Estimated Average Requirement. The level of intake at the EAR (shown in the EAR columns) is the average daily intake level that is estimated to meet the requirement, as defined by the specified indicator of adequacy, in half of the apparently healthy individuals in a DRI age–sex group. For further information on EAR see the Health Canada publication *Canadian Community Health Survey, Cycle 2.2, Nutrition* (2004)—A Guide to Accessing and Interpreting the Data, Section 2.1.1, p. 23.
- 10. AI is the Adequate Intake. The level of intake at the AI (shown in the AI columns) is the recommended average daily intake level based on observed or experimentally determined approximations or estimates of nutrient intake by a group or groups of apparently healthy people that are assumed to be adequate. It is developed when an EAR cannot be determined. The

percentage of the population having a usual intake above the AI (shown in the %>AI columns) almost certainly meets their needs. The adequacy of intakes below the AI cannot be assessed, and should not be interpreted as being inadequate. For further information on AI see the Health Canada publication Canadian Community Health Survey, Cycle 2.2, Nutrition (2004)—A Guide to Accessing and Interpreting the Data, Section 2.1.3, p. 25.

- 11. UL is the Tolerable Upper Intake Level. The level of intake at the UL (shown in the UL columns) is the highest average daily intake level that is likely to pose no risk of adverse health effects to almost all individuals in the general population. For further information on UL see the Health Canada publication *Canadian Community Health Survey, Cycle 2.2, Nutrition* (2004)—A Guide to Accessing and Interpreting the Data, Section 2.1.4, p. 26.
- 12. For a more detailed understanding of DRIs and their interpretation when assessing intakes of particular nutrients, consult the summary of the series of publications on DRIs published by the Institute of Medicine: *Dietary Reference Intakes: The Essential Guide to Nutrient Requirements*.
- 13. Data on trans fat intake cannot be obtained from the CCHS 2.2 dataset and therefore are not reported separately. However, the estimates for percent energy from total fat comprise all fats, including trans fats. Note that the estimates provided for energy intake from the individual types of fat will not add up to the estimates provided for total fat due to measurement error as well as the lack of data on trans fat intake.
- 14. In terms of precision, the estimate 0.0 with a standard error of 0.0 refers to a standard error smaller than 0.1%.

Appendix B: Interpretation of Sodium Results

Three questions in the CCHS 2.2 questionnaire pertained to salt intake. These were asked to obtain information on type of salt used, frequency of added table salt and the use of table salt in cooking.

1. Salt Type

- —Indicator of the type of salt normally used:
- 1 = Ordinary Salt
- 2 = Sea, Seasoned. Or other Flavoured Salt
- 3 = Lite Salt
- 4 = Salt Substitute
- 5 = None
- X = Don't Know; XX = Refusal; XXX = Other Specified

2. Frequency of Salt at the Table

- -Indicator of how often salt is added at the table:
- 1 = Rarely
- 2 = Occasionally
- 3 = Very Often
- X = Don't Know; XX = Refusal; XXX = Other Specified

3. Frequency of Salt in Cooking

- Indicator of how often *ordinary* salt is added during cooking/preparation:
- 1 = Rarely
- 2 = Occasionally
- 3 = Very Often
- 4 = Never
- X = Don't Know; XX = Refusal; XXX = Other Specified

These questions were the same as those asked in the United States (US) surveys utilizing the Automated Multiple-Pass Method. This method was chosen for a number of reasons. Asking about the use of salt for each cooked, non-processed food was time consuming and repetitive, and respondents frequently did not know the answer for specific foods. Overall salt consumption questions were asked to reduce respondent burden and to address this identified uncertainty. Also, it was estimated that salt added during cooking or food preparation contributed 5% or less to average sodium intake.

Use of the information collected from these questions differed between Canada and the US. Answers to the salt questions in the CCHS 2.2 were not reflected in the estimated sodium intakes in the coded data. Salt present in standard recipes for mixed dishes, such as spaghetti sauce or stew, remained constant. For other cooked items, such as cooked vegetables, the default choice was the food without salt added during cooking. In the US, answers to the question about frequency of salt added in cooking are used to adjust estimated sodium intakes for selected foods that are likely to have been prepared at home.

Appendix C: References

Department of Statistics and Center for Agricultural and Rural Development, Iowa State University: *A User's Guide to SIDE, Software for Intake Distribution Estimation Version 1.0.* Technical Report 96-TR 30. Ames, IA: Iowa State University Statistical Laboratory, 1996. Available at: www.card.iastate.edu/publications/DBS/PDFFiles/96tr30.pdf

Dodd KW: A Technical Guide to C-SIDE, Software for Intake Distribution Estimation. Technical Report 96-TR 32, Dietary Assessment Research Series Report 9. Ames, IA: Department of Statistics and Center for Agricultural and Rural Development, Iowa State University, 2006. Available at: www.card.iastate.edu/publications/DBS/PDFFiles/96tr32.pdf

Health Canada: Canadian Community Health Survey, Cycle 2.2, Nutrition (2004)—A Guide to Accessing and Interpreting the Data. Ottawa: Publications, Health Canada, 2006. Available at: www.hc-sc.gc.ca/fn-an/surveill/nutrition/commun/cchs_focus-volet_escc-eng.php

Institute of Medicine: *Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D and Fluoride*. Washington, DC: National Academy Press, 1997. Available at: http://books.nap.edu/catalog/5776.html

Institute of Medicine: *Dietary Reference Intakes: A Risk Assessment Model for Establishing Upper Intake Levels for Nutrients*. Washington, DC: National Academy Press, 1998. Available at: http://books.nap.edu/catalog/6432.html

Institute of Medicine: *Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium and Carotenoids*. Washington, DC: National Academy Press, 2000. Available at: http://books.nap.edu/catalog/9810.html

Institute of Medicine: *Dietary Reference Intakes: Applications in Dietary Assessment*. Washington, DC: National Academy Press, 2000. Available at: http://books.nap.edu/catalog/9956.html

Institute of Medicine: *Dietary Reference Intakes: Applications in Dietary Planning.* Washington, DC: National Academy Press, 2003. Available at: http://books.nap.edu/catalog/10609.html

Institute of Medicine: *Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate.* Washington, DC: National Academy Press, 2004. Available at: http://books.nap.edu/catalog/10925.html

Institute of Medicine: *Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients).*Washington, DC: National Academy Press, 2005. Available at: http://books.nap.edu/catalog/10490.html

Institute of Medicine: *Dietary Reference Intakes: The Essential Guide to Nutrient Requirements*. Washington, DC: National Academy Press, 2006. Available at: www.nap.edu/topics.php?topic=380

Nusser SM, Carriquiry AL, Dodd KW, Fuller WA: A semiparametric transformation approach to estimating usual daily intake distributions. *J Am Stat Assoc* 1996; 91: 1440–1449

Nusser SM, Fuller WA, Guenther PM: Estimating usual dietary intake distributions: adjusting for measurement error and nonnormality in 24-hour food intake data. In L Lyberg, P Biemer, M Collins et al., eds. *Survey Measurement and Process Quality*, New York: John Wiley & Sons, 1997.

Statistics Canada: Canadian Community Health Survey (CCHS) Cycle 2.2—Nutrition: Software for Intake Distribution Estimation (SIDE) Documentation. Ottawa, 2007. Available at: www.statcan.ca/english/sdds/document/5049_D22_T9_V1_E.pdf

Appendix D: Note on Changes to Volume 1

In January 2008, users were informed that Volume 1 would be reissued because of corrections made to the sodium table point estimates. Since then, some modifications have been made to the compendium to correct methodological discrepancies in some of the tables. It is important to note that in all cases described below, modifications are not related to the data quality of the CCHS Cycle 2.2 files. Only methodological modifications used in calculating the tables were made. Attached is the list of domains affected. A complete list of modifications is available in a separate document upon request.

Modifications to Volume 1

1. Standard Error

The calculation of the **standard error** of the percentage of the population above or below a certain threshold had to be modified. This affects 12 standard error estimates in Volume 1:

- 5 for calcium
- 4 for percentage of total energy intake from fats
- 3 for percentage of total energy intake from carbohydrates.

In addition, the same type of modification had to be made to the sodium tables, affecting the standard error of the percentage of the population above the UL for 146 domains out of 221.

2. Within-Individual Variance

Other modifications are related to the use of **within-individual variances**⁵ in some domains. For the sodium tables, there were some domains where it was necessary to force another domain's within-individual variance. However, in a number of cases, the next higher domain was not used. These point estimates were corrected using the appropriate within-individual variance.

3. Methodology

Changes were also made to the methodology used to calculate the bootstrap estimate. In order to calculate the bootstrap estimate, the point estimate is recalculated using every replicate weight, meaning 500 times. There are two options; the first uses the same day-to-day variation estimate for every replicate. The second (if the data are coming from another CCHS domain) uses each replicate's day-to-day variation estimate. This means that for replicate one you use the regional day-to-day variation of the first replicate, for replicate two, the second and so on.

In theory, the second method is optimal as variability in the center of the distribution and in the tails are both taken into account. With the first option we do not take into account variability in the tails. The second method will always be more conservative than the first as it accounts for more sources of variability. That being said, the first method is still statistically valid.

In Volume 1, it was initially decided to use the second method. However, most nutrients, with the exception of cholesterol and Vitamin C, were

⁵ To estimate the distribution of usual intake (percentiles, percent above or below a certain threshold), we need to estimate two variance components: the within-individual variance (day-to-day variation in one individual's intake) and the between-individual variance (variation in long-term average

population consumption). This involves a complex normality transformation and an ANOVA model using the first and second 24-hour recall. The second 24-hour recall is used to estimate the day-to-day variation. These calculations are done using SIDE. It is possible that for various reasons (usually not enough second recalls), we fail to estimate the day-to-day variation. In that case, instead of having no estimate, it is possible to use another estimate in its place. For example, for small provinces, if we are unable to estimate the day to day variation, we could use the regional or national day-to-day variation in its place.

calculated using the first method. For consistency and for timeliness, it was decided to recalculate the estimates which used the second method. These modifications will affect 30 domains for the cholesterol tables and 16 domains for the Vitamin C tables. Modifications will affect the standard errors of the 5th, 10th, 25th, 75th, 90th and 95th percentiles. Standard errors for the 5th, 10th, 90th and 95th percentiles will be between 10% and 20% lower than the previously published standard errors that were calculated using the second method described above. For the 25th and 75th percentiles the difference will be less than 10%. Again, this revision only affects the calculation of the SE and not the point estimates already published.

The methodology section in Volume 1 has also been modified to reflect the methods that were actually used to produce the tables.

4. Appendices

Finally, a note was added to <u>Appendix A: Table Footnotes</u> to clarify that an estimate of 0.0 with a standard error of 0.0 refers to an estimate with a standard error smaller than 0.1%.

List of Domains Affected

Percentage of total energy intake from fats

Table 2.1 – Males 51-70

Table 2.2 – Males 19-30

Table 2.3 – Males 19+, Females 51-70

Table 2.10 – Males 19-30

Percentage of total energy intake from carbohydrates

Table 4.1 – Males 14-18, Males 31-50

Table 4.9 – Females 19+

Percentage of total energy intake from monounsaturated fats

Table 6.1 – Females 14-18

Table 6.2 – Males >70

Table 6.3 – Children 4-8, Males 51-70, Males >70

Table 6.5 - Females > 70

Table 6.6 – Males 9-13, Females 9-13

Table 6.7 – Females 19-30

Table 6.8 – Females 19-30

Table 6.9 – Males 31-50

Table 6.10 - Females 19-30

Fibre (mg/d)

Table 8.6 – Females 19-30

Table 8.11 – Females 19-30

Note: AI corrected from 21 to 25 for Females 19-30 in Tables 8.1 to 8.12

Cholesterol (mg/d)

Table 9.1 – Males 19-30, Males 51-70, Females 14-18, Females 19-30

Table 9.3 – Males 19-30, Males 51-70, Females 9-13, Females >70

Table 9.4 – Children 4-8, Females 31-50, Females >70

Table 9.6 – Males 9-13, Males 31-50

Table 9.7 – Males 19-30, Females 9-13, Females 19-30, Females >70

Table 9.8 – Females 9-13

Table 9.9 - Children 4-8, Males 9-13, Males 14-18, Males 19-30, Males 31-50,

Males 51-70, Females 9-13, Females 19-30, Females 31-50

Table 9.12 – Children 4-8, Females 9-13, Females 31-50

Vitamin A (RAE/d)

Table 10.5 – Males 31-50

Table 10.9 - Females 19+

Table 10.12 - Males 9-13, Males 14-18, Males 19-30, Females 9-13, Females 31-50

Vitamin C (mg/d)

Table 11.1 – Females 19-30

Table 11.2 – Children 4-8, Females 14-18

Table 11.3 – Males 9-13, Males 14-18, Females 19-30

Table 11.4 – Males 51-70

Table 11.6 – Females 9-13

Table 11.7 - Children 4-8, Males 9-13, Males 19-30, Females 9-13, Females 51-70

Table 11.8 – Males 14-18, Females 31-50

Table 11.9 – Females 9-13

Calcium (mg/d)

Table 12.3 – Males 9-13

Table 12.4 – Males 31-50

Table 12.6 – Females 19-30

Table 12.7 – Males 31-50, Females 19-30

Sodium (mg/d)

- Table 13.1 Children 1-3, Children 4-8, Males 9-13, Males 14-18, Males 19-30, Males 71+, Males 19+, Females 9-13, Females 14-18, Females 31-50, Females 19+
- Table 13.2 Children 1-3, Males 9-13, Males 14-18, Males 19-30, Males 31-50, Males 51-70, Males 71+, Males 19+, Females 9-13, Females 14-18, Females 19-30, Females 31-50, Females 51-70, Females 71+, Females 19+
- Table 13.3 Children 4-8, Males 9-13, Males 14-18, Males 19-30, Males 31-50, Males 51-70, Males 71+, Males 19+, Females 9-13, Females 14-18, Females 19-30, Females 31-50, Females 51-70, Females 19+
- Table 13.4 Children 1-3, Children 4-8, Males 9-13, Males 14-18, Males 19-30, Males 31-50, Males 51-70, Males 71+, Males 19+, Females 9-13, Females 19-30, Females 31-50, Females 19+
- Table 13.5 Children 1-3, Children 4-8, Males 9-13, Males 14-18, Males 19-30, Males 31-50, Males 71+, Males 19+, Females 14-18, Females 31-50, Females 51-70, Females 19+
- Table 13.6 Children 1-3, Children 4-8, Males 9-13, Males 14-18, Males 31-50, Males 19+, Females 14-18, Females 19-30, Females 19+
- Table 13.7 Children 4-8, Males 14-18, Males 19-30, Males 31-50, Males 51-70, Males 71+, Males 19+, Females 9-13, Females 14-18, Females 31-50, Females 51-70, Females 19+
- Table 13.8 Children 1-3, Children 4-8, Males 9-13, Males 14-18, Males 19-30, Males 31-50, Males 51-70, Males 71+, Males 19+, Females 9-13, Females 14-18, Females 31-50, Females 51-70, Females 71+, Females 19+
- Table 13.9 Males 9-13, Males 14-18, Males 19-30, Males 71+, Males 19+, Females 14-18, Females 19-30, Females 31-50, Females 19+
- Table 13.10 Children 1-3, Children 4-8, Males 9-13, Males 14-18, Males 19-30, Males 31-50, Males 51-70, Males 71+, Males 19+, Females 31-50, Females 51-70, Females 19+
- Table 13.11 Children 1-3, Children 4-8, Males 9-13, Males 14-18, Males 19-30, Males 31-50, Males 51-70, Males 71+, Males 19+, Females 9-13, Females 14-18, Females 19+
- Table 13.12 Children 1-3, Children 4-8, Males 9-13, Males 14-18, Males 19-30, Males 31-50, Males 71+, Males 19+, Females 9-13, Females 31-50, Females 51-70, Females 19+