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Summary

It is not normally possible to use data from Statistics Canada’s social surveys to obtain reliable estimates for a small area sample design, such as for small geographic areas. To overcome this situation, there are estimation models for small areas that can be used to obtain more accurate statistics. This paper presents the various models considered to produce estimates of the number of adults with disabilities and disability rates for health regions and selected municipalities. The paper describes the transformations applied to direct estimators and to the variances associated with these estimators in order to meet certain fundamental criteria. The Fay‑Herriot model (Fay and Herriot 1979) is described as well as the log‑linear unmatched model to which the hierarchical Bayes (HB) approach was applied by relying on the Gibbs sampling method, and the results from the latter model are presented. Lastly, the paper presents the data sampling methodology used to ensure that the final statistics take into account province‑level results.
1. Introduction

The main source of information on adults with disabilities, that is to say those whose day-to-day activities are limited because of a condition or health problem, is the Participation and Activity Limitation Survey (PALS). This nation-wide survey financed by Human Resources and Skills Development Canada and conducted by Statistics Canada, provides key information on the prevalence of different types of disabilities, on support provided to people with disabilities, on their labour force profile, their income and their participation in society. However the number of respondents to the survey, approximately 29,000 adults, does not allow for accurate direct estimates at the sub-provincial level. Following the demands to that effect which were expressed by many provincial governments as well as municipalities, Statistics Canada has put in place a model-based approach to small area estimation for the disability count and rate. This document describes this approach and presents the results.

Note to readers
This paper is based on the Participation and Activity Limitation Survey (PALS). PALS is a post-censal survey that collected information about persons with disabilities whose everyday activities are limited because of a health-related condition or problem. The survey took place between November 2006 and February 2007. PALS is funded by Human Resources and Skills Development Canada (HRSDC). 

PALS is a post-censal survey which used the 2006 Census as a sampling frame to identify its population. The 2006 Census questionnaire included two general questions on activity limitations. The PALS respondents were selected through the use of the census information on age, geography and the responses to these two general questions. The PALS interview began with the census activity limitation filter questions identical to the Census questions followed by a series of detailed screening questions on disability. If respondents answered NO to all of the filter questions and screening questions, the interview ended and the respondent was not considered to be a person with a disability according to PALS. If respondents answered YES to any of the filter questions or screening questions, they were considered disabled. The interview went on to collect information on the impact of that disability on their everyday activities and other aspects of their life, such as education, employment, leisure, transportation and accommodation. 

The PALS sample was 48,000, consisting of approximately 39,000 adults and 9,000 children. The sample was selected using a two-phase stratified design where at the first phase, a Census questionnaire was distributed to approximately one out of five persons, and at the second phase, a stratified sample was selected based on characteristics from the first phase. Interviews were conducted by telephone with the interviewers using a computer assisted collection methodology. Two questionnaires were used, one for adults aged 15 and over and one for children under the age of 15. The interviews for the children’s questionnaire were conducted with the parent or guardian of the child. The overall response rate was 75.0%. 

The population covered by the survey was persons residing in private and some collective households in the ten provinces and three territories. Persons living in institutions and on First Nations reserves were excluded from the survey. PALS 2006 followed the groundwork laid by the Health and Activity Limitation Survey (HALS) in 1991 and the Participation and Activity Limitation Survey of 2001. The data for HALS 1991 and PALS 2001 could not be compared because of significant differences in their sampling designs, the operational definition of their target population and the content of their questionnaires. However, the PALS 2006 results can be compared with the 2001 survey to identify trends in the previous five years. For more information about PALS 2006, see the Participation and Activity Limitation Survey 2006: Technical and Methodological Report (89-628-XWE2007001, free), published in December 2007.

2. Basic Model for Small Area

In order to get a basic model for small areas, let’s assume that the parameter of interest 
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where m is the number of small areas, 
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 is the px1 vector of regression coefficients, and 
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The basic model for small area also assumes that, given the sample size of a specific region ni > 1, there exists a direct survey estimate 
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 (usually design-unbiased) for the regional parameter of interest
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where 
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 are the sampling errors associated with the direct estimators 
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The combination of linking model (1) with sampling model (2) yields a regional mixed linear model, called Fay-Herriot model (Fay and Herriot, 1979) 
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which includes the design-based random variables 
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 and model-based random variables 
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. Standard methods, such as the empirical best linear unbiased predictor (EBLUP) method and the hierarchical Bayes (HB) approach using the Gibbs sampling method, can be applied to this model (3) to obtain estimates based on a small area model. These methods assume that 
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 is used and treated as known. To do so, one can use a generalized variance function. Among others, this was used to estimate provincial census undercoverage rates in Canada (Dick and You, 1998). 

However, the assumption that E(
[image: image26.wmf]i

i

e

q

|

) = 0 may not be valid if the sample size ni is small and the relationship between 
[image: image27.wmf]i

q

 and the auxiliary information available is not necessarily linear, even if the direct estimator 
[image: image28.wmf]i

q

)

 is design-unbiased for
[image: image29.wmf]i

q

. 

Then, it is possible to consider a more realistic linking model
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based on a function g(.) of 
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 and some regional random effects 
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. Model (4) and model (1) are called unmatched, since they cannot be combined directly to produce a linear mixed model.

The two models described here were applied to PALS data to obtain small area level estimates. The log‑linear unmatched model produced the best results. We will come back to this model in the section on “Small area model used by PALS”.

3. Ratio Adjustment of Direct Estimators

Direct estimators for the desired statistics, meaning number of people with disabilities Yi, and disability rate, pyi, within a region i , can be written as follows:
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where 
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 is a binary variable taking on the value 1 or 0 whether person j has a disability or not, 
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is a binary variable taking on the value 1 or 0 whether person j in the sample S belongs to region i or not and Ni is the total number of persons living in region i according to the 2006 Census.
With regards to the total number of people living in area i, it is often preferable to take the weighted estimate of this number to preserve the same trend in the numerator and denominator. However in the case of PALS, the survey data did not allow the computation of a direct estimate of the population size; they could only allow the computation of the number of people who reported an activity limitation in the Census. Hence to obtain an estimate of the total population, one must add to this number people who were not part of our target population, that is to say people who did not report an activity limitation in the Census. This number is known and adding it to the sum of the weights in our sample would not have been difficult. However the variance computation using the bootstrap weights for the ratio would have been more complicated. For the survey publications, a sample of people without an activity limitation was selected and from this sample, we computed 1000 series of bootstrap weights to allow the computation of disability rates. This sample however doesn’t guarantee a sufficient number of people in each small area. We would have had to select another sample of people without disabilities for which we would have needed to compute 1000 bootstrap samples to estimate the variance, which would have further delayed the project. As well, if we had used the estimated population size, we would have needed two models for small areas: one to predict the disability rates and one to predict the number of disabled people. It would not have been possible to simplify only by a constant the variances of the disability rates direct estimators and their estimates produced by the model to obtain these quantities for the totals.
Since PALS is a post-censal survey where the sample is selected from people who responded “yes” to at least one of the general activity limitation questions in the Census, we expect that for each region i, the number of people with a disability Yi estimated from the survey be at most equal to the number of people having responded “yes” to at least one of the Census filter questions, Mi. For certain small areas however, the very small available sample sizes and high survey weights made it impossible for this condition to hold. The direct estimators were thus adjusted using a ratio to ensure that the desired statistics would be consistent with the already known census totals. Hence, direct estimators used for small areas are:
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These ratio adjusted direct estimators, although they are somewhat biased like any ratio estimator, are clearly much more stable in terms of variance compared to the unadjusted direct estimators. They are also much closer to the true values we are aiming for, since they use known totals Mi as their possible maximum value.
4. Modeling sampling variance

The variance of the ratio-adjusted direct estimators can be estimated using 1,000 Bootstrap samples provided with survey data. The formula for this variance is given as:
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where 
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 is the weight associated with person j in the bth Bootstrap sample.

For most regions, the variance estimate obtained is good. However in the case of regions with very small sample sizes, the estimated variance tends to be unstable. It also happens that the variance can be null in regions where all respondents reported a disability. This is due to the fact that since all yj  take on a value of 1 within a region, the ratio will always be 1 no matter which Bootstrap sample is used, so we observe no variability in this ratio. 
In order to stabilize the variance estimation and prevent the problems that null variances would create, a generalized variance model based on the non zero 
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where 
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represents the total number of people in province Pj to which region i belongs and Mi represents the number of people having responded “yes” to at least one of the Census filter questions. 

This model was used to obtain smoothed estimates of the sampling variance associated with direct estimators 
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5. Selection of auxiliary variables

To identify the explanatory variables of disability among adults at the small area level, we conducted a weighted least squares regression analysis using direct estimators. The weight used in this analysis was the ratio of the sample size in the small area to the total sample size, multiplied by the number of areas. Thus, more importance was given to the existing links between the auxiliary variables and the variable of interest in the larger areas than in the smaller areas when determining the most significant variables to explain disability rates. Analysis of the choice of explanatory variables did not rely solely on the R‑square result, but also on the diagnostics of heteroscedasticity, normality of residuals and multicolinearity of the explanatory variables. Note that the intercept was included in all linking models to avoid having to center the auxiliary variables.

The auxiliary variables considered for the linking models are based on totals from the 2006 Census long forms and including only people who reported at least one “yes” to the Census filter questions. These totals were transformed to better predict the parameter of interest. As a result, in order to model disability rates, the totals were transformed into proportions to produce a more linear relationship between the parameter of interest and the auxiliary variables. 

The auxiliary variables studied were age, severity of limitations according to the Census, employment status, main source of income, language spoken at home, immigration status, Aboriginal identity, whether they are living or not below the poverty line, as well as average income, average number of hours worked and average value of the residences of persons who answered “yes” to the screening questions in the area.

6. Small area model used by PALS

As mentioned, both the Fay‑Herriot model (3) and the log‑linear unmatched model (12 and 13) were assessed for the purpose of estimating the number of adults with disabilities and disability rates. However, the log‑linear unmatched model was preferred over the Fay‑Herriot model because it appeared to perform better in predicting the desired statistics and produced more stable results when estimating variance. 

Since the number of persons with disabilities is deduced directly from the disability rate and vice versa, it was decided to develop the models from the disability rates. The rates obtained from the model were multiplied by Ni to obtain estimates of the number of persons with disabilities.

The log-linear unmatched model for disability rates pyi relies on the sampling model for the direct estimator:
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and the linking model:
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where the 
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 treated as known and corresponding to the smoothed and imputed variance previously defined. 

To obtain the posterior mean 
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, we followed the hierarchical Bayes approach using the Gibbs sampling method. The Gibbs sampling method is a Markov Chain Monte Carlo iterative method that generates samples from the posterior distribution, and then uses these samples to estimate the desired posterior quantities (Gelfand and Smith, 1990). To implement this method, the following conditions must be satisfied:
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 and  
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where IG denotes an inverse gamma distribution and a0, b0 are known positive constants and usually set to be very small to reflect our limited knowledge about 
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Sampling using conditions 2 and 3 is straightforward. However, condition 1 does not have a closed form. To update pyi, a rejection sampling algorithm, such as the Metropolis Hastings algorithm within the Gibbs sampler, can be used (Chib and Greenberg, 1995).

The Gibbs sampling algorithm for drawing samples from the posterior distribution is as follows:
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These steps correspond to the first cycle of the algorithm. For the following cycles, we incorporate the Metropolis Hastings algorithm into step (a). Therefore, for cycle k+1, we draw the candidate
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If the candidate is rejected, set 
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We perform a large number of cycles, say B, which we call the “burn-in” period, until convergence, and then we can treat
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as G samples from the joint posterior distribution. Estimations of 
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 from the Gibbs sampler.

7. Evaluation of the models

In order to assess the overall validity of the proposed model, the posterior predictive p‑value model (Meng, 1994) was used based on the deviation measurement T(
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. These statistics revealed that the log‑linear unmatched model produced better results than the Fay‑Herriot model. The p‑values associated with the log‑linear unmatched models were more satisfactory, i.e. they were significantly closer to 0.5 than those of the Fay‑Herriot model. 

8. Benchmarking estimates 

The estimates obtained from the log‑linear unmatched model were then benchmarked to provincial direct estimates, partly because these estimates are reliable and unbiased with respect to the sample design, but also because of the need for consistency with previous releases based on the PALS.

Mathematically, the purpose of benchmarking is to ensure that the benchmarked estimates 
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where Pj, j=1,…, J, are groups (provinces in our case) of the disjoint mj small areas such that 
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, the total number of small areas. As a result, we get benchmarked estimates using the following formula:
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and the following posterior mean square error (You, Rao and Dick, 2004)
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9. Results

After consulting with municipal and provincial governments regarding disability data, small area models were developed for two sets of small areas. The first small area set consisted of census metropolitan areas (CMAs) and census agglomerations (CAs) for which we had respondents in the survey. Individuals not covered by these areas were combined to produce estimates at the infraprovincial urban and rural area level. This geographic subdivision consisted of a total of 114 areas.

The second small area set consists of health regions as defined by the provincial departments of health in 2007. In Nova Scotia and Ontario, we had to choose between two possible provincial groupings. We chose to produce estimates by zones in Nova Scotia and by health units in Ontario. Some areas had to be combined because of the very small number of respondents available in those areas. This was the case in the North Shore, Northern Quebec and Nunavik health regions in Quebec; the Sudbury and District and Temiscamingue health units in Ontario; the Burntwood and Churchill regional health authorities in Manitoba; and the Mamawetan Churchill River, Keewatin Yatthé and Athabasca regional health authorities in Saskatchewan. As a result, estimates were obtained for 119 health regions.
For the CAs and CMAs, the sample sizes available for adults ranged between 12 and 1,751. For the health regions, the sample sizes available for adults ranged between 16 and 1,653.
The following explanatory variables were selected for the linking models:

Health regions:
· the proportion of adults aged between 25 and 34 years who answered “yes” to one of the Census screening questions in the area;

· the proportion of adults aged 75 years and older who answered “yes” to one of the Census screening questions in the area;

· the proportion of non‑immigrant adults who answered “yes” to one of the Census screening questions in the area;

· the proportion of adults whose main source of income was the government, and who answered “yes” to one of the Census screening questions in the area;

· the logarithm of the average value of private residences belonging to owners who answered “yes” to one of the screening questions in the area.

Census agglomerations and census metropolitan areas:

· the proportion of adults aged 35 to 44 years who answered “yes” to one of the Census screening questions in the area;

· the proportion of adults aged 65 to 74 years who answered “yes” to one of the Census screening questions in the area;

· the proportion of adults who speak one of the official languages at home and who answered “yes” to one of the Census screening questions in the area;

· the logarithm of the average value of private residences belonging to owners who answered “yes” to one of the screening questions in the area.

These variables converge with the results of studies of false positives. As mentioned in the note to readers textbox, the PALS deems a person to be disabled only if he or she answers “yes” to at least one of the Census screening questions for activity limitation asked on the PALS, AND to at least one of the more detailed screening questions on the PALS. Persons who do not respond positively to at least one of these questions are deemed to be false positives. Based on false positive studies, age, immigration status, language spoken at home, and a person’s economic profile could have a clear impact on the chances of being a false positive. For this reason, it is worthwhile to see that these links also exist at the area level.

The following graphs show the distribution of disability rates adjusted by the ratio 
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 and final disability rates 
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 obtained by the log‑linear unmatched model and benchmarking of the estimates. The rates are in order of the sample size of the region. Thus, regions with a smaller sample size are shown on the left and those with a larger sample size are on the right. 
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Note that the final estimates obtained by the small area model are very close to the ratio‑adjusted direct estimates, especially in the case of large sample sizes. 

The following graphs show the coefficients of variation (CV) associated with these rates.
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There is a sharp decrease in the CVs with the application of the small area model. Applying the model has the greatest impact on the CVs in areas with the smallest sample sizes. Indeed, the more accurate the direct estimator, the more importance the final estimate gives to it, which means less gain with respect to the variance of the final estimates. 

10. Conclusion and comments

The small area estimation project for the number of adults with disabilities and disability rates comes from a need for data expressed by the provincial governments and some municipalities. However, the real driving force behind this project was the fact that PALS offers ideal conditions for using small area estimation methods. Since PALS is a post-censal survey, estimates produced from the Census could be used directly as auxiliary variables. These variables are available in large numbers for the desired small areas and many are relevant for explaining disability. In addition, the PALS sample size, some 29,000 adult respondents, also make it possible to obtain the direct estimators needed to apply the models for most of the desired areas.

The estimates for PALS small areas presented in this paper were produced by applying the log‑linear unmatched model to which the hierarchical Bayes approach was applied using the Gibbs sampling method. This approach uses a sampling model based on ratio‑adjusted direct estimators of the disability rate and the number of persons with disabilities. It is also based on a log‑linear linking model, which determines the link between these parameters of interest and auxiliary variables from the known totals of the Census long form. 

Several other small area models could have been considered. For example, we could have considered using models at the unit level. This would have required incorporating the survey’s sample design into the models, which would have greatly complicated the estimation method given the complexity of the survey design. We could also have tried semi‑parametric models, such as the “penalized spline” models recently used in a survey of lakes in the North-eastern United States (Opsomer and al., 2008), to formulate models at the small area level. However, we chose a method that we consider highly satisfactory in terms of the results obtained and with which we already had some expertise. Developing these other models would also have considerably delayed the progress of this work.

The estimates obtained for adults are very close to the ratio‑adjusted direct estimates. This can be attributed to the fact that these estimates were of high quality at the outset and that the linking model performed well for predicting parameters of interest. These estimates are presented in the appendix to this report.
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