SPSD/M

Programmer’s Guide

This guide describes how to use the SPSM in glass box
mode. Glass box mode allows users to add new variables
and parameters to the SPSM as well as the ability to alter
the SPSM algorithms or implement new algorithms. The
Microsoft C compiler is required for using the glass box
mode.

Statistics ~ Statistique I+l
I*I Canada  Canada Canada



Table of Contents

L a1 oo [UTod o] o USRS 1
Purpose of the Glass DOX MOUE .........cocueeieiieiicie e 1
Hardware and Software Requirements for the Glass box Mode............c.cccceevvernnnnne. 3
Programming Knowledge ReqUITEd ..........cccevvviieiieie e 4

Operating System Knowledge ReqUITed..........coovererriniiciiniieie e 4
Fundamental Programming Concepts (Not Language Specific) ................... 4
Knowledge of the C Programming Language .........cccuervererreerieneenieenieseeens 5

QUICK SEart EXAMPIE .....cveeeee et re e ae e nreas 5
PIEIIMINAITES ...ttt be et neenes 6
Changing the project eNVIrONMENT..........cccveiiieieeie e 7
Changing the Alternative Driver Function (Adrv . CPP)....ccccceveverieeiesiieseese e 7
Changing the Alternative Family Allowances Function (Afamod.cpp).......c........ 8
Testing the Resulting Alternative SPSM ModEl..........ccccovviieviieiecicsieece e 10
SUMIMAIY .ttt b ekt b e s bt e bt e e hb e et e sas e e st e e ebeeenbeesaeeenbeesbneanneeas 13

SPSD/M and Glass BoX DireCtory StTUCIUIE .........cuevverieiiieieerie e e e sie e see s 13

The SPSD Household/Individual STrUCTUIE ........ccoiieiieiiie s 16
The SPSD/M'S Data STIUCLUIE. .......cveieieiiiesiieiieieeee et 16
Introduction to Pointers in the SPSD/M ... 17
THE BESHIAIY ..ottt et e e te et ae e aeere e re e e 18

EXamMPIes OF LOOPING: ..c.viiiiiiiiiiie e 18
References With Respect to an Individual:...........ccccccooviviiieiieic i, 20
SUMMIATY .ttt et e ek e e e bt e e bt e ettt e e nb e e e en e e e snb e e e nnbeeenbbeeabneeans 21

SPSM Function Calling STrUCTUIE..........ccuoiiiiiiiieeeee e 21

Glass Box Development: Adding Typical Scalar Parameters ...........ccccovveveivciieieccieceennnn 23
General Procedure for Making Glass box Changes: A Recapitulation...................... 23

Create Task SUD-AIrECIONY .......coveiiiie e 23
Identify Files to be Changed..........ccooviiiiiiiinireeee s 24
Copy Relevant Files to Task Sub-direCtory .........cccccvvveveeveiieie e, 24
Edit Those Relevant FilesS .........cooviieiiiiicie e 24
Compile the NEW VEISION .......coivieiiiieiieece et 24
Test the New Version of the Model...........ccooovviiiiieiieieeee e 24
Carry Out the Intended ANAlYSIS..........cccoiieiieiieiiee e 25
Introduction to Parameter AdditioN ...........coooveiieriiie e 25
Copy Files Adrv.cpp, Mpu.h, Ampd.cpp, Afamod.cpp,
SPSMGL s ASW...utiiiiiecie ettt sttt be s e e s et et et e sresaennesneeneaneas 26
UPAALe the PrOJECT.....ceeiiiiiiiieiee bbb 26
Update the Algorithm Description iN AAIV . C .....cccccveveiiieiececeece e 27
Modify Mpu . h to Define the new Parameters...........ccoovveririnieeienenc e 27
Modify Ampd.cpp to Make the Parameters Available to the SPSM ..................... 28
Modify the Functions that Use the New Parameter(s).........cccoovevvvevieiievvcvieinesieenns 29
Validate and Make Black-Box Production RUNS..........cccccueveiiiiiene i 30
SUMMAY/CONCIUSION. ..ot re e re e nas 31
Glass Box Development: Adding Less Typical Parameters..........c.ccoeveveneneneniinneieeiennn 32

pmaddent: The Function and itS ArgUMENTS.........ccceeveeieieereeie e 32



Characterizing Scalar Parameters ...........coocvoiiieiiiie i s 36

REAL/float/NUMBER Parameters..........cccooeveiinininineeienesese e 36
INTEGER/INE PArAMELErS .....coviiiieiiieieeie e 36
FLAG Parameters .........cooiiiiiieiiieiee e 36
FRACTION Parameters.......cccuie it 37
OPTION Parameters ..........ccoviiieeiieiieesieseesee e 37
EDIT-FRACTION Parameters .........cooueeiieiiiiiiesieeiee s 37
DUMMY Parameters.........coooeeieeiiienie i 37
Vectors of User-defined Parameters .........ccooveiveirienieieiie e 38
Additionsto Mpu.-h, Cpu-hor Apu.-h ..o 38
AddItioNS t0 AMPA - CPP cveeveeiieiieie ettt ae s 39
User-Defined Parameter Vector References in the Source Code .................. 40
Specification of Parameter Vector ValUes...........ccccvvvvveneieiiene e, 40
SUMMIAIY .ttt e e st e st e e st e e e nnb e e e nab e e e nreeeans 41
User-defined Schedules for LOOKUPS.........ccoiiiiiiiiieiec e 42
Schedule Types and LOOKUP FUNCLIONS .........cccceiveiiiieieec e 42
Appearance in SPSM Header Files..........cccooiiiiiiiiiincee e 43
Appearance in pmaddent Calls in AMPA . C.......cccoveveiieiveinee e 44
Employing Schedule References in User Code .........cccocevvevveieiiieivese e 44
Appearance in Parameter FIlesS ..o 45
Key Points for Adding Schedule Parameters...........ccccoccvvveviveresiennese e 46
Adding Matrices OF PArameters .........ccoiieiirierierieie et 46
Appearance N MPU - N s 47
APPEAranCe IN AMPA - C..o.veeeeeiieiccee e 47
Referencing Matrix Elements in Source Code..........cccooviieninieneeneiieseee, 48
Appearance in Parameter FIleS ..o 48
SUMMAY/CONCIUSION. ......eiuieiiecie ettt re e sre e e 49
Glass Box Development: Adding New Variables ... 50
Overview for Adding Variables............ccovveiiiiiiicie e 50
Dependent Variable Types and CharaCteristiCS .........coovvviverviiienieereeiesiese e 51
The vardef and stradd Functions and their ArgumentS..........cccocveveieerecieseeseenenn, 52
Vardef "Name" Argument (and Definition of Variable "Stem" Name): ....... 52
Vardef "Home Structure™ ArgumMENL: .........coceieeieeieciese e 53
Vardef "Variable Location” Argument:.........cccooeriiinieienenene e 53
Vardef "C-Type" Argument (C_NUM & C_INT): .ccoooiiiiiieieceeceee e 53
Vardef "Usage" (Type) Argument (V_ANAL & V_CLAS): ......ccccvvvvnnenne 53
Stradd Calls for Numeric Analysis Variables:............cccccoveiieiiivc i, 54
Stradd Calls for Integer Analysis Variables: ..., 54
Stradd Calls for Integer Classification Variables: ..........c.cccccooevveviiiieieennnn, 54
The Family Allowance Supplement Example Extended ............ccooeveiininciiniennenn 55
Changes to project files and ANV . CPP .ooovvoeeiieieieese e 56
ChangES t0 VSULN ...t 57
ChangeS t0 VSAU - C ....oooviiiece ettt 57
Changes to Afamod . cpp (Or, more generally, any new substantive source
(070 1= SR 58



LOCAI WAITADIS ... neeenneenennnnen 58

Calculate and Assign the New Model Variables ............cccceovvvivivciiieinennnn, 58
COMPIIALION. ... 60
VAIAALION. ...t bbbttt bbb 60
SUMMAIY/CONCIUSIONS ...t 63
Changing Base and Variant Data Variables............cccooeieiieiiieni e 64
Making Changes That Affect All Tax/Transfer Systems in a Model:...................... 65
Typical Income and Population Growth Changes Via APR/API Files ......... 65
Changes Involving New Logic FOr ad Ju.Cpp.....ccccccevvevieiieneeie e, 66
Adding New Database Adjustment Parameters...........cccocvevveveeviveveseeseanens 67

A WOrKed EXAMPIE......c.ooiiieieiiiee e 67
Checklist for Changing Database Variables "Globally™...............c..ccccovenee. 71
Making Changes That Affect Only the Base or Only the Variant..............cccccoeeeenen. 72
Implementing Changes in ACal I CPP...ccovveiiiiiiee e 73

A WOrKed EXAMPIE......c.ooiiiieiiie e 74

Checklist for System-Specific Database Changes..........ccccceevevveveciveseennnnn, 81



Introduction

The Programmer's Guide describes how users can alter the SPSM in order to model
tax/transfer systems or policy options not directly addressable by the SPSD/M as distributed;
e.g. they might make an alteration to the logic of the tax/transfer system in order to assess the
static distributional impacts that would result from a policy proposal.

This chapter introduces a variety of preliminary topics critical for understanding the use of
the SPSM in its glass box mode. Specific chapter topics include:

(1) adescription of the glass box mode, especially in contrast to the black box mode,
(2) the hardware and software requirements for using the glass box mode,
(3) the degree of programming knowledge required.

Subsequent sections in the guide then take up the details of actually developing glass box
applications. Thus, the following section describes a "Quick Start" procedure that tests the
success of the SPSM installation by effecting a simple glass box modification to the SPSM as
distributed. The Section entitled SPSD/M and Glass Box Directory Structure characterizes
the subdirectory structure relevant to the various aspects of glass box operations. The SPSD
Household/Individual Structure provides critical details on the key SPSD data structures used
by the SPSM. SPSM Calling Structure describes the calling structure of the SPSM modules
that make up a specific model. Glass Box Development: Adding Typical Scalar Parameters
addresses the mechanism for adding user-defined model parameters to an SPSM model,
treating the most common forms of scalar parameters. Glass Box Development: Adding Less
Typical Parameters then takes up the addition of less typical kinds of scalar parameters, as
well as the addition of vectors and matrices of new model parameters. Glass Box
Development: Adding New Variables describes the addition of new variables to a model.
Changing Base and Variant Data Variables provides the definitive statement on managing
standard and alternate algorithms within the context of glass box operations.

PURPOSE OF THE GLASS BOX MODE

A simplified systems view of the process of simulating taxes and transfers may be as follows:

Programmer’s Guide Page 1
SPSD/M Version 14.0



Reports
Parameters

N

SPSM
INPUTS BLACK BOX OUTPUTS
Microdata .
Microdata
TEXT EDITOR
User

Family
Allowance
Algorithm

Old
Version

= =

C++ Compiler

=

Reports
Parameters

N

New SPSM
INPUTS BLACK BOX OUTPUTS
Microdata

Microdata

A user specifies a series of inputs (parameters and data) which are then processed through a
system of algorithms (the Black Box) which in turn produces a system outputs (tables and
microdata). The user may create many different simulations by varying the inputs and then
analyzing the outputs. He may even deduce some of the contents of the black box through
repeated testing. However, the simulations possible are limited by the contents of the black
box. If, for example, the rules of the Manufacturer’s Sales Tax are not included in the system
of algorithms (with provisions for appropriate input data and parameters) then this program
can not be simulated without actually opening up and changing the black box. This ability to
look inside the black box and alter its contents is like turning the black box into a glass box.

Programmer’s Guide
SPSD/M Version 14.0



This guide explains how to use the SPSM in its glass box mode. Specifically, the term "glass
box mode" refers to a method of modifying versions of the executable SPSM program to
accomplish analyses that are not possible with the original, unmodified SPSM. Glass box
mode may be used to add or modify parameters, variables, and algorithms. Using the “glass
box” mode always entails altering the C++ Language source code and recompiling an
executable version of the program. The "black box mode" refers to the subsequent execution
of an executable version, either as shipped by Statistics Canada or as modified by user’s in
“glass box” mode. It is always through the black box mode that a user carries out a variety of
policy relevant simulations via parameter changes, user variables, and tabulation expressions.

Because of the extra steps involved, users should attempt to avoid the glass box mode
wherever possible. The SPSM provides a number of devices that enable analysts to achieve
many desired results without re-programming. The most common technique is to alter the
default sets of program parameters that drive the SPSM. The analyst could simulate the
impact of an increase or abolition of Family Allowances by changing the numeric values of
the relevant parameters. In a second example, the analyst can define their own variables in
the control parameter file, and can use the resulting variables in a whole range of SPSM
outputs. The Introductory Guide provides an extensive detailed example in which an analyst
uses the user-defined variables to simulate an earned income tax credit. Similarly, the
analyst can create variables “on-the-fly” as expressions and export or tabulate them just as if
they had been full-fledged variables, and can conveniently represent differences between a
given variable in the base and variant tax/transfer systems. The XTab User’s Guide provides
several examples of this type of on-the-fly definition.

The Glass box mode must be used under the following conditions:

(1) Adding any new parameters.

(2) Adding new variables that require reference to other specific family members.

(3) New proposals which are designed to interact with the tax/transfer system. For example,
a taxable newborn allowance.

(4) New proposals that alter the logic of existing programs in ways that have not yet been
parameterized.

When users need to make such changes in the SPSM to reflect alternative tax/transfers
systems, they need to be familiar with the techniques described in this guide.

HARDWARE AND SOFTWARE REQUIREMENTS FOR THE GLASS BOX MODE

The Installation Guide provides the definitive statement on hardware and software
requirements. For most users, a printer is a practical necessity. The discussion here assumes
that one is present.

The key aspects of software requirements are as follows:

1. Use of the SPSD/M in the glass box mode requires the availability of Visual C++ that
serves to compile the user's C language source code statements into the machine language
format required by the SPSM.

2. The SPSM itself requires an operating system compatible with the version of Visual C++.

Programmer’s Guide Page 3
SPSD/M Version 14.0



3. The user must have an appropriate editor for entering or altering C language source code,
such editing being central to glass box usage

4. ltis suggested to use an efficient text editor compatible with C++ code.

Users expecting to use the SPSM heavily in the glass box mode will probably also want the
added efficiency provided by "utility" software such as the MKS toolkit that makes many
Unix style features available within the operating system.

PROGRAMMING KNOWLEDGE REQUIRED

Because use of the SPSM in the glass box mode requires the user to do some programming,
glass box user will have to be somewhat more knowledgeable than the typical black box user.
This section characterizes the kinds of things that a glass box user will either have to know or
be prepared to learn.

Operating System Knowledge Required

Using the SPSM in its glass box mode requires that the user be fairly comfortable with a
number of areas relating to the operating system. A user needs to know about disk drives,
files, and file naming conventions, and about directories and subdirectories.

The user should be familiar with the concept of the DOS environment and with environment
variables such as the PATH variable. Effective operation in the SPSM's glass box mode also
requires that users be proficient with a number of DOS commands. The DOS commands
most critical include:

DIR List directory contents

TYPE List file contents

MKDIR Make new directory

CHDIR Change current directory
RMDIR Remove directory

COPY Copy files

XCOPY Copy files and/or directories
DEL Delete file

SET Set/display environment variables
PATH Display current path

Users who are not at ease with the concepts and commands described here will probably
avoid a great deal of frustration by spending some time with the DOS manual or develop
some ability to do it in Windows environment before tackling actual glass box applications.

Fundamental Programming Concepts (Not Language Specific)

The SPSM glass box is not the place to learn your first programming language. Users should
be familiar with at least one high-level computer language prior to using the Glass-Box (e.g.
FORTRAN, BASIC, PASCAL, and SAS). Because glass box applications involve
programming in a compiled language, it is desirable that glass box users come to the task
already familiar with the key concepts. A user should be comfortable with the idea of using a
text editor to write or revise source code, and with the idea of using a compiler to produce the

Programmer’s Guide Page 4
SPSD/M Version 14.0



desired executable file. The user will benefit from a familiarity with the notions of libraries,
macros, modular programming and program validation.

More critically, a user's experience with these concepts should be applied. Preferably, before
tackling SPSM glass box applications, a user should already have written and debugged
several non-trivial computer programs, not necessarily using the C language. Although it
may be possible for a user to learn to program by using the SPSM, we recommend against
the attempt. For prospective SPSM users needing to build or reinforce basic programming
skills, a wide variety of programming texts are available.

Knowledge of the C Programming Language

Because SPSM glass box applications involve programming in the C language, a user must
also program in C. Although the structure of the SPSM means that certain things like
input/output are done for the user, the prospective user will be most efficient if the basics are
previously understood. Users have to understand the purpose of defining constants and
declaring variables, and must appreciate the scopes of these declarations. They must
understand variables and variable types, specifically including pointer variables and
structured variables, and how the C language uses them. They must understand the nature
and structure of functions and the variety of statements that comprise them. They must be
familiar with C's major flow of control statements (if-else, switch, while, for, do-while), as
well as C's table of assignments and operators, including the increment operator. For users
who have worked in other programming languages and are capable of absorbing this
information in a concentrated form, Kernighan and Ritchie's book, "The C Programming
Language" is the standard reference. Similarly, the C language manual that comes as part of
the Microsoft C Optimizing Compiler is a very useful and authoritative source for
information about C and its implementation.

Finally, of course, SPSM users must understand the basics of the Microsoft C Compiler. Itis
also necessary to understand the thrust of what is going on, and the various error messages
that the compiler may give in response to the user's code. The authority on these topics is, of
course, Microsoft's set of manuals for the C compiler.

Quick Start Example

As its title suggests, this chapter provides the user with a quick start at using the SPSM in its
glass box mode. The chapter serves three main functions. First, it allows the user to check
the installation of the compiler and SPSD/M. If the user can carry out the chapter's simple
example successfully, then all of the major portions of the installations were performed
properly. Second, the example introduces key glass box concepts and terminology. Third,
the example illustrates, in an integrated manner, the general flow of glass box applications.

The chapter's approach is primarily narrative. Taking the reader through all the steps of a
simplified glass box application, it concentrates on the general approach. It describes the key
details of the exercise, but does not attempt to be exhaustive. The particular illustration used
here was selected for its simplicity; it addresses the most critical aspects of glass box
applications, but doesn't get bogged down in the additional requirements associated with
more ambitious applications.

Programmer’s Guide Page 5
SPSD/M Version 14.0



Substantively, the example models a relatively simple change to a single transfer program,
Family Allowances, in the tax/transfer system. Our hypothetical analyst, intrigued by the
practice of Prince Edward Island in the 1970's, seeks to ascertain the aggregate and
distributional impacts that would be associated with giving additional Family Allowance
benefits to larger families. More specifically, in the variant system, the analyst wants to
increase the amount of the federal Family Allowance by $10 per month per child for selected
children in selected families. When a family has three or more children currently aged 0
through 17 years of age, then it receives, over the year, an additional amount equal to $120
times the number of these "excess" children, i.e. $120 for a three child family, $240 for a four
child family, etc. We assume that this additional Family Allowance benefit would be paid by
the federal government to the usual recipient and that the benefit would be treated just like
the regular federal Family Allowance benefit.

As regards the narrative, readers should not worry about the "whys" of the implementation.
Subsequent sections in this Programmer's Guide will address all of them more fully.
However, it is highly desirable that the user work through the example to the point of
actually carrying out all of the tasks described. Only in this way can the first purpose,
confirmation of the installation processes, be realized.

PRELIMINARIES

The user should begin by selecting a subdirectory in which to work. This is the hard disk
subdirectory in which the user will edit copies of the relevant C++ language source code files
and describe the nature of the alternative system. We strongly recommend that the user
employ a directory other than those that the SPSD/M installation establishes for the
SPSD/M itself. The user can make a new subdirectory if necessary. For purposes of this
narrative, we'll assume that a subdirectory named GLASSEX1 is available as the working
subdirectory.

The user begins the process by copying, from the SPSD/M's GLASS subdirectory, to the
GLASSEX1 work subdirectory, all of the relevant template files. Template files are files
that already contain most of the necessary information for a glass box application, and which
the user will modify to create the final versions necessary for the application. For this
example, the relevant template files are as follows:

1. Adrv.cpp, the alternate "driver” template that invokes all of the SPSM's tax/transfer
functions in the correct order. This template, distributed as part of the SPSM, is
effectively a duplicate of the base driver function (the user should copy it in its
working subdirectory).

2. Afamod.cpp, the alternate Family Allowances template that effects the computation of
the Family Allowance benefit. This template, distributed as part of the SPSM, is
effectively a duplicate of the base system's famod.cpp function that computes Family
Allowance benefits. (the user should copy it in its working subdirectory).

3. SPSMGL.sIn and SPSMGL.vcproj carry out the compilation and linking of the
user's new model (copy these files from /spsm/glass to your working subdirectory).

Programmer’s Guide Page 6
SPSD/M Version 14.0



For other glass box applications the user may also need to copy other tax/transfer templates
and/or C language header files. In this example, however, the user does not need to alter any
of the header files because the new model creates no new variables and uses no new formal
parameters.

The general procedure for our illustrative glass box application is straightforward.

1. Working on COPIES of Adrv.cpp and Afamod.cpp we make the small number of
changes as described below.

2. Then we open the solution SPSMGL . sIn utility in Visual Studio.net. To work with the
new model, the project should be recompiled to produce a new executable file (We
assume the user knows how to proceed).

CHANGING THE PROJECT ENVIRONMENT

Project environment should be modified if the user wants to change the name of the compiled
SPSM.exe associated with the project in Project: Setting: Link to GLASSEX1 . EXE.

The new files Adrv.cpp and Afamod.cpp must be included in the project (Project: Add to
project: Files).

The key subdirectory \SPSM\DEFS should all be added in Tools: Options: Projects:
VC++ Directories: Include files, since definitions relevant to glass box applications reside
there.

The key subdirectory \SPSM\WIN32 should all be added in Tools: Options: Projects:
VC++ Directories: Library files, since libraries relevant to glass box applications reside
there.

CHANGING THE ALTERNATIVE DRIVER FUNCTION (ADRV.CPP)

Adrv.cpp contains two kinds of information that the glass box user will want to alter. The
first kind consists of labeling information that the SPSM uses in its reports and error
messages. When the user makes appropriate changes here, the resulting output becomes
more informative. The second kind consists of the function calls that effect the substance of
the model's tax/transfer calculations.

The user makes the labeling changes in the portion of the code, starting at about line 50, that
looks as follows:

GLOBAL VARIABLE DEFINITIONS */
/*global*/ char ALTNAME[IDSIZE+1] = "Unnamed";

/* Give global string describing version of this module */

/*global*/ char FAR Tdrv[] = "Untitled"

The ALTNAME[IDSIZE+1] string provides an identifying name for the alternative
driver; the user replaces the placeholder "Unnamed™" with the more informative name "FA
Quick Start". The new name must not exceed 20 characters in length. This alternative name
will then appear in the greeting screen. The Tdrv[] string provides a title for the

Programmer’s Guide Page 7
SPSD/M Version 14.0



alternative driver; the user replaces the placeholder "Untitled" with the more informative title
"FA Quick Start". The new title may not exceed 20 characters in length. TDrv®s contents
appear as information in the control parameter file as an algorithm description. Upon
completion of these substitutions, the revised "labeling section™ appears as follows:

/* GLOBAL VARIABLE DEFINITIONS */
/*global*/ char ALTNAME[IDSIZE+1] = "FA Quick Start';

/* Give global string describing version of this module */
/*global*/ char FAR Tdrv[] = "FA Quick Start"

In the substantive portion of the code, the user needs to make only a single change to
indicate that the calculation of benefits for the variant system should use an alternate
Family Allowance calculation.

The relevant portion of the code, a single line appearing at about line 125, appears as follows:

famod(hh); /* compute family allowances */

Unmodified, it invokes the regular Family Allowance calculation. The user changes the line
to invoke, instead, the alternative Family Allowance calculation that we shall describe
shortly. The modification consists solely in the substitution of the new function name, and
the revised source code appears as follows:

Afamod(hh); /* compute family allowances */

For this quick start example, these three simple changes constitute the entire set of
modifications for the Adrv.cpp function.

CHANGING THE ALTERNATIVE FAMILY ALLOWANCES FUNCTION (AFAMOD . CPP)

The Afamod.cpp function carries out the calculation of Family Allowances for the
alternative system. In a manner analogous to the Adrv.cpp changes, the user's changes
fall into two categories, labeling changes and substantive changes.

The labeling change is very straightforward. At about line 54, the function provides for a
title, TFa[], for the module, with the title being used in the report in which the SPSM
indicates the functions used to calculate the taxes and transfers. As with the title for the
driver, this title appears as an algorithm description in the control parameter file. The
relevant portion of the code appears as follows:

GLOBAL VARIABLE DEFINITIONS */

/* Give global string describing version of this module */
/*global*/ char FAR Tfa[] = "Untitled"”

The user changes the "Untitled" string to something rather more informative. The resulting
section then appears as follows:
GLOBAL VARIABLE DEFINITIONS */

/* Give global string describing version of this module */
/*global*/ char FAR Tfa[] = "FA Quick Start”

The substantive portion of the Afamod.cpp changes is a bit more complicated, but not
extremely so. The option to be examined affects directly three of the calculated variables,

1. taxable Family Allowances (tfa),
2. federal Family Allowances, (ffa) and

Programmer’s Guide Page 8
SPSD/M Version 14.0



3. Family Allowances, (fa).

(Of course other variables in the model, e.g. calculated taxes, are also affected indirectly.)
When the number of children in the census family (the variable "nch") is three or more, we
wish to increment each of the three Family Allowance variables by $120 times the number of
"excess" children. Everything else relating to the impacts of this policy change, e.g. the tax
impacts, will be taken care of automatically by other portions of the SPSM. In any event, the
variables in the routine are temporary, ceasing to exist once execution leaves the Afamod
function; only items that have been saved into the relevant portions of the household
structure will be able to affect calculations elsewhere in the system.

With the nature of the desired change clear, the major remaining issue is where in the
Afamod.cpp function to make the change. For purposes of logical correctness and clarity,
the change should be made after the three variables have already had assigned to them the
"base system™ amounts of Family Allowances, but before any calculations such as assigning
the amounts into variables in the data structure for the household. In this example, the
changes can all be made, in parallel, at the same location.

The example is not valid anymore and will be revised

The critical portion of the source code, as it exists before the implementation of our changes,
appears as follows: (The DEBUG statements shown here are irrelevant to the normal
calculation of Family Allowance benefits. Their presence permits detailed tracing to be
performed when needed, but is irrelevant here except as it identifies the portion of
Afamod . cpp, about line 366, where the Family Allowance changes will go.)

else {
DEBUGL1("'%s standard FA calculation\n');
tfa = nch * MP.STDFA; /* taxable family allowances =/
ffa = tfa; /* federal part of family allowances */
}

DEBUG3("'%s tfa=%.2F, ffa=%.2Ff\n", tfa, ffa);

Substantively, we wish to add the expression "(nch-2) * 120.0" to each of the three key
variables, taxable Family Allowances (tfa), federal Family Allowances (ffa), and Family
Allowances (fa). Further, such increments are appropriate only when the number of children
aged O through 17 in the census family is at least three. C's "if" statement and its "+="
operator provide a very convenient way to do this.

else {
DEBUG1(*'%s standard FA calculation\n');
tfa = nch * MP.STDFA; /* taxable family allowances */
ffa = tfa; /* federal part of family allowances */

/* $120/yr bonus for 3rd and subsequent children <18 */
if (nch >= 3) {

tfa += (nch-2) * 120.0;

ffa += (nch-2) * 120.0;

}

3
DEBUG3("'%s tfa=%.2F, ffa=%.2Ff\n", tfa, ffa);

With the completion of the changes to Afamod . cpp, the user's real work in implementing

Programmer’s Guide Page 9
SPSD/M Version 14.0



the changes is now essentially done. All of the relevant substance and labeling changes are
complete and, assuming there have been no errors during their entry, all that remains is the
compilation of the new model and then its validation. Most important, though, it is the
resulting executable file from C++ compile, in this example GLASSEX1 .EXE, that the user
runs to analyze the impacts of the change that was modeled.

TESTING THE RESULTING ALTERNATIVE SPSM MODEL

With all of the changes made, and the resulting files compiled and linked to create the new
executable file, we are ready to test the new model. The two related goals of this step are:

1. to seek evidence about whether we have successfully made the desired change, and
2. to generate outputs that will help us diagnose errors should we have made any.

A very natural form of evidence takes the form of crosstabulations from a comparative run
that uses the unmodified tax/transfer system as its base system and the modified form as its
variant system. Later in this section we offer examples of two such crosstabulations.

In order to make the desired comparative run of the new model and get the output we need,
we must alter the control parameters for the model. The Parameter Guide provides the
authoritative description of SPSM control parameters; here we simply list the key parameter
values for our purposes: (The "glassxla" portion of the two file names is an acronym for
"Glass box example 1, version a".)

OUTCPR glassxla.cpr # Name of control parameter file (out)

VARALG FA Quick Start # Name of variant algorithm
VARMETH 3 # Method of creating variant variables
BASMETH 2 # Method of creating base variables
OUTTBL glassxla.tbl # Name of report file (out)

Two tables will suffice for validation in this example:

1. tabulate number of census families, variant federal Family Allowances, base federal
Family Allowances, and their difference, all by number of children aged 0-17 (to show
that we are giving the new Family Allowances to the right units in the right amounts) and

2. tabulate "delta Family Allowances" and "delta disposable income" by census family type
to show both that we are giving the new FA to only the right kinds of units and that a part
of it is being recovered via the tax system, with the recovery fraction higher for two-
parent families than for one-parent families.

The XTSPEC parameter to generate these tables will look as follows:

XTSPEC
CF: cfnkids+ *
{units,
_imffa: L="Base Family Allowance (M)",
imffa: L="“New Family Allowance M)”,
imffa-_imffa: L="Family Allowance Increase M)”,
(imffa—_imfFfa)/units: L=“Average Family Allowance Increase’};
CF: cftype+ *
{imffa-_imFfa: L="Family Allowance Increase (M)",
immdisp-_immdisp: L="Disposable Income Increase (M),

Programmer’s Guide Page 10
SPSD/M Version 14.0



(immdisp-_immdisp)/units: L=“Mean Disposable Income Increase’”};

The highlights of this request are as follows:

1. The first table uses "cfnkids" (number of children 0-17) as the row control variable. Note
that cfnkids is an SPSD classificatory variable, while the variable "nch" used above to
effect the changes inside Afamod.cpp is a local variable that is defined as a "float"
variable and could not be used here for tabulation purposes, even if it were classificatory.

2. The tabulated variables used in the first table are precisely those described above,
numbers of families, new and old Family Allowance benefits and their difference.

3. The second table simply tabulates, for another existing classificatory variable, the
differences in Family Allowances and in disposable income, with the "underscored”
variables referring to the base system and the non-underscored variable names to the
variant system.

The tables that result when one executes the new GLASSEX1 model with \SPSD\ba88t.cpr
appear as follows:

Table 1U: Selected Quantities for Census Families by Number of children in census

family

e o o o o - +
[Number of children | Unit Count | New Family |Base Family] Family |
| in census family | (000) | Allowance | Allowance | Allowance |
| [ [ ) | ) | Increase (M|
e o o o o - +
|0 | 6401.6] 0.0] 0.0] 0.0]
|1 | 1454 2| 516.5] 516.5] 0.0]
|2 | 1430.7] 1061.7] 1061.7] 0.0]
13 | 612.9] 850.0] 776.5] 73.5]
|4 | 111.9] 229.5] 202.6] 26.8]
15 | 36.8] 83.7] 70.4] 13.3]
|6 | 5.3] 28._4] 25.8] 2.5]
|7 | 0.0] 0.0] 0.0] 0.0]
I8 | 0.0] 0.0] 0.0] 0.0]
19 | 0.0] 0.0] 0.0] 0.0]
e o o o o - +
|ALL | 10053.4] 2769.8]| 2653.6] 116.2]
o Fom o Ry Fom e o o +
Programmer’s Guide Page 11

SPSD/M Version 14.0



Table 2U: Selected Quantities for Census Families by Census family type

PRy Fom e Fom e +
|Census family type | Family |Disposable]
| |Allowance | Income |
| | Increase | Increase |
| (D) () |
S T Fom e +
|with Kids, 1 Adult | 16.7] 15.6]
|[With Kids, 2+ Adult | 99.4| 72.3]
|[with Elderly, 1 Adult | 0.0] 0.0]
|[With Elderly, 2+ Adult | 0.0] 0.0]
|Other, 1 Adult | 0.0] 0.0]
|Other, 2+ Adult | 0.0] 0.0]
Ty Sy SRS S Y —— [ T —— +
ALl | 116.2] 87.9]
Ty Sy SRS S Y —— [ T —— +

The values in Tables 1U and 2U result from running the new model on the 5% subset of the
SPSD in 1988 (ba88t.cpr) and requesting the tables described above. The first table confirms
that we seem to be giving the additional Family Allowances to the right kinds of census
families. Increased benefits, some $116 million of them, appear only for census families
with more than two children aged 0-17, and the gross amounts are $120 times the number of
such "excess" children in those families.

The second table offers more evidence that the new benefits are being given only to the right
kind of census families and, further, that the new benefits are being partially taxed back.
Moreover, the degree of tax recovery is lower for one-parent families than for two-parent
families; this is to be expected since (1) those reporting Family Allowance benefits in two-
parent families tend to have higher incomes and to be subject to higher marginal tax rates,
and (2) the Income Tax Act requires that the higher net income spouse report the Family
Allowance benefits.

We conclude from the values appearing in these tables that the changes made above have
quite probably been successful in implementing our intentions.

The testing just described completes our quick start example. Because of the example's focus
we have perhaps not been quite as careful and methodical as would be warranted in the case
of a real application. Thus, we mention briefly here a number of things that we might have
chosen to do in implementing our hypothetical change.

We might have added "revision history” comments to the files Adrv.cpp and
Afamod.cpp to document the nature of the changes and our reasons for implementing
them as we did. This form of documentation is an element of sound professional practice for
software development and maintenance.

We might have created an intermediate (local) floating point variable in Afamod.cpp to
store the increment in a family's Family Allowance benefit. This increment, once computed,
could then have been assigned directly to the tfa, ffa and fa variables so that we would not
have been computing the identical expression three times in parallel. Possible minor
efficiency gains aside, the resulting code would probably have been slightly easier to
understand.

Programmer’s Guide Page 12
SPSD/M Version 14.0



We might have made a parameter out of the $10 per month ($120 per year) value, in case we
wanted to repeat the analysis later for a different value of the supplementary Family
Allowance benefit. Similarly, we might have made a parameter out of the number of
children NOT eligible for the additional benefit; perhaps someone would want to know the
impacts of restricting the extra benefits to families with four or more children, or relaxing
them to admit families with only two children aged 0-17.

We might have chosen to create a new variable that would contain just the pre-tax increment
for the family, making this variable part of the structure for the household so that we could
more conveniently tabulate this "difference™ variable in crosstabulations or export it for
subsequent analysis in SAS.

We might have chosen to conduct more ambitious tests to ensure that the desired changes
had been implemented. For example, we might have produced a table showing the relative
sizes of the changes in federal and provincial income taxes to ensure that the new benefits
were being appropriately considered at both the federal and provincial levels. We might
have tabulated the size of the change in the child tax credit to assess whether the new Family
Allowance benefits were being properly taken into account in that credit's definition of
income.

In general, the style of alteration and the degree of testing conducted here are appropriate for
the limited goals of this introductory example. However, for a more serious glass box
application the user will probably wish to be more methodical in making the necessary
changes, devoting more attention to issues of documentation, labeling, validation and
possibly to efficiency of computation.

SUMMARY

This chapter has provided a first-pass description of glass box applications in the SPSM,
illustrating them with a specific example. Section topics included changing the substantive
calculations in a variant Family Allowance function, altering the SPSM driver function that
coordinates the calculation of taxes and transfers, and using the C++ compiler to create a new
version of the model. A short section on validation illustrated the generation of tables to
assess the success of the change.

SPSD/M and Glass Box Directory Structure

This chapter provides for glass box users an explanation of the hard disk directory structure
within which the SPSM operates. The information it contains is relevant because it tells the
user where certain items are located, which ones must be left in place untouched, which ones
are designed to serve as templates for changes, which ones are to serve purely as examples
for code that the user will build, etc.

Consider the following representation of user's hard disk directory structure:

C: [ Root directory ]

|--- MSC [ Microsoft C compiler, with its own subdirectories ]
|--- SPSD [ Data for the SPSD/M, with no subdirectories ]

|]--- SPSM [ SPSM proper, subdirectories as shown ]

| | -—- DEFS

Programmer’s Guide Page 13
SPSD/M Version 14.0



| | --- EXAMPLE
| | -—- GLASS
| | --- MODEL

|-—— WIN32
| --- GLASSEX1 [ Glass box task subdirectory 1 ]
| --- GLASSEX2 [ Glass box task subdirectory 2 ]
etc.

At the top of the figure we see the user's root directory, with two first-level subdirectories
MSC and SPSD. The MSC subdirectory contains the user's compiler, absolutely necessary
for the creation of glass box applications; MSC contains a number of lower level

subdirectories not shown here. The SPSD subdirectory contains all of the SPSD/M's raw
data and a number of default parameter files; it has no lower-level subdirectories.

Of more direct applicability to the glass box user is the SPSM subdirectory and its lower-
level subdirectories. These were created automatically for the user during the SPSM
installation; the names used here are the recommended defaults. We provide here brief
descriptions of each of these directories -- their major contents and relevance to glass box
applications.

An initial, general-level comment is in order -- THE USER SHOULD NOT CHANGE
ANYTHING IN ANY OF THESE SPSM SUBDIRECTORIES. (1) Glass box
applications will always involve working with COPIES of some of the files in these
subdirectories. (2) All of the user's glass box work will be done in one of the SEPARATE
SUBDIRECTORIES that the user has created to contain the working files for glass box
applications. It might even be useful for the user to switch on the read-only attribute for all
of the files in these subdirectories.

DEFS This subdirectory contains a number of header files that define structures and
constants used throughout the SPSM. Of greatest interest to the glass box
user will be the vs.h file that defines the hierarchical data structure that
holds the SPSD/M's information about households and individuals. Recall,
however, that the user will never have occasion to modify this structure. The
user's addition of user-defined variables is accomplished via a COPY of the
vsu.h file.

EXAMPLE This subdirectory contains various "INCLUDE" files that serve to specify
parameters for the sample runs described in the tutorial portion of the
Introduction and Overview Guide. Although they are potentially very useful
in testing for the successful installation of the SPSM and in learning how to
use models that have already been developed, these files are not directly
relevant to the development of glass box models, and can be ignored for
purposes of this glass box oriented discussion.

GLASS This subdirectory contains templates that the user will use as starting points
for the code that s/he writes to create variant tax/transfer systems and
models. (1) It contains the source code for all of the SPSM's tax and benefit
functions; the user will probably find it most efficient to create any new
functions by modifying COPIES of these elements. (2) It contains functions
that make the user defined parameters and variables accessible to the broader
SPSM, together with associated header files that define the relevant

Programmer’s Guide Page 14
SPSD/M Version 14.0



structures to hold the user-defined variables and parameters.

MODEL This subdirectory contains examples of the definitions of model variables
and parameters. The elements in the subdirectory are intended ONLY to
serve as concrete examples for the user when s/he begins to define new
parameters and variables for glass box applications. The user will never
have occasion to modify the contents of these files, nor even to use or alter
copies of the files.

WIN32 This subdirectory contains a small number of WINDOWS 32 bits
"controlling object files" that govern the form of the overlay structure that
the SPSM uses. At a very general level, these items are similar to those in
LIB in the sense that SPSMGL.dsw needs them and knows how to use them
in the compilation of a new version of the model. It also contains some
executable files used in the modification of SDSD in a project.

At the very bottom of the representation of the user's hard disk subdirectory structure is a
glass box application "task" subdirectory GLASSEX1 and two sub-subdirectory WiNREL and
WINDEBUG. Users may have as many such task subdirectories as are required for the glass
box applications they build. This one corresponds to the Quick Start example described in
Chapter 2. It contains all of the files that the user creates in replicating that example. The
specific files are as follows:

ADRV.CPP

AFAMOD . CPP

FAQSTST1.CPR

FAQSTST1.TBL

SPSMGL . SLN

SPSMGL . VCPROJ

SPSMGL . NCB

SPSMGL .OPT

SPSMGL . PLG

GLASSEX1.EXE

GLASSEX1.PDB

WINREL
WINDEBUG

ADRV.CPP and AFAMOD.CPP are the C++ source code files copied from the GLASS
subdirectory and then modified to reflect the desired new program logic; their OBJ
counterparts are the object files produced as outputs when the ".CPP" files are compiled in
WINDEBUG and WINREL. GLASSEX1.EXE and GLASSEX1.pdb were created by the
compile command. Finally, FAQSTST1.CPR is the control parameter file for runs of the
FAQSTST1 program, and FAQSTST1.TBL contains the crosstabulations that the
associated run of SPSMFAQS produced.

The critical information in this chapter can then be summarized as follows:

1. No SPSM user should change ANYTHING in the SPSM subdirectory or in any of
its subdirectories created during the SPSM installation. (Note however that certain
files that may be definitely unnecessary can be deleted in their entirety.)

2. The glass box user will establish separate "task" subdirectories for glass box applications.
Preferably these will not be subdirectories under SPSM.

Programmer’s Guide Page 15
SPSD/M Version 14.0



3. The glass box user will copy the relevant elements from the SPSM\GLASS
directory, using them as templates for the changes to be made. The changes
themselves are then made to these COPIES. Subsequent sections in this Programmer's
Guide indicate in considerable detail what the user must change and where the relevant
templates are located.

4. The key subdirectories \SPSM\DEFS should all be added in Tools: Options: Directory,
since definitions relevant to glass box applications reside there.

The SPSD Household/Individual Structure

This chapter has three major goals, each of them developed in a separate section, but all of
them relating to the general topic of the SPSD/M's data structures and their usage.

This following section provides a snapshot overview of the SPSM’s framework for storing
data about the household, its families, and their component individuals. An appreciation of
this structure is crucial to the glass box user as he/she seeks to refer to or alter the values of
existing data variables and modeled variables, and to create such new variables as would be
necessary for a customized version of the SPSM.

The second section develops the use of pointer variables as a major tool by which the user
accesses individual elements of the data. It also describes the major naming conventions
relevant for glass box applications. These topics are relevant both for users building their
own glass box applications, and those seeking to understand the standard SPSM algorithms.
The underlying "philosophy™ for this development is consistent with the rest of this guide --
in many respects it is considerably more important for the glass box user to know how,
mechanically, to do something in a standardized, robust fashion, than to understand all of the
design-oriented reasons behind the structures and techniques. In other words, the section's
focus is determinedly practical; it concentrates much more on the mechanics of "how-to"
than the niceties of "why”.

The third section provides a "bestiary"” of code fragments for performing common glass box
tasks, particularly as regards to data structures. The idea is not only that the user should be
able to copy an existing wheel rather than re-inventing it, but that the copied wheel should
further exist in a standardized format, and not require debugging. The section's code
fragments include (a) processing relevant individuals/families via "for" statements, (b)
referring to other family members, (c) accessing existing database and modeled variables,
and (d) assigning new values to variables.

THE SPSD/M'S DATA STRUCTURE
The SPSD is a file whose order is fixed. It cannot be sorted by the user. The sort order of
the database is critical to understand when attempting to loop through households. The

database is clustered into households that are randomly sorted in a stratified way. Each
individual household is then sorted as follows:

Household

Programmer’s Guide Page 16
SPSD/M Version 14.0



Economic Families
Census Families
Nuclear Families
Head of Family
Spouse if present
Youngest Child to Oldest Child

Within a household, individuals are grouped into economic families. Within an economic
family, individuals are grouped into census families. Within the census family, individuals
are grouped into nuclear families. Within the nuclear family, the head is always first
followed by the spouse if present. Children then follow sorted according to their age.

An entire household is loaded into the data structure specified above. Loops may then be
established to process any of the units of analysis within a household.

Detailed descriptions of the substance of individual SPSD/M variables themselves appear in
the Variable Guide. Much of the detail with respect to the content of the several structures
can be found in vs.h. The key items required to define variables can be found in spsm.h.
Some of the macros allow the user to do things symbolically to make their meanings clearer,
or for consistency in numerical precision:

#define LOGICAL int /* type used to store true or false values */

#define TRUE 1 /* manifest constants to make code more readable */

#define FALSE O

#define NUMBER float

#define ZERO (Ffloat) 0.0

#define HALF (Ffloat) 0.5

#define ONE (float) 1.0

#define THOUSAND (Ffloat) 1000.0
#define MILLION (float) 1000000.0

INTRODUCTION TO POINTERS IN THE SPSD/M

The uv structure is one whose contents are defined by the user, in terms of both substance
and variable names. A chapter describes how the user creates new variables, e.g. defining a
new tax or transfer program. The user controls the substance of "uv" via the vsu.h header
file, and the vsdu.cpp file, but can alter the values of the defined elements themselves
anywhere inside Adrv.cpp. These definitional and assignment capacities are the
essence of glass box applications when the user needs to add new variables. Of course the
user must be careful to give any new variable/tax to the right individual(s) so that roll-ups
will work properly throughout the remainder of the SPSM.

The C language makes heavy use of pointer variables, i.e. variables that point to a particular
area of memory, and especially to a specific data structure. Although the portions of the
SPSM's source code dealing with tax/transfer algorithms make less use of pointers and
pointer arithmetic than those portions closed to the user, the glass box user will still have to

Programmer’s Guide Page 17
SPSD/M Version 14.0



employ pointers. Even though the usage of pointers is essential, the design of the SPSM has
made it as simple as the designers could manage. A variety of macros and code fragments
are provided to make the pointer usage as simple and often as mechanical as was feasible.
The Bestiary section briefly shows how these pointers are applied for typical glass box tasks
such as looping and referencing. Note, however, that this section is in no way intended to
provide a comprehensive course in pointer usage more generally outside the SPSM.

THE BESTIARY

A bestiary is a "collection of descriptions of real or imaginary animals”. The particular
"animals" collected and described here are real. They are fragments of C-language source
code likely to be useful to the glass box user as s/he reads and writes the code for tax/transfer
programs. The code fragments described here are all included in the file BESTIARY .CPP
so that the user can copy the segments without having to retype them.

The elements of the bestiary are provided in support of a philosophy emphasized throughout
this guide. More precisely, users should not have to reinvent the wheel, but should be given
every assistance in taking advantage of things that already exist within the SPSM. Being
able to copy existing code, perhaps modifying it in the process, provides four major
advantages.

1. The existing source code is known to be correct, and thus doesn't have to be debugged.

2. There will be greater consistency between the user's code and that of the distributed
SPSM.

3. Copying is much faster than re-entry.

4. The user can often get the needed job done, safely, without having to understand all of
the underlying detail. The general format used is that of a heading, followed by the code
itself, and, sometimes, a short comment or explanation.

Examples of Looping:

One of the most common tasks in reading, modifying or writing code is looping through the
relevant units in a household or one of its substructures. The following set of code segments
probably come close to being exhaustive as regards the looping required by the user. Note
that the source code segments include the relevant definitions required. E.g. in the first
example below, the user must declare the pointer 'in' of type 'P_in," and the integer, 'ini’' so
that they can be used in the operation of the loop. In practice, the definitions will appear in
the source code prior to the loop itself.

/** * PROCESS ALL INDIVIDUALS IN HOUSEHOLD hh **/

register P_in in;
int ini;

for (ini=0, in=&hh->in[0]; ini<hh->hhnin; ini++, in++) {
DEBUG2("'%s processing individual %d in household\n", ini);
/* code here, using pointer "in® */

}

Programmer’s Guide Page 18
SPSD/M Version 14.0



In the preceding loop, and the others that follow, the C 'for' statement is used. Items before
the initial semicolon initialize variables for the looping. The condition between the two
semicolons specifies when the loop is to continue. The items still within the parentheses, but
after the second semicolon specify the incrementing necessary for the next iteration. Also
included in the code fragment is a 'code here' comment. It indicates where the SPSM's code,
or the user's code, should go to act on the unit through which the loop cycles. The 'code here'
comment also identifies that unit in terms of the pointer that the loop controls.

/*** PROCESS ALL INDIVIDUALS IN ECONOMIC FAMILY ef **/

register P_in in;

int ini; for (ini=0, in=ef->efin; ini<ef->efnpers; ini++, in++) {
DEBUG2("'%s processing individual %d in economic family\n", ini);

/* code here, using pointer "in® */

}
/*** PROCESS ALL INDIVIDUALS IN CENSUS FAMILY cf **/

register P_in in;

int ini;

for (ini=0, in=cf->cfin; ini<cf->cfnpers; ini++, in++) {
DEBUG2(*'%s processing individual %d in census family\n", ini);
/* code here, using pointer "in® */

}
/*** PROCESS ALL CHILDREN (including 18+) IN CENSUS FAMILY cf **/

register P_in in;

int ini;

for (ini=0, in=cf->cfinch; ini<cf->cfnchild; ini++, in++) {

DEBUG2("'%s processing child (including 18+) %d in census family\n", ini);
/* code here, using pointer "in" */

}
/*** PROCESS YOUNG CHILDREN IN CENSUS FAMILY cf **/

register P_in in;

int ini;

for (ini=0, in=cf->cfinch; ini<cf->cfnkids; ini++, in++) {
DEBUG2("'%s processing child (<18) %d in census family\n", ini);
/* code here, using pointer "in® */

}
/*** PROCESS ALL INDIVIDUALS IN NUCLEAR FAMILY nf **/

register P_in in;

int ini;

for (ini=0, in=nf->nfin; ini<nf->nfnpers; ini++, in++) {
DEBUG2("'%s processing individual %d in nuclear family\n", ini);
/* code here, using pointer "in® */

}
/*** PROCESS CHILDREN IN NUCLEAR FAMILY nf **/

register P_in in;

int ini;

for (ini=0, in=nf->nfinch; ini<nf->nfnkids; ini++, in++) {
DEBUG2("'%s processing child %d in nuclear family\n", ini);
/* code here, using pointer "in® */

Programmer’s Guide Page 19
SPSD/M Version 14.0



/*** PROCESS ALL ECONOMIC FAMILIES IN HOUSEHOLD hh **/

P_ef ef;

int efi;

for (efi=0, ef=&hh->ef[0]; efi<hh->hhnef; efi++, ef++) {
DEBUG2(*'%s processing economic family %d\n", efi);

/* code here, using pointer "ef" */

}
/*** PROCESS ALL CENSUS FAMILIES IN HOUSEHOLD hh **/

P_cf cf;

int cfi;

for (cfi=0, cf=&hh->cf[0]; cfi<hh->hhncf; cfi++, cf++) {
DEBUG2("'%s processing census family %d\n", cfi);

/* code here, using pointer "cf" */

}
/*** PROCESS ALL NUCLEAR FAMILIES IN HOUSEHOLD hh **/

P _nf nf;

int nfi;

for (nfi=0, nf=&hh->nf[0]; nfi<hh->hhnnf; nfi++, nf++) {
DEBUG2("'%s processing nuclear family %d\n", nfi);

/* code here, using pointer "nf" */

}
References With Respect to an Individual:

Another common glass box task involves referring to other individuals in a structure or
substructure, or to units of analysis "higher up" in the structure. It is via such references that
the user can refer to characteristics such as the province of residence for an individual, the
income of the spouse of the eldest member of a census family (if that spouse exists), or the
age of the second oldest child living in any of the census families within a common economic
family.

/*** REFERENCE SPOUSE OF INDIVIDUAL in **/

if (in->id.idspoflg) {

P_in inspo;

inspo = in->id.idinspo;

/* code here, using pointer "inspo” */

}

Notice here that there will not always exist a spouse.
/*** REFERENCE HOUSEHOLD OF INDIVIDUAL in **/

P_hh hh;

hh = in->id.idhh;

/* code here, using pointer "hh® */
With the pointer to the household retrieved, the user then has access to household
characteristics such as province of residence. In contrast to the situation with the spouse of
an individual, the household will always exist.

Programmer’s Guide Page 20
SPSD/M Version 14.0



/*** REFERENCE ECONOMIC FAMILY OF INDIVIDUAL in 4
P_ef ef;
ef = In->id.idef;
/* code here, using pointer "ef" */
Similarly, the individual's economic family will always exist, and will be relevant for
ascertaining whether the individual lives in a below - LICO unit.
/*** REFERENCE CENSUS FAMILY OF INDIVIDUAL in **/
P_cf cf;
cf = in->id.idcf;
/* code here, using pointer "cf" */
/*** REFERENCE NUCLEAR FAMILY OF INDIVIDUAL in **/
P_nf nf;
nf = in->id.idnf;
/* code here, using pointer "nf" */
These key references, coupled with the looping fragments of the previous section, permit the
user to do, relatively conveniently, almost anything likely to be needed for tax/transfer

simulation.
SUMMARY

The first part of this chapter described the data structure used for SPSD/M. That part also
identified the most important manifest constants and function macros the user will encounter
in the SPSM's source code. The later portions described the role of pointer variables in the
SPSM and characterized the major pointer types used. They concluded with a bestiary of
code fragments for common glass box tasks, looping through individuals and family units,
and referring to an individual's spouse or to the units of analysis that contain him/her.

The next chapter builds on this foundation by describing how the SPSM processes
households in terms of calculating taxes and transfers. That description is in turn a
foundation for the later chapters that indicate how to add user-defined parameters and
variables in the course of modifying the logic of the tax/transfer system.

SPSM Function Calling Structure

The calculation of taxes and cash transfers for a household is controlled by a function whose
only task is to call all other individual tax/transfer algorithm functions. The sequence of calls
is critical to the simulation due to the informational requirements of the tax/transfer
functions. For example, net income must be known before GIS can be calculated. The
following list gives the functions called by drv and adrv in the order in which they are
called.

Function Description

ui(hh) Compute Unemployment Insurance benefit

famod(hh) Compute family allowances

oas(hh) Compute old age security

dem(hh) Compute new demogrants

txinet(hh) Compute net income

gis(hh) Compute guaranteed income supplement for elderly

Programmer’s Guide Page 21

SPSD/M Version 14.0



gist(hh) Compute provincial elderly top-ups

samod(hh) Compute social assistance

txitax(hh) Compute taxable income

txhstr(hh) Compute child & spouse deductions

txcalc(hh) Compute federal tax

txctc(hh) Compute child tax credit

txfstc(hh) Compute federal sales tax credit

txprov(hh) Compute provincial taxes and credits

gai(hh) Compute new guarantees, refundable credits
memoZl(hh) Compute disposable income, etc.

ctmod(hh) Compute commodity taxes and allocate to persons
memoz2(hh) Compute consumable income, etc.

cceopt(hh, drv)  Zero CCE for young kids if optimal

classu(hh) Compute user-defined reporting variables (in \glassbox)

The calling order of the component functions of drv reflects the logical precedence
between them.

e The first functions, ui, famod and oas, simulate programs whose benefits are determined
by factors other than income and as such are called first.

e dem is a stub routine for glass box applications that require calculations to occur before

entering the tax system routines.

txinet calculates net income prior to certain transfers.

gis calculates transfers to the elderly.

samod calculates social assistance or guaranteed income transfers.

Federal and provincial taxes are calculated next in the next four functions with the tx

prefix (txitax, txhstr, txcalc, and txprov).

gist, txctc, and txfstc calculate income tested transfer programs.

e Qai is another stub routine that is intended for use by glass box users who wish to
simulate options requiring information on all personal income taxes and cash transfers.
For example, users may use this function to simulate an income supplementation
program.

e The memol and memo2 functions create aggregate variables for reporting.

e In the ctmod function, sales and excise taxes are calculated by applying Input/Output
based effective sales tax rates to observed family expenditures.

e cceopt optimizes income by maximizing the childcare expense credit and the child tax
credit.

e classu is a stub routine that allows the glass box user to compute and assign values to new
or re-defined variables.

The functions called by drv call other functions and sub-functions in order to complete
their calculations. The following page contains a complete list of the names of functions and
sub-functions along with a short description in the order in which they are called by drv.
Please refer to the specific function in the Algorithm Guide for a more detailed description.
Sub-functions can be found listed under the function that calls them. Thus for a complete
understanding of the calculation of net income one would have to consult both the txinet and
txccea functions.

Programmer’s Guide Page 22
SPSD/M Version 14.0



Function names are printed in lower case, bold, courier font (e.g. txinet, txcalc) and
correspond to a single C language source code file (e.g. tixnet.cpp, txcalc.cpp).
Sub-functions are defined within the function (file) that calls them and are shown in lower
case, courier font (e.g. uisgqz, gissub). The following example is a call of a sub-
function uiclm() in ui.cpp where uiclm is defined in a section of ui.cpp.

valid_claim = uicIm(in, &in->id.ucl, in->id.ucl.ucyl, &in->im.ubl,
hh->hd.hdprov, hh->hd.hdurb, wctb);

Glass Box Development: Adding Typical Scalar Parameters

As its title suggests, this chapter explains to the glass box user the mechanics of the
programming tasks associated with adding typical scalar parameters during the development
of glass box applications. Structurally, the chapter communicates this information via a
detailed worked example. The first section reviews the general procedure for developing
glass box applications, describing the steps that are fundamental to any model alteration, be it
changing code, adding parameters or adding variables. The second section takes up several
preliminaries to parameter addition. It also describes the nature of the example to be used, an
extension of the Family Allowance supplement example used in this Guide's Quick Start
Chapter. The remaining sections then use the example to explain in detail the steps involved
in adding the most common kinds of scalar parameters to a model. Finally, the last section
summarizes the key points regarding the addition to a model of these common forms of
parameters.

GENERAL PROCEDURE FOR MAKING GLASS BOX CHANGES: A RECAPITULATION

The previous section has already described the general procedure for developing glass box
applications, including the reasoning behind the steps. We summarize the key points here in
capsule form.

e Create Task Sub-directory

e ldentify Files to be Changed

e Copy relevant Files to Task Sub-directory
e Edit Relevant Files

e Compile the new version

e Test the New Version of the Model

e Carry Out the Intended Analysis
Create Task Sub-directory

The user creates a new "task subdirectory” to hold the files relevant for the new glass box
application. She/he will edit files in the task subdirectory, leaving all of the other SPSD/M

Programmer’s Guide Page 23
SPSD/M Version 14.0



files alone.
Identify Files to be Changed

The user identifies those files in c:\spsm\glass for which variants will have to be
created. For example, in the Quick Start example, we identified Afamod.cpp,
Adrv.cpp and SPSMGL.dsw. The example appearing in this chapter indicates how other
files, e.g. Mpu.h and Ampd.cpp, are relevant to adding new parameters to a glass box
application. A section will explain how still other files, Vsu.h and Vsdu.cpp, are
relevant when the user wishes to add new variables to a model. Clearly, the tax/transfer
function files that use the new parameters must also be changed. At times, the user may find
it more efficient to use files already developed in a previous application as templates, rather
than going all the way back to the glass subdirectory's template files.

Copy Relevant Files to Task Sub-directory

The user copies all of the identified-relevant files across to the task subdirectory. The user
will work only with these copies, leaving the originals unchanged.

Edit Those Relevant Files

The user makes appropriate changes in each of the files identified as relevant. We
recommend that the changes be made in the following order:

1. Include all relevant files into the project and change the output file name in Project:
Setting: Link.

2. Editthe Adrv.cpp file, as necessary.

3. Editthe Mpu.h and Ampd.cpp files, when appropriate, to add any new parameters to
the model.

4. Editthe Vsu.h and Vsdu.cpp files, as appropriate, to add any new output variables
to the model.

5. Edit the source code files to add the desired new substantive logic to the tax/transfer
system.

We shall follow this prescribed order in the examples we present in this and subsequent
sections.

Compile the new version

The user should activate the Debugging setting in Build: Set Active Configuration and then

run a debug execution of the project. When the program changes are properly implemented
then the new model should be compiled.

Test the New Version of the Model

The user tests the new version via a set of validation analyses designed to reveal any
problems with the logic that has been added or modified. This step may require going back

Programmer’s Guide Page 24
SPSD/M Version 14.0



to some of the earlier ones to remedy any deficiencies that are discovered.
Carry Out the Intended Analysis

Finally, once the validation is complete, the user can proceed with "production runs” of the
new executable code to simulate the consequences of the change that was modeled.

INTRODUCTION TO PARAMETER ADDITION

This section takes up a few critical preliminaries to the procedure for adding typical scalar
parameters. First, it illustrates why a user might wish to add one or more parameters to a
model. In addition, it describes the substance of the new parameters we use to illustrate the
addition of typical parameters.

As noted at the end of the Quick Start example, our hypothetical analyst there took a few
shortcuts that might be done differently in a real-world policy development exercise,
especially if the new model was intended to be used repeatedly or by multiple analysts. One
of these shortcuts was to "hardwire" the $120 per year Family Allowance increment right
into the AFamod.cpp function. Although this might be acceptable if the user would never
want to try another value for the increment, it is not particularly efficient should there be any
interest in examining the impacts of other values. The user would need to re-edit the code
and then to recompile the model for each separate value to be examined; the user might, for
example, seek to confirm a belief that the impacts are generally proportional to the amount of
the increment, and wish to try multiple values by way of investigation. With appropriate
parameters added to the model, no additional editing is required, and the user can investigate
multiple values without re-compilation by simply supplying new parameter values to the
modified model.

Consequently, several sections in this chapter describe the steps necessary to add new
parameters to the model, cleaning up the Quick Start example by way of a specific
illustration. This chapter restricts itself to the most commonly used forms of scalar
parameters. We believe that the kinds of additions described here will meet perhaps 80% of
the parameter addition needs of glass box users. We leave the definition of more esoteric
scalar parameters, and of vectors and matrices of parameters, to the last sections. Whatever
the type of new parameters, once added to a model, they are available to all functions called
by Adrv . c; they are not restricted to the function for any single transfer program.

Substantively, we shall add three parameters to a variant of the Quick Start model. The three
additions correspond to the three most common forms of parameters that glass box users will
have occasion to use.

1. The first parameter, a scalar "float" or "real” value, will provide the value of the Family
Allowance increment given in respect of certain children; it will eliminate the hardwired
$120.00 value. We'll call this parameter Fasuppc (Family Allowance Supplement Per
Child).

2. The second parameter, a scalar integer value, will indicate the number of children at

which the supplement begins to be payable; it will eliminate the hardwired value of "3"

Programmer’s Guide Page 25
SPSD/M Version 14.0



used in the Quick Start example. We'll call this parameter fasupfec (Family
Allowance Supplement's First Eligible Child).

3. The third parameter, a "flag" variable that is effectively a boolean switch, will indicate
whether any attention is to be paid to the first two parameters. In this, its function
parallels that of the many "flag" variables used throughout the SPSM. When turned "on"
it will enable the computation of the supplement; when turned "off" the model will
calculate Family Allowances with no provision for the supplement. We'll call this
parameter fFasupflg (Family Allowance Supplement Flag).

Our description assumes that the user has chosen to use \glassex2 as the task directory,
creating it if necessary.

COPY FILES ADRV.CPP, MPU.H, AMPD.CPP, AFAMOD.CPP, SPSMGL.DSW

The user copies to the new task subdirectory all of the files for which changes are required..
Similarly, the user will wish to modify Adrv.cpp to update the description used for the
substantive files (here only Afamod .cpp) being changed. Thus, Adrv.cpp needs to be
copied.

Two other files, Mpu.h and Ampd . cpp, are always relevant when the user wishes to add a
new model parameter. Mpu.h (Model Parameters, User) is a C language header file that
defines the nature of the new parameter. Ampd.cpp (Alternate Model Parameter
Definitions) contains the function invocations that make the user's parameters known
throughout the rest of the SPSM, e.g. so that they can be referenced by name for purposes of
changing values "on the fly" when the user executes an SPSM executable file.

The user must copy these Mpu.h and Ampd.cpp files across from the glass subdirectory
or some equivalent source. If, for example, the user has already, elsewhere, modified these
files to define other parameters, and wishes to retain those previous modifications, s/he can
copy templates for Mpu.h and Ampd.cpp from the subdirectory in which they exist. By
the term "templates" we refer to existing files, or pieces of text or code, that serve as a
convenient starting point for making any desired modifications. For example, it would make
no sense at all for the user to enter, from scratch, completely new versions of the relevant
files. In this example, we'll assume that these are the first parameters being added, and will
copy the templates from glass.

Finally of course, the user must copy the substantive tax/transfer function or functions that
will use the new parameter. For our purposes the only relevant substantive function is the
Afamod.cpp function. Rather than copying it from glass and then having to start from
scratch, we'll copy it from glassex1 so that some of our work is already done, e.g. locating
where the assignment of the increment should be made.

The user will have to copy SPSMGL.dsw that describes the project environment.
UPDATE THE PROJECT

All the required files should be included in the project and the name of the output executable

Programmer’s Guide Page 26
SPSD/M Version 14.0



changed in Project: Setting: Link to glassex2.exe.
UPDATE THE ALGORITHM DESCRIPTION IN ADRV.C

Recall from the Quick Start example that the altname[] and Tdrv[] global variables
received new values to reflect and document the nature of the changes to be made. Here,
with a new version of the model being created, a corresponding substitution is in order. The
two substitutions, consisting exclusively of the contents of the two strings, result in the
following code:

GLOBAL VARIABLE DEFINITIONS */
/*global*/ char ALTNAME[IDSIZE+1] = "Parameterized FA Supplement";
/* Give global string describing version of this module */
/*global*/ char FAR Tdrv[] = "Parameterized FA Supplement"

At this point we can carry out a debugging compilation to check our modification. Such a
check helps a user to identify syntax errors while the nature of the modification is still fresh
in the memory. To do so, select Win32Debug project in Project:Set Active Project and then
do Build:Start Debug. If compilation and links are required, C++ will let you know.

MODIFY MPU.H TO DEFINE THE NEW PARAMETERS

The user next needs to change the file Mpu.h to define the type of the new parameters.
When the change is made in the glass version of Mpu.h, the line containing the string
"UMDUMMY™" is replaced with definitions of the new parameter(s). The name
"UMDUMMY" refers to "User Model Dummy parameter.” We're calling the first new
parameter FASUPPC to indicate that it is the amount of the FA supplement per relevant
child. Before the change the indicated line (about line 62) reads:

int UMDUMMY; /* dummy entry */

Because, as the label indicates, this entry is only a placeholder, dummy, entry so that the
SPSM will have something to work with if the user has not yet defined any user parameters,
we delete this line completely. We replace it with the lines:

NUMBER FASUPPC; /* Family Allowance Supplement per Child */

int FASUPFEC; /* FA Supplement, First Eligible Child */

int FASUPFLAG; /* FA Supplement, Activation Flag */

In the first line, "NUMBER" is a macro used by the SPSM to ensure portability across
machines; it corresponds to the type "float". FASUPPC is the name of the new parameter.
The SPSM convention is such that parameter names are capitalized. The other two
parameters are naturally integers. For readability, we have also added comments on the right
to indicate the nature of the parameter values.

These simple additions complete our changes to Mpu.h. Typically, if we were adding new
parameters to a non-empty set of user parameters already in place, we would simply add the
new definitions to the bottom of the existing list in Mpu.h, just as the FASUPFEC and
FASUPFLAG parameters here follow the FASUPPC parameter.

The SPSM allocates space for up to 500 such new parameters, easily enough for typical glass
box user applications. Even more parameter additions are possible when some of them are of
the smaller "int" type. Any attempt to exceed this limit will result in a compile-time

Programmer’s Guide Page 27
SPSD/M Version 14.0



error message that will make the problem apparent.
MODIFY AMPD.CPP TO MAKE THE PARAMETERS AVAILABLE TO THE SPSM

The user also needs to change the Ampd.cpp file to make the new parameter "visible"
throughout the portions of the SPSM that may need to reference it. The SPSM provides a
function "pmaddent” (Parameter Module, Add Entry) to carry out this task. The user calls
the function once for each new parameter, just before the "DEBUG_OFF (Ampd)"
statement near the end of Ampd . cpp, at about line 138.

If the user is working on a copy of Ampd.cpp that already contains invocations of
pmaddent for other parameters, those other calls can be used as templates. In our example
though, since there are, as yet, no other parameters added, we copy a pmaddent template
from the file C:\SPSM\MODEL\Mpd1.cpp (Model Parameter Definition File 1). For our
first parameter, FASUPPC, we recognize that this NUMBER type parameter should be very
similar to the STDFA parameter appearing at about line 252. We simply copy that pmaddent
invocation and make appropriate substitutions. This, practice, copying something generally
similar that already exists and works, and then modifying it, is standard practice in glass box
development. The invocation, as copied, looks like:

pmaddent(pcp, "'STDFA™, (char *)&MP.STDFA, NULL, P_SCL, C_NUM, O, 0, NULL, 0);

We modify it for our purposes by changing the two references to STDFA to correspond to
our new parameter. Replacing "STDFA" by "FASUPPC" and "(char *)&MP.STDFA" by
"(char *)&MP .UM . FASUPPC", because the new parameter is an element of the substructure
UM (User Model) that lies within the MP (Model Parameters) structure, we obtain the result:

pmaddent(pcp, "FASUPPC", (char *)&MP_UM_FASUPPC, NULL, P_SCL, C_NUM, O, 0, NULL,
0);

For the moment we simply retain all of the other arguments to the function without having to
worry about what they represent. As long as we have chosen an appropriate template to steal
from, there is no problem. Later, we'll look at the meaning of each of the arguments to
pmaddent so as to facilitate more informed judgements about appropriate sources for
pmaddent templates, and more effective recovery from any incorrect choices.

We choose UIWAITWKS (the integer number of weeks in the Unemployment Insurance
waiting period) as our template for our integer parameter specifying the "position” of the first
child in the family to be granted the supplement. Similarly, we choose an existing flag
parameter to serve as the template for our new FA supplement flag; FAFLAG, which
controls whether Family Allowances are computed at all, seems a good choice. Before our
modifications, these two invocations appear as follows:

pmaddent(pcp, "UIWAITWKS",  (char *)&MP_UIWAITWKS, NULL, P_SCL, C_INT, 0, 0, NULL,
0);
pmaddent(pcp, "FAFLAG",  (char *)&MWP.FAFLAG, NULL, P_SCL, C_INT, E_FLAG, 0, NULL, 0);

As with the FASUPPC parameter above, we modify each of these templates in two places,
substituting the name of the parameter and its relation to the MP structure. The modified
pmaddent invocations appear as follows:

pmaddent(pcp, “FASUPFEC™, (char *)&MP.UM.FASUPFEC, NULL, P_SCL, C_INT, 0, 0,
NULL, 0);

pmaddent(pcp, "FASUPFLAG", (char *)&MP.UM.FASUPFLAG, NULL, P_SCL, C_INT, E_FLAG, O,
Programmer’s Guide Page 28

SPSD/M Version 14.0



NULL, 0);

These simple additions complete the modification of Ampd.cpp as regards making the
VALUES of the new parameters available throughout the SPSM, once we have somehow
assigned those values. Later in this section we address some of the mechanisms by which the
user can make the assignments. However, we still need to provide clear labels for the
parameters so that the SPSM can use them to give meaningful documentation of the model
parameters as appropriate.

Once again, the design of the SPSM renders our job easy. There is a ready-made function.
stradd, to implement the labeling. Just after the pmaddent statements we insert three lines
to invoke this function, stradd --

stradd("'FASUPPC™, *"Family Allowance Supplement per Child");

stradd(""FASUPFEC'", "FA Supplement, First Child Payable');

stradd("'FASUPFLAG™,""FA Supplement, Activation Flag™);

The stradd (String Add) function, when executed, "attaches” the descriptor string to the
parameter so that the descriptor will automatically appear in all relevant SPSM
documentation and labeling. With the (stradd) function's arguments this simple, i.e. one
string identifying the name of a new parameter, with a second string providing the associated
description, we do not even need to resort to a template.

The final item within this step, partial compilation of the Ampd.cpp function, is optional,
but we recommend it as conducive to the orderly development of glass box applications.
This type of partial compilation enables the user to have the compiler check for syntax errors
while the nature of the modifications is still fresh in one's mind. It does not ensure that the
modified source code meshes with the rest of the SPSM. Note that one has to have modified
any relevant header files, here the Mpu.h header file, first in order for the Debug
compilation to work.

MODIFY THE FUNCTIONS THAT USE THE NEW PARAMETER(S)

To complete the programming changes involved in adding the parameter, we next need to
alter the Afamod.cpp function so that it makes use of the new symbolic parameters rather
than the "hardwired" values that appeared in the Quick Start example. We begin by adjusting
the label defined for the function; more specifically we modify the code defining the label so
that it reads --

/*global*/ char FAR Tfa[] = "Afamod.cpp Parameterized"

With this label supplied, the SPSM can use it whenever it has occasion to use the function's
description in its documentation.

The substantive changes to the Afamod.cpp function are simple to implement.

Where the Quick Start example used "120.0", we substitute the symbolic representation
"MP.UM.FASUPPC". This naming convention, exactly identical to the one used in the
"pmaddent™ function invocation in the Ampd.cpp change above, reflects FASUPPC's
location within the UM (User Model) substructure of the MP (Model Parameter) structure
that the SPSM uses to store all of the model parameters.

Programmer’s Guide Page 29
SPSD/M Version 14.0



Where the Quick Start example used 3 to represent the number of children required in the
family for the supplement to be paid, we substitute MP.UM.FASUPFEC. All relevant
formulae are adjusted accordingly.

We make the calculation of the supplementation, and its addition to the fa, tfa, and ffa
variables conditional on the value of the new flag variable, fasupflag.

Thus, the key Quick Start example source code that appeared as:

/* $120/yr bonus for 3rd and subsequent children <18 */
if (nch >= 3) {

tfa += (nch-2) * 120.0;

ffa += (nch-2) * 120.0;

}

becomes, in its glassex2 incarnation:

/* Conditionally add a Family Allowance bonus for the
"FASUPFECth"™ and subsequent children <18 in the unit */
ifT ((MP.UM_FASUPFLAG == 1) & (nch >= MP.UM.FASUPFEC)) {
tfa += (nch-MP_.UM_FASUPFEC+1) * MP.UM.FASUPPC;

ffa += (nhch-MP.UM._FASUPFEC+1) * MP.UM.FASUPPC;

}

The underlying logic remains unchanged, but now it is specified parametrically. In addition
we have modified the comment to reflect the generalization to symbolic parameters. In
writing the source code in this fashion, we have trusted that users of the model will supply
only reasonable values of the parameters. For example, we trust here that no user will
inadvertently supply a value of zero (0) for MP.UM.FASUPFEC and unintentionally create a
Family Allowance supplement for those families with zero children aged O through 17.
Later, we'll show how the user can use the SPSM's edit-check facilities to guarantee that the
parameters values are reasonable.

Once again we perform a Debug compilation to catch any syntactic errors before compiling
the new model.

VALIDATE AND MAKE BLACK-BOX PRODUCTION RUNS

As with the Quick Start example, we still need to test the new variant of the model to ensure
that it gives reasonable results. With SPSM runs being essentially free, and not terribly time
consuming, two particular validation runs immediately suggest themselves.

1. The first is a run with the FASUPPC parameter set to zero, using the same tables
generated in the Quick Start example. For this run we set the FASUPFEC parameter to
3, and the FASUPFLAG parameter to 1. We expect that there will turn out to be no
differences between the base and variant systems because the zero value for the
parameter renders the change nil.

2. We modify the first test to supply a value of 120.0 for the FASUPPC parameter, leaving
the FASUPFEC and FASUPFLAG parameters at 3 and 1. Again we request the Quick
Start tables as output, expecting to observe the same results we obtained from the original
Quick Start example with its hardwired 120.0 value.

Programmer’s Guide Page 30
SPSD/M Version 14.0



3. We modify the FASUPFEC to take on a value of 2, expecting that this will considerably
increase the cost of the hypothetical option, since there are relatively many two-child
families. The specific tables allow us to ascertain easily, at least for the gross amount of
the supplement, whether the right amounts of supplement have been calculated for each
of the family types by number of children.

4. Finally, we add a fourth test to turn the supplement off via the FASUPFLAG parameter.
In making this validation test, we leave the FASUPPC and FASUPFEC parameters at
120.0 and 2 so that we can be sure that any effect is caused by resetting the flag
parameter to zero. As with the first validation run described above, we expect that there
will be no differences between the base and option Family Allowances, the computation
of the supplement having been suppressed.

For carrying out the validation tests, it remains only to assign the desired values to the new
parameters. The design of the SPSM makes this easy. If we simply run the new model
without having bothered to specify a needed parameter value, the SPSM notes the omission,
allowing us to provide the value via the "on-the-fly" parameter editing facility. Or, to be
functionally equivalent, we could have placed an appropriate entry in the MPR (Model
Parameter) file, since such files hold model parameters generally, whether the parameters are
defined by the user or are built into the SPSM as distributed. Similarly, the new parameter
file could have been specified in an MP1 (Model Parameter Include) file. Authoritative
descriptions of these latter two methods may be found in User's Guide.

Upon making the tests described above, we are encouraged that our change, the addition of
the three new parameters, has been properly implemented because all of the sets of outputs
appear as anticipated. The results of the third test, where we shift the FASUPFEC (first
eligible child) parameter, are especially important. There we can check to see if appropriate
amounts of supplement benefits are added to families classed by number of children aged 0
to 17. Now, with the model changes validated, we are ready to make the relevant set of
production runs. For example, a client might ask us to use a FASUPPC parameter value of
60.0 to confirm our his expectation that the same number of families would be affected as
with a value of 120.0, and that the costs, in aggregate and as an average per affected family,
would be only half as great as for that 120.0 value. Similarly, we might substitute a much
larger value, say 5000.0, to confirm our expectation that, with such a large transfer, the
proportion of the supplement recovered through the tax system would rise somewhat as some
families move into higher tax brackets.

SUMMARY/CONCLUSION

It is useful to conclude by highlighting, but without any redevelopment, the key points
relevant for adding typical scalar parameters to a model. In noting these points, it is taken as
given that the analyst is working with COPIES of the relevant files, and is performing all of
the modifications in a task subdirectory dedicated to the analysis at hand. We also assume
that the user has updated the project to include all of the relevant source code files. In terms
of technique, we assume that the user will most often be grabbing a chunk of similar existing
code as a template, and then modifying it as required.

Programmer’s Guide Page 31
SPSD/M Version 14.0



1. Modify the Mpu.h header file, adding one statement for each new parameter. The
statement indicates the name of the parameter and its type, with NUMBER used for float
values.

2. Modify Ampd.cpp source code file, adding two statements for each new parameter.

e Add one "pmaddent” invocation for each parameter so that the SPSM can make its
value available to all functions called by Adrv.cpp. Normal practice is to copy the
invocation from an existing invocation and then modify it in two places -- the name
of the parameter and its address.

e Add one stradd invocation for each parameter so that the SPSM attaches the
parameter's label to that new parameter.

3. Modify the relevant substantive function(s) to make use of the new parameter(s),
changing the labeling as well as the internal logic of the function.

4. Debug and Compile the new model. Make the necessary "production runs" of the model
and then interpret the results.

Glass Box Development: Adding Less Typical Parameters

This chapter describes in greater detail the arguments for the pmaddent function and that
function's use when the user adds scalar, vector and matrix parameters to glass box
applications. To do this, it builds on the foundation established in the previous
section(Adding typical scalar parameters), developing the new considerations for less typical
scalar parameters, for vectors and lookup schedules, and for matrices. Finally, the last
section summarizes the key points for regarding the addition, to a model, of these less
common forms of parameters.

The first section of this chapter presents the set of arguments for the key pmaddent function,
describing the key features of each of them. The following section then presents a list of the
types of scalar parameters the user might wish to add. For each type, it indicates briefly the
purpose of that specific type, describes the key pmaddent arguments for the type, and
identifies an appropriate pmaddent template to use when creating a parameter of that type.
Also included are sections that takes up the special considerations involved in adding vectors
of parameters, following with schedule "lookup" parameters, and matrices of parameters.

PMADDENT: THE FUNCTION AND ITS ARGUMENTS

Recall from section on description of adding typical parameters that the most complicated
aspect of making a new parameter available to a model lies with the changes to Ampd . cpp,
the changes to Mpu.h being very straightforward definitions of the parameters' types.
Within the Ampd.cpp changes, the only significant challenge, and not by any means a
particularly onerous one, comes from the invocation of the pmaddent function. We noted
that the glass box user can usually sidestep the complexities of that function simply by

Programmer’s Guide Page 32
SPSD/M Version 14.0



choosing an "appropriate” template invocation, one copied from an "appropriately similar"
parameter already defined. In this section we explain more fully the sense of the various
pmaddent arguments, so that the glass box user will be able to use the pmaddent function
confidently, even when there is no obvious template to be copied and modified.

Our starting point for the description of the pmaddent arguments is the explanatory comment
that appears in Ampd . cpp itself (at about line 150 of the GLASS version). We'll take up
each of the ten arguments in sequence. We emphasize, however, that the user should have
relatively little occassion to require this information. Most of the time, the parameter to be
added will be well understood, and an appropriately similar template parameter readily
identifiable. In all those cases the user should simply modify the relevant templates and get
on with the modeling, leaving the intricacies of pmaddent to those doing non-standard tasks.

Ampd . c s summary of the pmaddent arguments is as follows:

/**

* pmaddent(

* pcp, <= parameter chain being extended (leave as is)

* TXXXXX, <= name by which the parameter will be known

* (char *)&MP_UM.XXXXX, <= address of the parameter

* Format, <= printing information for the parameter

* Agg_Type, <= Aggregate type (scalar, vector, etc.)

* C_Type, <= C-type (integer, number, string)

* Edit, <= Edits to be performed

* Row_max, <= Maximum number of rows, or option edit limit.
* Rows_addr, <= Address of int holding current number of rows
* Limit, <= Number of columns);

**/

The first argument (pcp) is particularly straightforward; the user ALWAYS enters the
variable pcp. The argument identifies the specific parameter chain that the user is extending.
Although the SPSM employs other parameter chains in its operations, the user may add
parameters ONLY to the pcp chain.

The second argument, characterized by the "XXXXX" placeholder in the comment, is the
user’s name for the parameter. The name here will be the same one that the user employed in
the Mpu . h definition. Users should be careful to choose reasonable mnemonics for these
names, e.g. the FASUPFLAG name we used previously. The SPSM convention is that these
names should start with an upper-case letter and should contain only upper-case letters and
digits.

The third argument, characterized by the (char *)&MP.UM.XXXXX placeholder, is the
address for the parameter. The initial (C language "cast") portion of the argument, ‘(char *)'
is invariant. Similarly, the 'MP.UM' portion is invariant because the user's parameters are
always added to the "Model Parameter, User Model" structure. The 'XXXXX' portion
represents the name of the user's parameter; it is set to the string used as the second
argument, but without the delimiting quotes. Finally, reflecting C's treatment of variable's
addresses, the ampersand (&) is present if the parameter is a scalar, and typically absent if it
is not (i.e. absent if the parameter is a vector, lookup parameter or a matrix). The common
C-language device of specifically referring to the first element of an array is taken up later as
a special topic. For the special case of a 'DUMMY" parameter, described below, this third

Programmer’s Guide Page 33
SPSD/M Version 14.0



argument takes on the value of 'NULL".

The fourth argument, characterized in the description above as 'Format’, is a string. It
contains information about how the SPSM should display the value of the parameter when
documenting it. Typically, the user will use the predefined format 'NULL', indicating that
the SPSM is to print the parameter as it sees fit. Another predefined format, "F_FRACT",
contains the string "8.5" and is particularly suited for printing out the value of a fraction. The
user can also enter an explicit string for the argument; e.g. using "8.0" specifies that the value
should occupy 8 characters, and that it should not include a fractional part. An argument of
"7.2" would specify a string occupying 7 characters, with two digits beyond the decimal
point. When appropriate, e.g. for the lookup style parameters, the argument can include
multiple format indicators, e.g. "8.0 8.2 8.2". The predefined format F_LKTUR, used for
P_LKPXY type parameters provides a concrete example of this usage.

The fifth argument, characterized in the description above by 'Agg_Type', indicates the type
of the parameter. This argument reflects a forced choice among the six integer values 0O
through 5. Each of the six values has a mnemonic counterpart that the user can employ, for
clarity, in place of the numeric value itself. The six values, their mnemonic counterparts, and
their interpretations are as follows:

The value 0, represented mnemonically by P_SCL, is the most common value. It is used for
a parameter that is a scalar value (integer, float, fraction, etc.).

The value 1, represented mnemonically by P_VCT, is used when the parameter is a vector.
Other key information about the vector, e.g. the number of elements it contains, is given by
other pmaddent arguments.

The values 2 and 3, represented by the mnemonics P_LKPXY and P_LKPSL, are used
within the SPSM for two special kinds of schedules in which lookups are performed, one
with an X-Y format and the other with a range-slope format. In the event that the user
wishes to create parameters of these types, the GISST and FTX parameters provide
operational examples. These two parameter types define schedules that correspond to
functions LKUP1 and LKUP2 respectively; the LKUP1 and LKUP2 functions themselves
are documented in the Algorithm Guide. The use of schedules in the SPSM is documented
more fully in this chapter. The value 4, represented by the mnemonic P_TBL, is used when
the parameter is a two dimensional matrix (table). Other key information about the matrix,
e.g. the numbers of rows and columns, is given by other pmaddent arguments. The
commodity tax matrix CTTXRM provides a good example.

The value 5, represented by the mnemonic P_DUMMY, will not generally be used by glass
box users. This parameter type corresponds to a dummy entry used to hold the name of a
header string for documentation purposes.

The sixth argument, characterized in the description above by 'C_Type', indicates the type of
the parameter. There are three possible entries for this argument. The value C_INT is
appropriate when the parameter value is inherently an integer, i.e. consists of a number with
no fractional part, and has a value within the C language's bounds for integer values. The

Programmer’s Guide Page 34
SPSD/M Version 14.0



user will employ a value of C_INT for this argument when the Mpu.h entry for the
parameter used an 'int' declaration. Parameters that are "flags™ or "options” will naturally be
integers.

The value C_NUM is appropriate when the parameter value may have a fractional part, or
when it is too large to be stored as an integer. The user will employ a value of C_NUM for
this argument when the Mpu . h entry for the parameter used a'NUMBER' declaration.

The value C_STR is used when the parameter value is a dummy entry used for a header
string. Glass box users will not generally have occasion to use C_STR.

The seventh argument, characterized in the description above by 'Edit, indicates the edit
checks to be imposed on the value of the parameter. The activation of these edit checks will
force the value of the parameter to obey various constraints that may be appropriate. In
addition, they may constrain a user's ability to modify the parameters' values at execution
time via the SPSM's parameter editing facilities. The pmaddent argument governing such
edit checks is an integer value. Typically, the user will choose a value by entering an
element from a set of predefined mnemonic values (described below).

The codes and their interpretations are as follows:
E_NONE (value 0) indicates that no edit checks are to be performed on this parameter.

E_FIXL (value 1) applies only when the parameter is a vector, lookup table or array (and
thus has a known maximum number of rows). This edit code prevents the user from
attempting to change the actual number of rows from the maximum value. The mnemonic
here indicates that the row limit is regarded as fixed.

E FLAG (value 2) indicates that the parameter is a flag. Under SPSM conventions, this
means that the parameter is treated as a binary variable (defined as an integer) that must take
on either the value 0 (zero) or the value 1 (one).

E_FRCT (value 4) indicates that the parameter is a fractional value that must fall in the
domain 0.0 and 1.0, inclusive.

E_NOCH (value 8) indicates that the user is not allowed to make any changes to the value of
the parameter via the SPSM's built-in parameter editor. This edit check can apply to any of
the types of parameters, C_INT, C_NUM or C_STR.

E_OPT (value 16) indicates that the parameter is of a special "option" type, corresponding to
a forced (integer) choice of values from 1 to the maximum option number permitted. The
maximum number itself is provided, for option parameters, by the eighth pmaddent
argument.

Should multiple codes be relevant, the user can simply add the relevant component values
together. E.g. a value of 12 indicates a parameter that must be a fraction, and that the user is
not permitted to edit dynamically at run time.

Programmer’s Guide Page 35
SPSD/M Version 14.0



The eighth argument, characterized in the description above by 'Row_max', indicates the
maximum number of rows for certain types of parameters (P_VEC, P_LKPXY, P_LKPSL,
or P_TBL). (Note however, the SPSM's flexibility, in that the actual number of rows used in
a specific application may be less than this maximum.) For the other parameter types (P_SCL
and P_DUMMY) this argument should take on a value of O (zero), except for OPTION
parameters, where it indicates the number of legitimate option values. (A value of N for an
OPTION parameter indicates that the legitimate values range from 1 to N inclusive.) Since
scalar parameters (P_SCL) are the norm, this argument will most often take on the value 0.

The ninth argument, characterized in the description above by 'Rows_addr', contains the
address of the integer variable corresponding to the current (actual) number of rows for
certain kinds of parameters, P_VEC, P_LKPXY, P_LKPSL, and P_TBL. When the number
of rows is irrelevant, e.g. for a scalar or DUMMY parameter, the user enters a value of
'NULL' for this argument; thus, this argument will typically take on the 'NULL' value.

The tenth and last pmaddent argument, characterized in the description above by 'Limit’,
indicates, for parameters of type P_TBL, the number of columns in the table. In contrast to
the flexibility provided for rows, where the actual number of rows may be smaller than the
maximum number, the SPSM requires that the actual number of columns be fixed
beforehand. For all other parameter types, this argument takes on the value of 0 (zero).

CHARACTERIZING SCALAR PARAMETERS

With the description of pmaddent's arguments complete, we turn first to the kinds of scalar
parameters that the user may wish to add. The discussion here treats them in roughly
descending order as regards expected frequency of use. For each of the types the description
indicates (1) the general nature of the parameter, (2) the key pmaddent arguments, and (3) an
appropriate pmaddent template. Even though this chapter deals primarily with more
specialized types of parameters, we have, for completeness, included in this scalar
parameters section instances of the more common parameter types already described in
previous section of this Programmer's Guide.

REAL/float/NUMBER Parameters

The analyst uses this type of parameter when needing to supply a real value, e.g. some
program guarantee expressed in dollars and cents. The Mpu.h definition will use the
NUMBER specification. In the pmaddent call, the key argument is the C_NUM entry for
C_Type. An appropriate template is --

pmaddent(pcp, "STDFA", (char *)&MP.STDFA, NULL, P_SCL, C_NUM, 0, 0, NULL, 0);
INTEGER/int Parameters

The analyst uses this type of parameter when needing to supply a value that is inherently an
integer, e.g. the typical number of weeks in the waiting period for unemployment insurance.
The Mpu . h definition will use the int specification. In the pmaddent call, the key argument
is the C_INT entry for C_Type. An appropriate template is --

pmaddent(pcp, "UIWAITWKS", (char *)&MP.UIWAITWKS, NULL,P_SCL,C_INT, 0, 0, NULL,0);
FLAG Parameters

Programmer’s Guide Page 36
SPSD/M Version 14.0



The analyst uses this type of parameter when wishing to supply a "switch" value, e.g. an
indicator that will specify whether certain other calculations are to be performed or not. The
Mpu . h definition will use the int specification for such a parameter. In the pmaddent call,
the key arguments are the C_INT entry for C_Type and the E_FLAG entry for Edit. An
appropriate template is --

pmaddent(pcp, "FAFLAG", (char *)&MP.FAFLAG, NULL,P_SCL, C_INT, E_FLAG, 0, NULL, 0);
FRACTION Parameters

The analyst uses this type of parameter when wishing to supply a value that is inherently a
fraction, and thus more constrained in value than a float. Tax rates and contribution rates are
good examples of this type of parameter. The Mpu.h definition will use the NUMBER
specification for such a parameter. In the pmaddent call, the key arguments are the C_NUM
entry for C_Type and the F_FRACT entry for Format. In the template call we suggest for
this type of parameter, the user has chosen NOT to require an Edit check that will constrain
the value between zero and unity; the template itself is --

pmaddent(pcp, "UIBASRATE", (char *)&MP.UIBASRATE, F_FRACT,P_SCL, C_NUM, 0, 0, NULL, 0);
OPTION Parameters

The analyst uses this type of parameter when the parameter reflects a forced choice among a
small fixed number of alternatives; a numerical value is used to indicate a nominal or
qualitative selection. As an example of such a qualitative distinction, one might consider a
parameter that indicates whether CPP/QPP deductions are to be treated as (1) a deduction in
computing taxable income, or (2) a non-refundable credit in the calculation of taxes, or (3) a
tax credit refundable at the federal income tax level, but not at the provincial income tax
level. The Mpu.h definition for a FLAG parameter will use an int specification. In the
pmaddent call, the key arguments are the C_INT entry for C_TYPE, the E_OPT entry for
Edit, and the numeric entry giving the number of legitimate categories for the Row-max
argument. An appropriate template is --

pmaddent(pcp, "MDCROPT", (char *)&MP.MDCROPT, NULL, P_SCL, C_INT, E_OPT, 2, NULL, 0);
EDIT-FRACTION Parameters

The analyst uses this type of parameter when it is desirable to constrain any user-supplied
value to fall in the interval from zero to unity. For example, the parameter might represent a
taxback rate that would be considered unreasonable if it corresponded to a rate of less than
zero percent or greater than one hundred percent. The Mpu.h definition for an editable
fraction parameter will use a NUMBER specification. In the pmaddent call, the key
arguments are the C_NUM entry for C_Type and the E_FRCT entry for Edit. The user
might wish also to specify a Format specification of F_FRACT. An appropriate template is -

pmaddent(pcp, "CHATRL", (char *)&MP.CHATR1,  NULL, P_SCL, C_NUM, E_FRCT, 0, NULL, 0);
DUMMY Parameters

The user will not typically specify DUMMY parameters, which are intended for conveying
labeling and sectioning information when parameter configurations are being documented.
An illustrative template is -

pmaddent(pcp, "2.3.1", NULL, NULL, P_DUMMY, C_STR,0, 0, NULL, 0);

Programmer’s Guide Page 37
SPSD/M Version 14.0



For all types of scalar parameters, the user has the choice among mechanisms for supplying
values to them:

1. specification via inclusion of the parameter in a parameter file (MPR, CPR and APR
files),

2. specification via presence in a supplementary inclusion parameter file (MPI, CPI and
API), and

3. specification via the SPSM's dynamic parameter editing facility. (Note, however that the
ability to use the third option may be constrained by the parameter's pmaddent entry for
the Edit argument.) This approach is automatic if the user chooses not to specify a value;
the Edit argument permitting, the SPSM will prompt for a value.

VECTORS OF USER-DEFINED PARAMETERS

The preceding portions of this chapter have focused primarily on scalar parameters, in part
because they are the most common types, and in part because they are easiest to describe.
However, the SPSM also offers the user the capacity to create vectors of parameters. Such
vectors will be most relevant when the user wants to create a set of related parameters with
the members of the set occurring in a natural "indexable" order along a single dimension.

As an example, consider the case of an analyst modeling some proposed housing supplement
program. For each family size up to ten this hypothetical program has an income limit
beyond which a family becomes categorically ineligible to receive benefits. Unfortunately,
these limits, though increasing with family size, are not related to that family size in any
smooth or readily calculated manner. Instead, the user wants to have ten different
parameters, corresponding to families of size one to ten-plus, to represent the benefit cutoff
levels. It makes much more sense to have a vector of parameters, indexed on family size,
than to develop code that treats each of the ten possibilities as a separate, independently
developed case.

In this section then, we characterize the key points the user must understand to define vectors
of user parameters for SPSM models. Our earlier comments about parameter addition in
general continue to hold (order of changes to files, use of mnemonic values, validation, etc.),
but we focus on those aspects specific to the effective use of vectors of user-defined
parameters.

Additions to Mpu.-h, Cpu.hor Apu.h

Just as the user declares scalar parameters in Mpu.h (or Cpu.h or Apu.h), s/he must also
declare any user-defined parameter vectors in these files. The scalar and vector declarations
look very similar, except that the vector declaration indicates, via an expression in square
brackets, the length of the vector. The SPSM treats parameter vectors as column vectors;
thus the length of the vector is its number of rows.

For our housing program example, suppose that the user has declared a (manifest) constant
HHPYCOMR (Hypothetical Housing Program, Income Cutoff Maximum Rows). The user
has assigned it the value 10 because there will be a distinct cutoff for each family size up to

Programmer’s Guide Page 38
SPSD/M Version 14.0



ten-plus. The definition would be accomplished via a statement of the form --
#define HHPYCOMR 10 /* maximum # of number of rows in the HHPYCO vector */

See the Mp - h file in the SPSM\DEFS subdirectory (starting at about line 40) for illustrations
using parameter vectors that are part of the black box SPSM, rather than being user-defined.

The vector itself is to be named HHPYCO, with the value of the i'th entry corresponding to
the cutoff for a family of size i+1. (Recall that the C language starts all vectors with the
zero'th entry.) The Mpu . h entry for the new vector will then look something like --

NUMBER HHPYCO[HHPYCOMR]; /* Hypothetical Housing Program Income Cutoffs */

Although it is possible to "hardwire™ the length directly into the declaration, e.g. using
something like HHPYCOJ10], we strongly discourage it. We recommend instead the
manifest constant approach described above. The reason behind this recommendation stems
from the need, in the corresponding Ampd.c®s pmaddent invocation, of an entry for the
maximum number of rows. Using a given manifest constant in both locations precludes the
possibility of a later revision leading to one value being used in Mpu . h while another is used
in Ampd.cpp. If the user should create a discrepancy between the Mpu.h (or Apu.h or
Cpu.-h) and Ampd.cpp values, the errors that result could be infuriatingly difficult to
track down.

Recall that the actual number of rows present in the (column) vector for a given SPSM
execution may be different from (less than) the maximum number possible for that
parameter. Thus, the user must also declare, in the same header file, a variable in which the
SPSM wiill store the actual number of rows being used (a value that may vary from run to run
of a given executable version of a glass box model). The user provides a variable for the
SPSM to store the actual number of rows via an additional declaration in the header file.
Following the SPSM convention that these length variables are named as the parameter name
with a suffix of "rows", the Mpu . h file should also contain a declaration of the form --

int HPPYCOrows; /= number of rows in HPPYCO */
The mp.h file in the SPSM\DEFS subdirectory provides many examples in its section on

array limits (about line 580). Later on, Ampd.cpp s pmaddent call for HPPYCO will refer
to the address of the HPPY COrows variable.

Additions to Ampd.cpp

So that the SPSM can make the values in the new parameter vector available to the user's
substantive code, the user must set up the appropriate linkages via an invocation of
pmaddent, just as with scalar parameters. The invocation would look like one of the
following:

pmaddent(pcp, "HHPYCO™, (char *)MP_UM.HHPYCO, NULL, P_VCT, C_NUM, E_NONE,
HHPYCOMR, &MP_UM_HHPYCOrows, 0);

or

pmaddent(pcp, “HHPYCO™, (char *)&MP.UM.HHPYCO[O], NULL, P_VCT, C_NUM, E_NONE,
HHPYCOMR, &MP_UM.HHPYCOrows, 0);

In the first illustrative invocation the third argument uses no ampersand because the reference

Programmer’s Guide Page 39
SPSD/M Version 14.0



is to the new parameter vector; C treats such a reference as the address of the first element.
In the second illustrative invocation the user has elected to refer more explicitly to the
address of the first element by including the ampersand and the [0] index. The MpdX.cpp
files in the SPSM\MODEL subdirectory contain examples of both types of reference.

Three other pmaddent arguments deserve special comment for our description of the
highlights for user-defined parameter vectors. The Agg_Type argument (#5) necessarily
takes on the value P_VVCT. The Row-max argument (#8) is the manifest constant created in
Mpu.h to specify the maximum number of rows; in our housing program example this
corresponds to the HHPYCOMR entry. Finally, the Rows-addr entry (#9) corresponds to the
name of the variable declared to store the actual number of rows, preceded by an ampersand;
in our housing program example this corresponds to the &MP.UM.HHPY COrows entry.

Note that other capacities activated by pmaddent's arguments remain available to the user.
Thus, C_Type is used to indicate whether the variable is a float value or an integer. The user
can use the Format argument to specify, if desired, a format for each of the individual values
in the vector. And the user employs the Edit argument to impose any relevant edit checks.

Just as with scalar parameters, the user will also wish to modify the Ampd. cpp file to add
an invocation of stradd for each new user-defined parameter vector. This addition will
ensure that when the SPSM documents the new user-defined parameter, the user's textual
description of the parameter will form part of that documentation.

User-Defined Parameter Vector References in the Source Code

Once the user has completed the header file and Ampd . cpp changes necessary to make the
parameter vector available to the substantive functions, it remains to refer to the relevant
parameter values in those substantive functions. To continue with the hypothetical housing
program example, suppose that the user has available an integer variable, HHPFS,
(Hypothetical Housing Program Family Size) that gives the family size as defined by the
anticipated regulations governing the program. Suppose too, that the user is absolutely
confident that HHPFS's value will lie in the domain 1 through 9 inclusive. To refer to the
relevant income cutoff for benefits from the hypothetical program, the user, recognizing that
the C language always numbers a vector's elements starting with 0, would employ an
expression of the following form:

MP . UM.HHPYCO[HHPFS-1]
Specification of Parameter Vector Values

In order for the user's new code to accomplish anything, the values of the vector's elements
must be made available to the SPSM so that it, in turn, can make them available to the user's
code. Typically, the user will specify these values in an ".MPR" or ".MPI" file (or their
"_CPR",".CPI","_APR" or "_AP1" counterparts). The UIREPUER vector, specifying key
regional unemployment as they apply to Ul entry requirements for repeaters, provides a good
example.

UIREPUER 5 # Regional unemployment rate
6.0
7.0
8.0
Programmer’s Guide Page 40

SPSD/M Version 14.0



9.0
11.5

The format is clear. The first line contains the name of the parameter, followed by the
number of ACTUAL elements to be used; an optional documentary comment should be
added to make the nature of the parameter obvious to any reader of the file. Successive lines
specify, one value per line, the values for the vector. It is important that the number of
elements entry not exceed the maximum rows value specified in the pmaddent entry, and that
the number of additional lines in the parameter file be equal to the number on the parameters
first line; the SPSM will check to ensure that these requirements are met.

To continue with our hypothetical housing program example, the user might enter, in the
"_MPR" or " .MP1" file, something like the following:

HHPYCO 10 # Income cutoffs for housing program, by family size
5000.
6120.
7250.
8400.
9500.

10600.
11600.
12500.
13300.
13900.

Summary

[eNeoNoololooNoNoNe]

The key factors in adding vectors of user parameters to an SPSM glass box model can be
summarized in the following checklist:

1. Make appropriate changes in the header file (e.g. Mpu - h).

Use a manifest constant for the maximum length of the vector, e.g.
#define HHPYCOMR 10 /* maximum # of rows for HHPYCO */
Declare the vector itself,

NUMBER HHPYCO[HHPYCOMRY]; /* comment */

Declare a variable to hold the actual length of the vector, e.g.

int HPPYCOrows; /* actual number of rows in HPPYCO */

2. Make appropriate changes in the Ampd.cpp file; remember the benefits of partial
compilation.

e Insert an appropriate pmaddent invocation, usually by modifying a copy of an
existing one.

e Enter an invocation of stradd so that the SPSM can label the new parameters
when appropriate.

3. Write the C-language source code that uses the parameters. Remember C's convention
that vectors begin with the zero elements. Debugging compilation is often useful here
too.

4. Supply values for the elements of the vector via a multi-line entry in an appropriate
parameter file.

Programmer’s Guide Page 41
SPSD/M Version 14.0



5. Don't forget the need for validation and testing to make sure that the new code is doing
what is intended of it.

USER-DEFINED SCHEDULES FOR LOOKUPS

Parameters in the form of schedules are useful primarily when one needs to perform some
sort of a lookup, i.e. given a x-value, find the corresponding y-value. This section employs
as examples two schedules already present in the SPSM, and one hypothetical new user-
defined schedule to be added as a parameter. Together, the three examples cover the major
forms of schedule parameters that a glass box user might normally need.

The first of the existing schedule examples involves federal taxes -- given taxable income,
calculate the corresponding tax from the tax table/schedule.

The second existing schedule example addresses program take-up rates -- assuming that the
decision of whether to apply for benefits in a program is believed to depend on the benefit
that could be claimed (the higher the benefit that would be received, the more likely a unit is
to file to claim that benefit), given a unit's potential benefit, look up its probability of
applying for (taking up) those benefits.

The third, new parameter, example involves a totally hypothetical earnings supplement based
very loosely on the U.S. Earned Income Tax Credit, but applied to individual earnings. In it,
a hypothetical earnings supplementation program subsidizes initial earnings, up to $10,000
annually, at a rate of 15%, does not further subsidize any earnings from $10,000 to $15,000,
and then, beyond $15,000, reduces the subsidy previously given at the rate of 10% of
earnings above $15,000, so that there is no subsidy payable to individuals earning $30,000 or
more. The new parameter will describe the subsidy payable as a function of the individual's
earnings. The relevant coordinate pairs are thus ( 0, 0 ), ( 10000, 1500 ), ( 15000, 1500 ), and
(130000, 0).

In terms of their specification as SPSM parameters, schedules are very similar to vectors.
The main exception is that schedules have a fixed number of columns, three, rather than the
single column for a vector. (In use, the schedules employ the SPSM's Ikupl and Ikup2
functions.) Thus, with the relatively minor exceptions highlighted in this section, one adds a
schedule to a glass box application very much as one would add a vector of parameters.
Consequently, the vector-oriented prescriptions about mnemonic names, stradd labeling,
partial compilation, validation etc. are not repeated here.

Schedule Types and Lookup Functions

An appreciation of two separate dichotomies is absolutely critical for the effective use of
schedules in the SPSM.

The first dichotomy involves the type of schedule. The user makes the choice as to type via
the fifth argument of the pmaddent call.

If the argument is P_LKPXY, then lookups in the schedule are done in X-Y format, using the
first (x-values) column of the schedule and the second (y-values) column; the slope values of
the third column (the slopes across the successive segments of the schedule) are present, but

Programmer’s Guide Page 42
SPSD/M Version 14.0



ignored (that information being redundant because it could be calculated from the X-Y pairs).
If the fifth pmaddent argument is P_LKPSL, then lookups in the schedule are done in slope
format, using the information in the first (x-values) column and the third (slopes) column,
plus the first value in the second (y-values) column. The remaining values in the second
column are ignored in the sense that they are redundant because they could be calculated
using the rest of the information in the schedule.

The second dichotomy reflects whether or not the user wishes to apply interpolation in the
calculation when performing the associated lookup with the schedule. When interpolation is
desired (when the desired value might lie BETWEEN entries in the y-values column), the
user invokes the lkupl function from the SPSM algorithm library. When no interpolation is
desired, the user invokes the Ikup2 sister function. The Algorithm Guide provides the
authoritative description of these two algorithms.

Appearance in SPSM Header Files

Exactly as with vectors of parameters, user-defined parameters that are schedules require
certain entries in an appropriate header file (Mpu.h, Cpu.h, or Apu.h).

One of these is (usually) a manifest constant to define the maximum length of the schedule.
The federal tax schedule (FTX) uses the maximum length FTXMAX. The GIS single
pensioner take-up schedule (GISST) uses GISSTMAX. For our earnings supplement
schedule, ESS, we'll use ESSMAX. The corresponding definitions (in Mp.h for FTXMAX
and GISSTMAX, and in Mpu . h for ESSMAX) are as follows:

#define FTXMAX 15 /* maximum of number of rows in FTX table */
#define GISSTMAX 8 /* maximum of number of elements in GISST table */
and

#define ESSMAX 5 /* maximum number of rows in ESS schedule */

The second of these is a variable in which the SPSM stores the actual number of rows used
by the schedule in a given run; it must, of course, be less than or equal to the maximum
number. Following SPSM conventions, the Mp . h definitions for variables to contain the
actual numbers of elements are as follows:

int GISSTrows; /* number of rows in GISST table */

int FTXrows; /* number of rows in FTX */

In mpu . h, we'll follow this convention and define a variable ESSrows for the actual number
of rows in ESS --

int ESSrows; /* number of rows in ESS schedule */

Mp.h (for the FTX and GISST schedules) and Mpu . h (for the ESS schedule) also need to
contain the definitions for the schedules proper. Typically, these are carried out using the
manifest constants defined earlier. The SPSM provides a constant, LKP_COLS, that
indicates clearly its role as defining the number of columns for lookup schedules. The
definitions themselves are straightforward:

NUMBER FTX[FTXMAX][LKP_COLS]; /* Federal tax table [taxable income,basic federal
ESQ%ER/GISST[GISSTMAX][LKP_COLS]; /* GIS take-up rate: single pensioner by benefit
level [benefit,rate] */

Programmer’s Guide Page 43
SPSD/M Version 14.0



NUMBER ESS[ESSMAX][LKP_COLS]; /* Earnings supplement schedule [earnings, benefit
level] */

Appearance in pmaddent Calls in Ampd.c

The user defining schedule parameters will need to modify the Ampd.cpp file, adding
invocations of pmaddent, to enable the SPSM to make the parameter available to the
substantive source code. We begin by looking at the relevant pmaddent entries for the
SPSM's existing FTX and GISST schedules.

The FTX example, drawn from the Mpd2 . cpp file, appears as follows:

pmaddent(pcp, "FTX", (char *)&VP_FTX[0][0], NULL, P_LKPSL, C_NuMm, O,

FTXMAX, &MP.FTXrows, 0);

Note that the third argument indicates clearly that the schedule has both rows and columns,
and that the fifth argument denotes this as a slope-oriented schedule; the eighth and ninth
arguments make use of the manifest constant and actual-number-of-rows entries defined in
Mp.h.

The GISST example, drawn from the Mpd1.cpp file, appears as follows:

pmaddent(pcp, "GISST",  (char *)&MP.GISST[0][0].F_LKTUR, P_LKPXY, C_NUM, E_FRCT,
GISSTMAX, &MP.GISSTrows, 0);

Here the fifth argument indicates that this is an X-Y type schedule. Again, the eighth and
ninth arguments make use of the elements defined for the schedule in the mp.h file.

For the hypothetical earnings supplementation program, we would add to the Ampd . cpp file
an invocation of pmaddent (probably copied from an existing call and then modified as
appropriate) that appears as follows:

pmaddent(pcp, "ESS", (char *)&MP.UM.ESS[O][0], NULL, P_LKPXY, C_NUM, O, ESSMAX,
&MP_UM_ESSrows, 0);

The strong parallels with the existing GISST schedule should be apparent. Note, however,
the key differences that mark a user-defined parameter schedule: the UM qualifier in the third
and ninth arguments, and the user-defined (maximum rows) constant and (actual rows)
variable address for the eighth and ninth pmaddent arguments.

Employing Schedule References in User Code

Glass box applications that use schedules will reference them almost exclusively via the
SPSM's two lookup functions, Ikupl and lkup2. This makes source code expressions using
the parameters very straightforward. Illustrations using our three examples indicate the
nature of these references.

The GLASS subdirectory's ATXCALC.CPP function serves to calculate federal income
taxes. This computation involves looking-up, for an individual, that individual's tax as a
function of his/her taxable income. The user chooses whether or not to apply interpolation
(via the choice between lkupl and Ikup2), supplies the schedule, the actual number of rows,
and the relevant x-value, and the lookup function does all the rest automatically. Here, the

Programmer’s Guide Page 44
SPSD/M Version 14.0



user does want interpolation, applied in a schedule. The relevant source code appears as
follows:

if (isnzero(in->im.imitax)) {

/* calculate federal tax */

in—>im.imfedtax = (NUMBER) Ikupl(MP.FTX, MP_FTXrows, in->im.imitax);

DEBUG2("'%s fedtax =%.2Ff\n", in->im.imfedtax);

}

The GLASS subdirectory's AGIS.CPP function calculates GIS benefits. This computation
involves looking-up, as a function of the potential benefit that would be payable, the
probability that the unit will take-up (i.e. apply for) the benefit. Here the user chooses not to
invoke interpolation -- the desired takeup rate is the one in the last row in which the potential
benefit is at least as great as the row's x-value. The user provides the schedule, the actual
number of rows, and the potential GIS benefit, and the lookup function returns the takeup
probability. (Once again, the schedule itself appears in the next sub-section, ) The expression
to ascertain the takeup probability appears as

Ikup2(MP.GISST, MP.GISSTrows, (double) gis))

For the earnings supplement illustration, assume that the user has assigned the appropriate
definition of earnings for an individual to a (double) variable named iearn. Then the
expression for looking up the individual's corresponding earnings supplement would be --

Ikupl(MP.UM.ESS, MP.UM.ESSrows, iearn)
Note the necessity for the UM qualifier indicating that ESS is a user-defined schedule.

Appearance in Parameter Files

As with any other parameter, the user is responsible for defining schedule parameters in the
appropriate parameter file (.MPR/I1, _.CPR/I1, or _APR/I). In parallel with the
specification of a parameter vector, the first line provides the parameter name and number of
rows, along with a comment identifying the parameter. The remaining rows for the schedule
are the x-value, y-value, slope triplets. Probably the only non-obvious characteristic is that
the redundant items (those that will not be used for the computations) are enclosed in
parentheses.

The slope-oriented FTX schedule describes tax payable (before tax reform) as a function of
taxable income --

FTX 10 # Federal tax
table
0 0 0.060
1238 (74 .160

0
2476  (272)  0.170
4952  (693)  0.180
7428  (1139) 0.190
12380 (2080) 0.200
17332 (3070) 0.230
22284 (4209) 0.250
34664 (7304) 0.300

0

59424  (14732) .340

Programmer’s Guide Page 45
SPSD/M Version 14.0



The X-Y type GISST schedule describes takeup probabilities as a function of amount of GIS
benefit available. The use of the Ikup2 function with this schedule means that these takeup
rates are modeled as jumping sharply at the key benefit levels.

GISST 5 # GIS take-up rate: single pensioner by benefit
level
0 0.365 (0.0009)
169 0.510 (0.0006)
419 0.660 (0.0003)
919 0.820 (0.0001)
3169 1.000 (0.0001)

The X-Y type ESS schedule describes the earnings supplement benefit as a function of an
individual's earnings; it is used with the Ikupl function because interpolation is desired.

ESS 4 # Hypothetical earnings supplement schedule
0 0 (0.15)
10000 1500 (0.00)
15000 1500 (-0.10)
30000 0 (0.00)

Key Points for Adding Schedule Parameters
Most of the key points for schedule parameters are identical to those for vector parameters.

1. Modify the relevant header file to include a manifest constant for the maximum number
of rows, an integer variable to store the actual number of rows, and the definition for the
schedule itself.

2. Modify the Ampd.cpp file to include appropriate pmaddent and stradd invocations,
generally ones copied from elsewhere and then modified.

3. Provide the schedule via an appropriate parameter file or parameter inclusion file, and
don't forget to validate the addition.

Two other key points are specific to schedule parameters.

1. Be absolutely sure, in the parameter file, that the x-value column of the schedule contains
values that are in strictly ascending order.

2. Don't forget to "mark" the redundant values in the schedule by enclosing them in
parentheses.

ADDING MATRICES OF PARAMETERS

For some specialized purposes involving groups of parameters, even vectors or schedules of
parameters are not sufficiently convenient. For example, rather than managing several equal-
length vectors in parallel, it may be much more efficient to perform lookups in a matrix of
values. The design of the SPSM permits the definition and utilization of such matrices,
though it limits the number of dimensions to 2 (rows and columns). This section will
describe the use of matrices of parameters via two examples, one drawn from the black box

Programmer’s Guide Page 46
SPSD/M Version 14.0



version of the SPSM, and a second involving the specification of a new user-defined matrix
of parameters. Given the close relationship between parameter vectors and parameter
matrices, there is no special highlights division for this section.

The black box illustration uses the CTPRST matrix specific to the commodity tax capacities
of the SPSM. This parameter provides a large (48 commodities (rows) by 10 provinces
(columns)) matrix of factors relevant for the calculation of the provincial sales tax.

The second example, in which the user adds a new matrix of parameters to the SPSM,
involves a matrix of income cutoffs levels for an (hypothetical) experimental poverty
measure. To facilitate the classification of families as in or out of poverty, the user wants to
have a matrix that provides the relevant cutoffs as a function of integer variables specifying
the families' structures (rows) and the sizes of place of residence (columns). Thus, the
matrix's (3,2) entry will contain the poverty line for a family whose structure index is 3 and
whose size of place of residence index is 2. The user has elected to name this matrix
EPMCO (experimental poverty measure cutoffs). For the sake of this example, we'll assume
that the user has chosen a measure defined in terms of 18 family structures (involving, say,
combinations of the numbers and ages of family members) and four categories of size of
place of residence.

Appearance in Mpu.h

Taking the black box matrix example first, we are not surprised to find the relevant header
information for CTPRST in file Mp . h of the DEFS subdirectory. Thus, there is an integer
definition, to define the actual number of rows (commodities) CTNUMCOM, as follows:

int CTNUMCOM; /* number of rows for commodity dimension parms */

In addition, there is a definition for the matrix itself --
NUMBER CTPRST[NUMCOM][NUMREG]; /* Provincial retail sales tax [com x prov] */

However, Mp.h does not contain manifest constants for the dimensions of the matrix
(NUMCOM and NUMREG) since these are so closely related to the design of the
commodity tax facility in the SPSM that they have been defined elsewhere so that the
commodity tax module can more conveniently use the constants.

Turning to our experimental poverty measure cutoff matrix, we appreciate that we shall have
to provide the relevant "defining” information to the SPSM via entries in the Mpu.h file.
The specific needs are (1) manifest constants for the dimensions, (2) a variable for the actual
number of rows, and (3) the matrix itself. The Mpu . h lines for these items might appear as
follows:

#define EEMFAMMAX 18  /* maximum of number of family structures (rows) for EPMCO matrix */
#define EPMSIZE 4 /* number of size of place of residence categories for EEMCO matrix */

int EPMCOrows; /* number of rows for EPMCO matrix  */

NUMBER EPMCO[EPMFAMMAX][EPMSIZMAX]; /* experimental poverty measure cutoffs [fam x size] */
Appearance in Ampd.c

Programmer’s Guide Page 47
SPSD/M Version 14.0



In parallel with the requirements for vectors of parameters, the SPSM requires for each
parameter matrix a call to pmaddent so that the parameter values can be made available to the
user's source code.

For our black box example, this call, found in file Mpd4 .cpp, appears as follows: (There
is, of course a corresponding stradd call.)

pmaddent(pcp, "CTPRST", (char *)MP.CTPRST, NULL, P_TBL,C_NUM, E_FIXL,
NUMCOM, &MP.CTNUMCOM, NUMREG);

The only arguments of any special interest at this point are the P_TBL entry for the fifth
(Agg_Type) argument, and the NUMREG entry for the final (number of columns) argument.
The eighth and ninth entries (maximum and address of actual numbers of rows) are just as we
would expect them given the preceding descriptions for vectors and schedules.

Turning to our poverty measure glass box example, we recognize that it is necessary to add a
pmaddent call to the Ampd . cpp file to permit the SPSM to give the user's source code
access to the parameter matrix. That call might well appear as follows:

pmaddent(pcp, "EPMCO", (char *)MP.UM.EPMCO, NULL, P_TBL, C_NUM, E_NONE, EPMFAMMAX, &MP.UM.EPMCOrows,
EPMSIZE);

Presumably, the user would also add to the Ampd.cpp file a call to stradd to permit the
SPSM to produce appropriate documentary information.

Referencing Matrix Elements in Source Code

Referencing the elements of a parameter matrix is easy. Assuming the variable i holds the
(integer) commodity category and variable j the (integer) province code, then the associated
removal factor for that combination is --

MP.CTPRST[i1Li]

Similarly, if the integer variable fstruct holds the family structure code, and the integer
variable sizecode provides the category for the size of place of residence, then the
experimental poverty measure cutoff for that structure/size combination is given by --

MP _UM_EPMCO[ fstruct][sizecode]

The primary factor to consider in such references is the C-language's convention that each
dimension begins with the zero element; e.g. our 18 by 4 array uses indices that run from 0
through 17, and 0 through 3, respectively. A user must make the decision about the
appropriate tradeoff between using "natural, positive™ integers as indices into the matrices,
and economizing on the fixed block of memory available for user parameters (including any
necessary row address variables).

Appearance in Parameter Files

Just as with all other forms of parameters, the user must provide values for the parameters.
Normally this will occur via entries in the appropriate parameter or parameter inclusion files
(ie. .MPR, _MPI, .CPR, .CPI, .APRor _API). For parameter matrices a parameter
file entry consists of a first line that specifies the name of the parameter and the actual

Programmer’s Guide Page 48
SPSD/M Version 14.0



number of rows, plus typically a documentary comment. The succeeding lines for the
parameter then supply the rows of the matrix. In our illustrations here, we provide only the
first, identifying, line and then the first of the lines of numeric values.

For the black box example —

CTPRST 40 # Provincial retail sales tax
0.01326 0.01326 0.01326 0.01326 0.01316 0.01406 0.02242 0.00626 0.00010 0.00550
0.15257 0.15257 0.15257 0.15257 0.13057 0.24354 0.15684 0.13914 0.00013 0.29100
0.17538 0.17538 0.17538 0.17538 0.16338 0.22635 0.13837 0.08953 0.00010 0.00605
0.08125 0.08125 0.08125 0.08125 0.08424 0.07750 0.06300 0.08521 0.00009 0.07406
0.08029 0.08029 0.08029 0.08029 0.07239 0.06953 0.05715 0.07306 0.00010 0.06512
0.08293 0.08293 0.08293 0.08293 0.06684 0.05282 0.05581 0.00305 0.00008 0.06866
0.00296 0.00296 0.00296 0.00296 0.00359 0.00197 0.00130 0.00171 0.00001 0.00141
0.00997 0.00997 0.00997 0.00997 0.00934 0.00753 0.01018 0.01073 0.00024 0.01057
0.00886 0.00886 0.00886 0.00886 0.01140 0.01421 0.00969 0.00879 0.00022 0.01017
0.08363 0.08363 0.08363 0.08363 0.06777 0.00206 0.02368 0.04331 0.00004 0.00662
0.08283 0.08283 0.08283 0.08283 0.35376 0.00201 0.02646 0.00544 0.00004 0.02263
0.09406 0.09406 0.09406 0.09406 0.06143 0.00733 0.01685 0.01645 0.00064 0.02582
0.08515 0.08515 0.08515 0.08515 0.07698 0.09175 0.07097 0.06762 0.00011 0.08368
0.08160 0.08160 0.08160 0.08160 0.09371 0.08702 0.06739 0.06646 0.00008 0.07739
0.08086 0.08086 0.08086 0.08086 0.08141 0.08654 0.06925 0.06538 0.00009 0.07740
0.08238 0.08238 0.08238 0.08238 0.08320 0.08203 0.06751 0.05395 0.00011 0.07746
0.08331 0.08331 0.08331 0.08331 0.09420 0.01711 0.07477 0.01461 0.00009 0.01935
0.00067 0.00067 0.00067 0.00067 0.00054 0.00464 0.00740 0.00678 0.00006 0.00690
0.05967 0.05967 0.05967 0.05967 0.05408 0.04822 0.02270 0.01925 0.00017 0.01865
0.00821 0.00821 0.00821 0.00821 0.01031 0.00618 0.00623 0.00397 0.00011 0.00738
0.00043 0.00043 0.00043 0.00043 0.00034 0.00124 0.00145 0.00173 0.00002 0.00059
0.01581 0.01581 0.01581 0.01581 0.00875 0.10256 0.01323 0.00799 0.00025 0.01145
0.02112 0.02112 0.02112 0.02112 0.02389 0.04246 0.03516 0.00786 0.00013 0.01465
0.07207 0.07207 0.07207 0.07207 0.06970 0.08270 0.07019 0.04924 0.00005 0.10050
0.07667 0.07667 0.07667 0.07667 0.07584 0.08081 0.06841 0.03319 0.00014 0.04053
0.14145 0.14145 0.14145 0.14145 0.14506 0.01002 0.00841 0.00897 0.00012 0.01248
0.04574 0.04574 0.04574 0.04574 0.04843 0.08112 0.03185 0.02851 0.00021 0.02790
0.03739 0.03739 0.03739 0.03739 0.04921 0.01000 0.02035 0.01185 0.00019 0.01653
0.08336 0.08336 0.08336 0.08336 0.08897 0.07353 0.06346 0.06354 0.00003 0.04449
0.07581 0.07581 0.07581 0.07581 0.08182 0.07966 0.05424 0.06289 0.00007 0.07054
0.07746 0.07746 0.07746 0.07746 0.08965 0.04561 0.05949 0.03563 0.00009 0.04247
0.04765 0.04765 0.04765 0.04765 0.04967 0.02692 0.02058 0.02111 0.00016 0.01419
0.00489 0.00489 0.00489 0.00489 0.00411 0.00745 0.00795 0.00733 0.00017 0.00929
0.08402 0.08402 0.08402 0.08402 0.11465 0.08444 0.06428 0.06551 0.00008 0.07433
0.07875 0.07875 0.07875 0.07875 0.07826 0.08018 0.07052 0.06623 0.00015 0.07777
0.04826 0.04826 0.04826 0.04826 0.04245 0.00867 0.00918 0.00758 0.00008 0.01028
0.06598 0.06598 0.06598 0.06598 0.07010 0.05898 0.07703 0.01556 0.00707 0.02343
0.02430 0.02430 0.02430 0.02430 0.02547 0.02539 0.00705 0.00708 0.00018 0.01004
0.01002 0.01002 0.01002 0.01002 0.01255 0.00805 0.00822 0.00735 0.00029 0.01300
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

For our postulated poverty measure example --

EPMCO 18 # Experimental poverty measure cutoffs
5600.0
6210.0
6530.0
7050.0

SUMMARY/CONCLUSION

It is useful to conclude by highlighting, but without redeveloping them in any detail, the
general level key points relevant for adding less typical scalar parameters and non-scalar
parameters to a model. In noting these points, we are assuming that the analyst is following
the general procedures outlined for scalar parameters. For example, it is taken as given that
the analyst is working with COPIES of all the relevant files, and is performing all of the
modifications in a task subdirectory dedicated to the analysis at hand. We also assume that
the user has updated the project environment, and is following the appropriate "checklists"

Programmer’s Guide Page 49
SPSD/M Version 14.0



provided for the less typical parameters.

1. We recommend the "copycat" approach as general way to proceed. Throughout this
chapter we've provided concrete illustrations of the items a user might want to use as
templates. Users should rarely need to employ the detailed material on
Mpu.h/Cpu.h/Apu. h (definitions, manifest constants for max rows, and actual rows)
and Ampd . cpp (pmaddent and stradd).

2. Advanced users may want to be aware of the special "services" available via the
pmaddent arguments: the ability to specify printing formats, edit checks, and the
maximum number of allowable rows or options.

3. Vectors can sometimes be much more efficient than a number of individually named
scalar parameters. The SPSM provides for this capacity, though the user must supply
additional information in the pmaddent call and be sure to provide another variable for
the number of relevant rows, as well as a constant for dimensioning. We've offered
several potential templates to facilitate the copycat approach.

4. In many respects, schedules are like a special case of vectors, applicable when one needs
to look up a y-value, as a function of a x-value, from a fixed relationship.

5. Matrices (2-dimensional) are also possible. Some additional information, the number of
columns, becomes necessary, but the matrix approach can be considerably more efficient
than juggling multiple parallel vectors. Once again, the copy and modify approach is
recommended.

Glass Box Development: Adding New Variables

This chapter describes how to add new user-defined dependent variables to an SPSM glass
box application. Thus, it shows how to address challenges such as those raised in the Quick
Start example, where the user would like to have had a separate variable for the hypothetical
Family Allowance supplement. The availability of user-defined dependent variables is even
more important if the user is modeling some new program, e.g. an earnings supplement that
could not be conveniently combined into any existing model dependent variable.

Structurally, this chapter covers all of the major issues and steps involved in adding new
dependent variables to a model. Included in this chapter is an introductory overview of the
process, and also a section that characterizes the major types of variables that the user may
wish to add. An explanation follows of the critical vardef function that establishes the
linkages between the user's source code and the rest of the SPSM and also describes how to
use the stradd function to make the new variables' labeling available throughout the SPSM.
We then introduce an illustrative extension of the Family Allowance supplement example
used in previous examples, which defines new variables that will be available to the SPSM's
several output facilities. Following this are examples of the source code changes that the
user has to make, and the descriptions of the compilation and validation of the resulting
model.

OVERVIEW FOR ADDING VARIABLES

Programmer’s Guide Page 50
SPSD/M Version 14.0



In broadest outline, the key steps involved in adding new variables can be characterized as
follows.

1. Decide what new dependent variables are needed, choose appropriate names and
descriptions for them, and copy all of the relevant header and source code files over to
the subdirectory in which the new model will be built.

2. Make the relevant changes to the project environment (identifying all of the appropriate
source code files associated with the new dependent variables), and update Adrv .cpp
(providing documentary text strings).

3. Make the necessary changes to vsu . h and vsdu. cpp to render the new dependent
variables accessible throughout the SPSM model that will be created.

4. Supply new source code (in new or existing modules) to calculate the values for the new
dependent variables.

5. Compile the new model and validate it for correctness.

The preceding points are, of course, only an overview. Section on adding parameters and the
recapitulation section provide a much fuller description of the model creation process as a
whole. This chapter, however, concentrates on those details especially relevant for the
addition of new dependent variables.

DEPENDENT VARIABLE TYPES AND CHARACTERISTICS

The SPSM provides users with the capacity to create three different types of user-defined
dependent variables. All three types are scalars. The SPSM does not provide for vectors or
matrices of dependent variables. The specific types are as follows:

1. Numeric analysis -- This is the most common type of user-defined dependent variable. It
consists of a numeric (float) value that will be used as an analysis variable, e.g. tabulated
as a cell entry in the control parameter XTSPEC. A good example of this type of
dependent variable is the value of some new income-tested benefit that will be payable to
a family.

2. Integer analysis -- Less frequently used, this type of dependent variable consists of an
integer (int) value that will be used as an analysis variable. The primary use of this type
of variable is export in SAS format, where an integer variable takes up fewer characters
than a numeric analysis variable. Examples of this type of variable might be the
minimum and maximum numbers of weeks that a family could be without earnings
income during the year (as deduced from the labour-force variables for the family
members, e.g. weeks without work and looking for work).

3. Integer class -- this type of dependent variable consists of an integer (int) value that will
be used as a classificatory variable, e.g. to define the categories for a classificatory
variable in the XTSPEC parameter. This type of variable is particularly relevant when its
values represent purely nominal categories, e.g. a classification of families by types.

Programmer’s Guide Page 51
SPSD/M Version 14.0



A few other characteristics of user-defined dependent variables, individually and collectively,
will be of considerable importance to the glass box user --

First, all user-defined dependent variables are defined at the level of the individual. Thus, the
user must take care to assign values to "appropriate” individuals so that when the unit of
analysis is at a higher level, say the census family level, the SPSM's roll-up algorithms will
yield the desired results.

Second, the space allocated for such variables can handle approximately 50 variables.
Violation of this limit can result in obscure errors that are difficult to track down.

THE VARDEF AND STRADD FUNCTIONS AND THEIR ARGUMENTS

The vardef and stradd functions are absolutely critical to the capacity to create new user-
defined variables and have them used properly throughout the rest of the SPSM. It is only
via the information communicated via calls to these functions that the rest of the SPSM
learns about the nature of the new variables and the documentary text that goes with them.
This section documents first the vardef function, and then the stradd function.

The vardef function plays the same general role for user-defined variables that pmaddent
does for user-defined parameters. There will be one vardef call for each variable that the
user defines. Vardef defines the characteristics of the new variable so that the SPSM can link
it into the same variables framework used by the SPSD/M's own database, analytic and
classificatory variables. The vardef calls are always made in the vsdu.cpp function. The
following short description of the function's arguments appears at about line 100 of that
function --

* vardef("'_uvew", <= the name of the variable, quoted, with "_*
* IN, <= home structure (leave at "IN")

* im.uv.ew, <= variable location (always in im.uv)

* C_INT, <= C-type (C_INT or C_NUM)

* V_CLAS <= type of variable (V_CLAS or V_ANAL)

* );

We'll describe the nature of the vardef arguments one at a time, in order. Subsequent
sections in this chapter provide specific illustrations for the use of both the vardef and stradd
functions.

Vardef "Name" Argument (and Definition of Variable "Stem" Name):

The first argument gives the variable's name as a double-quoted text string. The user should
always include an underscore as the first character after the initial double quote, and then the
characters "uv" as the second and third characters to indicate the "user variable" status. The
remainder of the name, i.e. everything after the "_uv" prefix, is known as the variable's stem
name. Generally speaking, this stem portion should be as informative and mnemonic as is
feasible.

For variables that will not be exported outside the SPSM itself, there is no real limit on the
number of characters in the stem name. However, for variables that are to be exported to
other packages, certain limitations may apply. For example, if the created variable is to be
exported to SAS, then the stem must not exceed six characters. If it is to be exported to the

Programmer’s Guide Page 52
SPSD/M Version 14.0



MAPSIT EXAMINE module, then the stem portion should not exceed ten characters.

Vardef "Home Structure" Argument:

The second argument indicates the structure in which the new variable resides. Because
user-defined variables are ALWAYS defined at the individual level, the user should always
enter this argument as an (unquoted) 'IN".

Vardef "Variable Location" Argument:

The third argument indicates the location of the variable (as regards the SPSM's data
structures). The location is specified via three components, two of which are invariant.
Specifically, the first portion of the location is ALWAYS equal to "im.uv" (but unquoted).
This information tells the SPSM that the new variable is inside the user variable (uv) portion
of the im structure (individual level model variables). The final portion of the location
specification is the new variable's stem name, as defined above for the first argument.

Vardef "C-Type" Argument (C_NUM & C_INT):

The fourth argument specifies the C language type of the variable. It will take on one of two
values. Numerical analysis variables will use the entry "C_NUM" (unquoted). Integer
analysis and integer classification variables will use the value "C_INT" (unquoted).

Vardef "Usage" (Type) Argument (V_ANAL & V_CLAS):

The fifth and last argument specifies whether the SPSM is to treat the variable as an analysis
variable (tabulatable) or a classificatory variable (categorical). It will take on one of two
values. Both numerical and integer analysis variables will use the entry "V_ANAL"
(unquoted). Integer classification variables will use the "V_CLAS" (unquoted).

The combination of the fourth and fifth entries tells the SPSM how many bytes of memory it
needs to allocate for the variables, an important consideration given the limit of 200 bytes for
all user-defined variables. As noted above, the requirements are six bytes for a numerical
analysis variable, three bytes for an integer analysis variable, and one byte for an integer
classification variable.

We have already seen simple applications of the stradd function when we discussed the
documentation of user parameters. The same function serves a similar purpose here, but in a
more sophisticated fashion, since it is used to define both a short description of the user
variables themselves, but also, in the special case of integer analysis and integer
classification variables, the range of values and the textual labels associated with particular
values of the variables. The vsdu.cpp file contains, at about line 110, capsule
documentation for both the variable description and value label uses.

* stradd("'uvew", <= the name of the variable, quoted

* ""Region™ <= a printing label for the variable

* );

*x stradd(“ew", <= the stem name of the variable, quoted
* "\tEast\tWest" <= string containing a label for each valid
* ) level, preceded by a tab *"\t" character.

As with the vardef function above, we shall take up the arguments in sequence. A

Programmer’s Guide Page 53
SPSD/M Version 14.0



complicating factor here is that the NUMBER OF stradd INVOCATIONS and structure of
the stradd arguments depends on the type of variable for which stradd is being used.
However, the number of stradd arguments is always constant at two. Favoring clarity over
brevity, we shall describe each of the three types (numeric analysis, integer analysis, and
integer classification) individually.

Stradd Calls for Numeric Analysis Variables:

Numerical analysis variables require only a single invocation of the stradd function. The first
argument specifies the variable name. It is identical to that used for the first vardef
argument, EXCEPT THAT THE LEADING UNDERSCORE PRESENT THERE IS
OMITTED HERE.

The second argument for a numerical analysis variable is the (quoted) string that the SPSM
will use when it needs to print a description of the variable.

For example --

stradd(*'uvnewben®, "New Hypothetical Benefit');
Stradd Calls for Integer Analysis Variables:

Integer analysis variable additions require two separate stradd invocations. The first
invocation defines the label for the variable as a whole. The second invocation defines, via a
set of labels for the individual integer values, the range of values for the variable.

In the first (variable label) invocation, the first argument specifies the variable name. It is
identical to that used for the first vardef argument, EXCEPT THAT THE LEADING
UNDERSCORE PRESENT THERE IS OMITTED HERE.

In the first (variable label) invocation, the second argument is the (quoted) string that the
SPSM will use when it requires a description of the variable as a whole, e.g. in documenting
a table.

In the second (value labels) invocation, the first argument is the STEM NAME for the
variable; neither the underscore nor the leading “uv” string should be present.

In the second (value labels) invocation, the second argument is a quoted string that tells the
SPSM how many categories are relevant. The string consists of the repeated pattern ‘tx’
where x always varies from zero to “one minus the total number of categories”. Thus, for a
variable having four categories, the second argument would take the form -- “tO\t1\t2\t3”.
The slash-t notation is the C language’s standard way of denoting a tab character.

For example --
stradd("'uvnputpp", "Number persons unemployed 2+ periods');
stradd("'nputpp", "\TO\tINt2\t3\t4");

Stradd Calls for Integer Classification Variables:

The stradd invocations for integer classification variables are identical to those for integer
analysis variables WITH ONE CRITICAL EXCEPTION. In the second (value labels)

Programmer’s Guide Page 54
SPSD/M Version 14.0



invocation, the second argument is a quoted string that provides the textual labels for the
several categories of the variable. In essence, the several, user-supplied, labels correspond to
the integers O .. "categories minus 1" entries of the second stradd invocation for an integer
analysis variable. Thus, for example, the labels for ”region™ documentation might look as
follows:

\tAtlantic\tQuebec\tOntario\tPrairies\tBritish Columbia
These labels, which may contain embedded blanks (since the tab characters serve as

delimiters) would appear as labels when the user employed the SPSM's crosstabulation
capacity or exported the new variable to a SAS file.

For example --
stradd("'uvfamcat", “"Nominal Family Income Category');
stradd(*"famcat", "\tVery Poor\tPoor\tNear Poor\tNon-Poor\tRich');

Beyond the descriptive definitions of vardef and stradd arguments, appearing about lines
100-115 of the vsdu.cpp function, vsdu.cpp also contains template combinations of the
vardef and stradd calls for all three types of new variables. In typical SPSM fashion, users
will normally find it convenient to modify copies of these templates when defining new
variables. These templates appear at about lines 125-145 of vsdu.cpp.-

* A numeric variable:

vardef (" >oxxxxxxx™,  IN, Em.uv._XXXXXXXX, C_NUM, V_ANAL);
stradd ("' XXXXXxXxx"", "Variable label™);

* An integer analysis variable, with values 0 through 4:

vardef("_yyxxxxxx", IN, Im_uv.yyxXxXXXxx, C_INT, V_ANAL);
stradd (""yyxxxxxx"", "Variable label™);

stradd ("' xXxXxxxx"", "\TO\tI\t2\t3\t4");

*

* An integer class variable, with values 0 through 4:

vardef("_yyxxxxxx", IN, Im_uv.yyxXxXXXxx, C_INT, V_CLAS);
stradd (""yyxxxxxx"", "Variable label™);
stradd("xxxxxx", ""\tLABELO\tLABELI1\tLABEL2\tLABEL3\tLABEL4");

THE FAMILY ALLOWANCE SUPPLEMENT EXAMPLE EXTENDED

Although the preceding characterization of adding user-defined variables is complete from a
definitional perspective, it is useful to see how the several steps look in practice. In this
section we summarize the concrete example that the remaining sections will flesh out. In
essence the example is a further extension of the Family Allowance exploration introduced in
Quick Start and subsequently enhanced with the addition of user-defined parameters.

Our explicit objective here is to provide a worked example that gives concrete illustrations of
all three types of user-defined variables, and to do so without burdening the reader with the
overhead that would inevitably be associated with a completely new example. In the service
of this objective we have not hesitated to sacrifice some realism (as to institutional
motivation and practice) in favor of a clean, specific example.

Programmer’s Guide Page 55
SPSD/M Version 14.0



We extend the Family Allowance supplement example by adding the following three user-
defined variables:

1. A numeric analysis variable: the new variable is the gross amount of additional Family
Allowance benefit received; we'll name it "uvfasup™ (user variable, Family Allowance
supplement). We shall assign this variable to the parent who reports the Family
Allowance benefit for tax purposes.

2. An integer analysis variable: the new variable is the number of children in respect of
whom the supplementary benefit is payable. We'll name the variable "uvncfasup™ (user
variable, number of children for Family Allowance supplement). We shall also assign
this variable to the person reporting the FA for tax purposes. This type of variable finds a
major use when exported in the SAS format because it takes up less space than a numeric
analysis variable. The variable would also be useful as a tabulated variable to count the
numbers of these children.

3. An integer class variable: the new variable categorizes the family by the number of
children in respect of whom the supplement is payable; we'll name the variable
"uvfclfasup™ (user variable, family classification for Family Allowance supplement). We
shall use it primarily as a categorical variable for tables designed to validate our
extensions to the FA supplement code. We shall assign this variable to the nominal head
of the family. Note that this class variable is very similar to the integer analysis variable,
but can be used directly as a row or column variable in a crosstabulation, whereas the
integer analysis variable could not.

As we proceed to the actual changes and coding needed to implement these new user-defined
variables, we assume that the relevant files (Adrv.cpp, vsu.h, vsdu.cpp,
Afamod.cpp, SPSMGL.dsw, etc) have been COPIED over to an appropriate new
subdirectory; here we'll assume that it is named GLASSEXS3, this being our third worked
glass box example.

CHANGES TO PROJECT FILES AND ADRV.CPP

We begin by including all the relevant files into the project and by changing the name of the
executable file in Project: Setting: Links to glassex3.exe.

The changes to adrv.cpp are simple, consisting entirely of (a) updating the short textual
descriptions for the model and (b) indicating that Afamod (rather than famod) is to be used
for Family Allowance calculations.

Of the two descriptions, the SPSM displays the first on its opening screen, to tell the user
about the nature of the alternative system. The SPSM outputs the second description as part
of the '.CPR"™ (control parameter) documentation that it produces when it runs the model.
Recall that the positioning of this text (in the screen and in the output file) prevents the use of
descriptions longer than 20 characters. After adding the new descriptions, the relevant
portion of adrv.cpp (about line 35) appears as follows:

================ GLOBAL VARIABLE DEFINITIONS =================== %/

Programmer’s Guide Page 56
SPSD/M Version 14.0



/*global*/ char ALTNAME[IDSIZE+1] = "FA Suppl New Vars Ex";
/* Give global string describing version of this module */
/*global*/ char FAR Tdrv[] = "FA Suppl New Vars Ex"

#ifdef MSC

" [ __TIMESTAMP__ "1™

#endif

The altered line (about line 106) to indicate that the alternate driver uses Afamod.cpp, rather
than famod.cpp, appears as --

Afamod(hh); /* compute family allowances

Finally, compile a Debug version in Build:Start:Debug. The required links and compilations
will be identified.

CHANGES TO VSU.H

The file vsu.h serves to define the C language structure that holds the user-defined variables.
The relevant portion of this file, copied from the SPSM\GLASS subdirectory, appears as
follows:

typedef struct uv_ {

NUMBER uvdummy ; /* dummy variable */
}uv_;
We replace the uvdummy line by three lines that define our new variables, uvifasup,
uvncfasup & uvfclfasup. These new lines indicate the types of the new variables. After the
changes, the new portion of vsu . h appears as follows:

typedef struct uv_ {
NUMBER uvfasup; /* Family Allowance supplement payable */
int uvncfasup; /* Number Children for FA supplement */
int uvfclfasup; /* Family Class (Qualifying Children) for FA suppl */
T uv_;
Note the naming conventions used here. The typedef statement requires that the variables be
prefaced with the uv prefix, but does NOT employ the leading underscore used in the vardef

statements that appear later in the changes to vsdu. cpp.

One need not always modify, as we have done here, the GLASS version of vsu.h. If an
already existing (user-defined) version of vsu.h contains user-defined variables that are to
be retained, simply make a copy of that existing file and modify it as appropriate. Recall,
however, that there is an overall limit of 200 bytes per individual for the user-defined
variables.

CHANGES TO VSDU.C

The necessary changes to the copy of vsdu.cpp consist of the vardef and stradd
invocations that allow the SPSM to access the new variables and their documentation. Given
the simplicity of these invocations, we use the example templates from the beginning of the
file. We shall make these invocations as the end of the vsdu.cpp file, just before the final
'DEBUG_OFF("vsdu");" statement. The additions appear as follows:

/* uvfasup: (Analysis) Family Allowance supplement payable */

Programmer’s Guide Page 57
SPSD/M Version 14.0



vardef("'_uvfasup™, IN, im.uv.uvfasup, C_NUM, V_ANAL);
stradd(*'uvfasup", "Family Allowance Supplement™);

/* uvncfasup: (Analysis) number of children for whom supplement paid */
vardef("'_uvncfasup'™, IN, im.uv.uvncfasup, C_INT, V_ANAL);
stradd(*'uvncfasup", "# Children for FA Supplement');
stradd(*'ncfasup”, "\TONEINE2\ 3\ t4\t5\t6\t7"");

/* uvfclfasup: (Class) Family class by number of children for FA suppl. */
vardef("'_uvfclfasup™, IN, im.uv.uvfclfasup, C_INT, V_CLAS);
stradd('uvfclfasup™, "Family Class for FA Supplement');
stradd(*"fclfasup”, "\t0 Ch\tl Ch\t2 Ch\t3 Ch\t4 Ch \t5 Ch\t6 Ch\t7 Ch');

Notice the second stradd call for each of the two integer variables, and the omission of the uv

prefix in that (second) call that defines the number of cases (integer analysis variable) or the
category labels (integer classification variable).

CHANGES TO AFAMOD .CPP (OR, MORE GENERALLY, ANY NEW SUBSTANTIVE
SOURCE CODE)

The preceding tasks have been preliminary to our central task, revision of Afamod.cpp to
reflect the new calculation of Family Allowances, inclusive of the possible supplement to the
family. We are using Afamod.cpp here, but, more generally, at this stage, the user is
ready to write/modify the source code necessary to make the desired changes to the
calculation of SPSM variables, whatever modules those changes may involve. We'll
illustrate the changes for our Family Allowances example one portion at a time, showing for
each portion what the unmodified Afamod.cpp file looks like, and then how we have
changed it to add our desired variables. References involving line numbers refer to the
"original version of Afamod.cpp found in the SPSM\GLASS subdirectory.

Identifying String

Documentation is important. As we proceed through the Afamod.cpp file for our
changes, we first update the description. Where the GLASS version of Afamod.cpp
provides (at about line 39) the placeholder description --

/*global*/ char FAR Tfa[] = "Untitled"”

we substitute a more informative description:

/*global*/ char FAR Tfa[] = "New Vars Version"
Local Variables

Intermediate (local) variables can be very useful. Where the GLASS version of
Afamod.cpp defines and initializes its local variables (about line 131), we add the new
lines shown just below. The initialization of NUMBER/float variables with ZERO provides
insurance against an obscure bug that shows up only on a few nonstandard machines.

/* user-defined intermediate (local) variables in support of glass box example 3
(user-defined SPSM variables) [using the "stem names"™ for two of the SPSM variables
being created] */

NUMBER fasup = ZERO; /* amount of new FA supplement */
int ncfasup; /* number of children for whom supplement payable */

Calculate and Assign the New Model Variables

We are now ready to calculate the new variables, and to assign them to the appropriate user-
defined SPSM variables. For our Afamod.cpp example, we seek to calculate the amount of

Programmer’s Guide Page 58
SPSD/M Version 14.0



the possible supplement. We do so immediately after taxable and federal Family Allowances
have been defined in the SPSM\GLASS version of Afamod.cpp, but before those values have
been assigned as outputs from the Afamod routine. This condition occurs at about line 358.
The relevant original source code appears as --

else {
DEBUG1("'%s standard FA calculation\n');
tfa = nch * MP_STDFA; /* taxable family allowances */
ffa = tfa; /* Tederal part of family allowances*/
}

DEBUG3("'%s tfa=%.2Ff, ffa=%.2Ff\n", tfa, ffa);

In the new code that we add, we are careful to make sure that an appropriate value is
calculated for our intermediate variables, no matter what the nuclear family looks like, and
that the taxable and federal Family Allowance variables are updated if the supplement is
relevant. Notice that we are retaining the parametric structure developed in the section 6 of
this guide.

/* Conditionally apply the Family Allowance bonus for the
* "FASUPFECth"™ and subsequent children <18 in the unit,
* including any necessary updates to taxable and federal FA */

if ((MP.UM.FASUPFLAG == 1) && (nch >= MP.UM._FASUPFEC)) {
ncfasup = (nch-MP_UM._FASUPFEC+1);
fasup = ncfasup * MP_UM._FASUPPC;
tfa += fasup;
ffa += fasup;
}
else {
ncfasup = 0;
fasup = ZERO;
}

In our FA supplement example it makes sense to assign the family classification value to the
nuclear family head. We do so where (about line 368) the SPSM\GLASS version of
Afamod.cpp assigns other values to the eldest member. That original Afamod . cpp
code appears as --

/**

* Associate the taxable amount of family allowances, and the number of
* family allowance children, with the eldest in the nuclear family.

* The function txinet will reassign to the spouse if necessary.

**/

nf->nfineld->im.imtfa = tfa;
nf->nfineld->im.imqtfa = qtfa;
nf->nfineld->im.imnfach = (NUMBER) nch;

After our addition, the modified code reads --
/**

* Associate the taxable amount of family allowances, and the number of
* family allowance children, with the eldest in the nuclear family.

* The function txinet will reassign to the spouse if necessary.

**/

Programmer’s Guide Page 59
SPSD/M Version 14.0



nf->nfineld->im.imtfa = tfa;

nf->nfineld->im.imgtfa = qtfa;

nf->nfineld->im.imnfach = (NUMBER) nch;

/* assign family classification by number of supplement children to the
nuclear family head */

nf->nfin->im.uv.uvfclfasup = ncfasup;

Finally, of course, we need to make sure that the variables for the supplement and the number
of children supplemented are assigned to the mother if feasible (or in the absence of the
mother to the head of the nuclear family). The relevant original SPSM\GLASS
Afamod.cpp code appears as follows --
/* assign FA to mother if present */

it (nf->nfspoflg && (nf->nfinspo->id.idsex == FEMALE)) {

DEBUGL1("'%s spouse is the mother\n');
in = nf->nfinspo;

}

else {
DEBUGL1("%s head receives FA\n™);
in = nf->nfineld;

}

Our changes to this are minimal. We add only two new lines to assign the amount of the
supplement and the number of supplemented children. Note that we are assigning the values
of the intermediate variables to the (fully qualified) user-defined variables that we defined
via vsu.h and vsdu.cpp above. The modified version of the source code reads as
follows:
/* assign FA and the supplement, and # Fa supplement children to the mother when
she is present */

if (nfF->nfspoflg && (nf->nfinspo->id.idsex == FEMALE)) {

DEBUG1(*'%s spouse is the mother\n');
in = nf->nfinspo;

}

else {
DEBUGL1(""%s head receives FA\n");
in = nf->nfineld;

}

in->im.imffa = ffa;

in—>im_.impfa = pfa;

in->im.imgaafa = gqaafa; /* Quebec Availiability Supplement */
in->im_imgnbfa = gnbfa; /* Quebec Newborn Allowance */
in—->im.uv.uvfasup = fasup; /* assign new supplement */
in->im_uv.uvncfasup = ncfasup; /* assign # of children */

Compilation

We should debug the model and test if it work properly and then compile the new model
GLASSEX3.EXE.

VALIDATION

Once the compilation is complete and the GLASSEX3.EXE file exists, the user can validate
it to check whether the logic is performing as was intended. Since validation was illustrated
in some length in Section 6, we include here only one illustrative set of crosstabulation
outputs. In everyday operation, the user will want to ensure the correctness of the model

Programmer’s Guide Page 60
SPSD/M Version 14.0



before proceeding on to make production runs of the desired tables.

The mini-validation here consists of one set of tables for a single parameter configuration. It
uses the 1986 version of the SPSM, and models the tax and transfer system existing in 1986.
The user sets up the control parameter file to use C:\SPSD\BA86 .MPR as the base system
model file. The variant system, the one using the new logic for Family Allowances, is here
named GLASSX3A_MPR. It calls for a subsidy of $120 per year for the second and
subsequent children aged 0 to 17 in the nuclear family. The relevant XTSPEC appears as
follows:
XTSPEC
NF: uvfclfasup+ *
{units,
imffa: L="New Family Allowance",
_imffa: L="Base Family Allowance",
uvfasup: L="New FA Supplement'};
NF: nfnkids+ *
{units,
imffa: L="New Family Allowance",
_imffa: L="Base Family Allowance",
imffa-_imffa: L="Family Allowance Increase'"};
NF: nftype+ *
{uvfasup: L="New FA Supplement",
immdisp-_immdisp: L="Disposable Income Increase"}

The first table specification illustrates the use of user-defined variables as analysis and
classification variables. Note that the usage is just the same as if the variables had been part
of the original SPSM, even to the ability to use the "+" qualifier to indicate the aggregation
across a categorical variable's dimension.

The similarity between the first two tables is intentional; it shows that one can use the created
variables to display information that is less conveniently available from SPSM variables.
First, for example, the user does not have to take a difference between two variables to see
the pre-tax impact of the FA supplement. Second, using the uvfaclfasup variable rather than
the nfnkids variable allows the user to collapse across all those nuclear family units that have
no children. The third table then confirms that the supplement is being taken into account by
the rest of the tax/transfer system, so that, in aggregate, the families' gains in income are less
than the gross amounts of supplement awarded. The tables that result, edited very slightly as
to

SPSD/M (Database 4.00)

Wed Sep 27 08:34:51 1989

Base Description: 1986 actual

[Driver: Version 4.00: 82-89, File: c:\spsd\ba86.mpr]

Variant Description: 1986 actual

[Driver: FA Suppl New Vars Ex, File: glassx3a.mpr]

Sample: 0.0495
AGENAME="Standard adjustment*

Table 1U: Selected Quantities for Nuclear Families by Family Class for FA

Supplement

e o - o - o - o +
|Family Class for FA |JUnit Count |[New Family |Base Family]| New FA |

| Supplement | (000) | Allowance | Allowance | Supplement |

I | | 1)) | 1)) | 1)) |

e oo o o o +
Programmer’s Guide Page 61

SPSD/M Version 14.0



J0 ch I 10621.5] 564.1] 564.1] 0.0]
|1 ch I 1196.5] 1020.3] 876.7| 143.6]
|2 ch I 521.8] 758.2| 633.0] 125.2]
I3 ch I 81.1] 160.3| 131.1] 29._2]
|4 ch I 14_6] 34.6] 27.6] 7.0]
I5 ch I 1.5] 4.3] 3.4] 0.9]
|6 ch I 0.0] 0.0] 0.0] 0.0]
17 ch I 0.0] 0.0] 0.0] 0.0]
e N R R . +
JAI I 12437.1] 2541.7] 2235._8] 305.9]
S o o o . +

Table 2U: Selected Quantities for Nuclear Families by Number of children in nuclear
family

R o o o o +
[Number of children | Unit Count | New Family |Base Family | Family |
|[in nuclear family | (000) | Allowance | Allowance | Allowance |
| | | (W) | D) | Increase (M)]
e o o o o +
|0 | 9042.2]| 0.0] 0.0] 0.0]
|1 | 1579 .4| 564 1| 564 ._1| 0.0]
|2 | 1196.5] 1020.3] 876.7| 143.6]
13 | 521.8] 758.2] 633.0] 125.2]
|4 | 81.1] 160.3] 131.1] 29.2]
15 | 14.6] 34.6] 27.6] 7.0]
|6 | 1.5] 43| 3.4] 0.9]
|7 | 0.0] 0.0] 0.0] 0.0]
I8 | 0.0] 0.0] 0.0] 0.0]
19 | 0.0] 0.0] 0.0] 0.0]
R o o o o +
o Fom o Fom o Fom e - Fom e +

Table 3U: Selected Quantities for Nuclear Families by Nuclear family type

o Fomm e R +
|[Nuclear family type | New FA |Disposable]
| |Supplement] Income |
| | w) | Increase |
| | (D) |
S T S TS +
|[With Kids, 1 Adult | 22.2] 17.8]
|With Kids, 2+ Adult | 283.7] 179.3]
[with Elderly, 1 Adult | 0.0] 0.0]
|[With Elderly, 2+ Adult | 0.0] 0.0]
|O0ther, 1 Adult | 0.0] 0.0]
|Other, 2+ Adult | 0.0] 0.0]
Sy M Fom Fom e +
ALl | 305.9] 197.0]
Py Fom e Fom e +

Note that the first and second tables are completely consistent, except that the first is slightly
more compact (with fewer lines), marginally better labeled, and a bit easier to specify in
XTSPEC. In terms of substance, however, the two are comparable; the rows from "1 Ch" to
"7 Ch™ in the first table contain exactly the same information as the 2" to "8" rows of the
second table. This sameness of content is just what we would expect for an option that
subsidizes the second and subsequent children. The first and second rows of the second
table, tabulating families not eligible for any supplement, collapse into a single line in the

Programmer’s Guide Page 62
SPSD/M Version 14.0



first table.

The third table shows that some of the Family Allowance is being recovered, since the
increment in disposable income is less than the full amount of the new supplement. Further,
the fraction "recovered” via the reactions of other programs in the tax/transfer system is, as
expected, greater for two-parent units than for single-parent units.

Once the validation is complete, the user will proceed to the production of the desired tables
and other outputs.

SUMMARY/CONCLUSIONS

We summarize this chapter's key points by providing a checklist of the main items required
to add new user-defined variables to an SPSM model.

1.

Plan the desired changes "on paper”. Choose the new variable names and lay out the
logic by which they will be derived. Ascertain which specific substantive source code
files will be affected (e.g. Afamod.cpp). Choose a subdirectory for the new model,
creating it if necessary.

2. Copy over the relevant files to the subdirectory where the work will be done.

e The files SPSMGL .dsw, Adrv.cpp, vsu.h, andvsdu.cpp will always be
needed, along with the relevant substantive files, e.g. the AFamod . cpp file of our
example.

e Thefilesmpu.h and ampd.cpp may also be needed depending on whether
parameters are to be added at the same time.

3. Update project and change the name of the output file.
4. Update Adrv.cpp.

e Insert appropriate short descriptions for the two documentary string arguments
(ALTNAME and Tdrv).

e Change the function calls to refer to the alternate versions of the tax/transfer
calculation functions, e.g. Afamod(hh) rather than famod(hh).

5. Update vsu.h. Inside the 'uv_' structure, indicate the types and names of the new user-
defined variables. Remember to use the 'uv' prefix, but to omit any leading underscore.
6. Update vsdu.cpp.-

e For each new variable, provide a vardef function call to define the nature of the
variable to the SPSM.

e Also for each new user-defined variable, invoke stradd to provide a variable
description (text string) for the variable.

e For each integer variable, analysis or classificatory, invoke stradd a second time
(using just the stem name) to provide a list of labels for the integer values of the
variable. Remember that for the analysis variables these only indicate the number of
categories (from 0 to n), while for integer classification user-defined variables, the

Programmer’s Guide Page 63

SPSD/M Version 14.0



labels are text of the user's choosing.

7. Make the necessary changes to the substantive tax/transfer routines. Consider using
intermediate variables to simplify things. Be careful to perform appropriate
initializations and to assign the derived values to an appropriate individual.

8. Compile the new model. Don't forget to validate it before using it for any serious
production work.

Changing Base and Variant Data Variables

This chapter describes how users can, when appropriate, change values in the SPSD/M
database for the analysis of policy options. Such changes stand in contrast to the changes in
model logic, parameters and dependent variables described in previous chapters. Here, we
are looking at changes to the data used as input by the tax/transfer algorithms rather than to
the logic of those algorithms. The kinds of changes discussed here are temporary. They
affect the values "seen™ by the user's model in a particular run, but they do not affect the
values actually stored in the SPSD itself.

Typically, but not exclusively, the user's database changes will involve dollar-denominated
amounts -- income or deduction items. The user might wish to grow or shrink income from a
particular source, e.g. shrinking interest income to reflect an assumption about falling interest
rates. However, the user might also want to alter a non-income variable, e.g. the school
attendance variable for older children in selected families.

For SPSM models that simulate two (base and variant) tax/transfer systems, an important
distinction is whether the changes affect the values as "seen™ by the user's entire model, or by
just one of the (base or variant) systems within the model. This distinction is so important
that we have organized the structure of this chapter around it. Note, however, that the
distinction is irrelevant for models that simulate only a single tax/transfer system. The
procedures recommended here encourage the user to apply the single system approach
whenever it is feasible.

The following section describes how to make alterations to the data right after the SPSM has
read it for a model run. The changes discussed there will naturally affect ALL of the
tax/transfer systems appearing in the model. The section describes two sub-cases -- In the
first subcase, the user makes the data adjustments via the SPSM's built-in data-aging
facilities. In the second, more demanding, subcase, the user crafts his/her own aging logic.
This second subcase may involve the definition of new data-aging parameters for the model.
The first section indicates where and how to make "single system™ changes, and provides a
detailed worked example.

The subsequent section, in contrast, describes changes that affect only a single system (base
or variant) within an SPSM run. It explains how the use of the SPSM's "results file" facility
can often turn this case into the simpler "single system™ as described in earlier on. However,
for instances in which the results file approach is impossible or inconvenient, this section
also includes a description of where and how to make the necessary changes. It concludes
with a worked example of how to implement system-specific database adjustments.

Programmer’s Guide Page 64
SPSD/M Version 14.0



MAKING CHANGES THAT AFFECT ALL TAX/TRANSFER SYSTEMS IN A MODEL:

This section describes how to make data changes that affect all of the tax/transfer systems in
an SPSM model. It is appropriate both when the model has only a single tax/transfer system
and when the model has two systems, but the user wants the data changes to affect both of
them.

This section first examines the SPSM's built-in data-aging facilities. Under this method, the
user assigns values to existing aging parameters via APl (Aging Parameter Include) files.

This is followed by adding new data adjustment algorithms. For this type of aging, the user
will define the new aging logic in the adju.cpp file, and will probably define new
parameters via changes in the apu.h and apdu.cpp files. The user may also wish to
define new dependent variables to assist in model validation.

Lastly a detailed worked example for this second subcase is presented followed by a
checklist for making this “global” data aging type of change.

Typical Income and Population Growth Changes Via APR/API Files

The design of the SPSD/M already anticipates the user's typical data-aging needs. The
\SPSD subdirectory includes a number of files with names of the form BAxx_yy . APR that
instruct the SPSM to age the data, other than the underlying demographic structure, from
year XX to year YY. Thus, file BA86_88_APR contains the aging parameters to age the
SPSD's non-demographic variables from 1986 to 1988. The degree of detail for this aging is
considerable. Each of these files contains some 600 plus numeric parameters that are used by
the SPSM's built-in aging algorithms.

If the substance of the parameters in these files is acceptable to the user's needs, then the data
aging is straightforward. The user enters the name of the "most nearly correct” file as the
control parameter file's INPAPR parameter. Any necessary changes to these parameter
values are then implemented via an ".API" (Aging Parameter Include) file.

The Parameter Guide provides the authoritative description of these parameters. However, it
is useful here to characterize broadly the extensive control they provide.

Some parameters specify how imputed/converted incomes are to be treated (i.e. ignored or
either of two synthesis methods adopted). A large block of parameters governs the
"removal” of commodity taxes from family expenditures.

Another parameter block provides the low-income cutoffs for families. It permits the user to
specify a set of "poverty thresholds™ for economic families, with the particular thresholds
varying by family size and the size of place of residence. Probably of most value to a typical
user, though, is the large set of growth factors for the SPSD's dollar-denominated data
variables: incomes, deductions, and expenditures. Virtually every such variable has its own
growth factor.

The SPSD/M also provides for convenient demographic aging of its underlying population.

Programmer’s Guide Page 65
SPSD/M Version 14.0



The SPSD directory's "WGT" files provide the user with the capacity to adjust the
population base throughout the interval 1984 to 1991.

Changes Involving New Logic For adju.cpp

The flexibility provided by the aging parameter (".APR™ & ' _API") and population aging
(" -WGT™) files will often be sufficient for the user's needs. However, in some circumstances,
the user will wish or need to exercise more direct control over the data to be used for a
simulation. A few examples will indicate the scope of what is possible. The reader should
appreciate that the focus of these examples lies more in quickly conveying that scope than in
maintaining a strict, policy-oriented realism.

1. The user could increase the average education level by adjusting the "idedlev" variable
for selected individuals, perhaps resulting in a distribution of educational attainments that
falls in line with some exogenous forecast.

2. The user might wish to grow some income or transfer amount by a factor that is a
function of the unit's characteristics. E.g., based on the assumption that investors'
portfolios differ as a function of investor age and income, a user might be unwilling to
model the effect of an increase in interest rates by growing everyone's interest income
using the same proportion. Instead, a smaller factor might be applied to those individuals
felt likely to be conservative and/or to have portfolios that turn over more slowly. This
type of assumption would treat such families as being unable to benefit as quickly from
the higher interest rates.

3. A user might wish to model greater labour force participation by changing the array of
labour force variables relevant for individuals in the SPSD (weeks worked, paid-
employment earnings, unemployment insurance variables, etc.). Changes in such a wide
variety of related variables would only be done after considerable, comprehensive
planning.

4. At the extreme, a highly experienced, knowledgeable SPSM user could even alter the
household/family structure of the SPSD, modeling a baby boom by adding "synthetic
children" to appropriate families in the database.

The adju.cpp function, found in the \SPSM\GLASS subdirectory, is the means by which
the user can add new data aging logic to SPSM models. That adju.cpp function is called
immediately after the SPSM has read in each household, and before any transfers or memo
variables have been computed. The user can insert the logic for his/her own changes
immediately after the "adj(hh)" invocation that the SPSM uses to carry out its own data
aging, i.e. its built-in application of the income growth parameters specified in the relevant
"_APR" and ".AP1" files.

For the implementation of new data aging logic, users may need to define new intermediate
variables (including counters, pointer variables, etc.) and/or to define new, custom, data
aging parameters. The next subsection describes the general procedure for adding such new
data aging parameters, with the attendant specific changes developed in the worked example
that follows it.

Programmer’s Guide Page 66
SPSD/M Version 14.0



Adding New Database Adjustment Parameters

The addition of new user-defined database parameters closely parallels that of new model
parameters as described in previous chapters. However, some minor differences are relevant.

(1) SPSM maodels have only a single aging parameter file (extension ".APR"); they may have
either one or two model parameter (extension ".MPR") files, depending on whether they
model one or two transfer systems. (2) Correspondingly, users supply the values of user-
defined aging parameters in ".API" (Aging Parameter Include) files that amend standard
".APR" files, rather than via ".MPI" (Model Parameter Include) files that amends standard
".MPR" files. (3) New aging parameters are defined in the apu.h (header) file rather than
the mpu . h header file used for model parameters. (4) Similarly, the function calls that make
the parameters available to the rest of the model occur in apdu.cpp, rather than the
ampd.cpp file used for model parameters. However, the structures of the relevant pmaddent
and stradd calls are exactly identical. Note, though, that certain arguments to these functions
differ between aging and model parameters. The worked example highlights these
differences. (5) Finally, the logic changes proper are defined in adju.cpp, rather than
(typically) the individual tax/transfer functions, such as Afamod . cpp, that are relevant for
changes to the transfer calculation logic of a model.

We note in passing that the SPSM's control parameters follow a similar parallel structure,
but, even in glass box applications, users do not need to DEFINE new control parameters.
Instead, they simply alter the values of existing control parameters.

A Worked Example

Our hypothetical user, seeking to reflect a response to some change in federal income tax
treatment, wants to grow RRSP contributions in a model. S/he wants the growth to apply
either for a single system to be analyzed, or for both the base and variant systems in a
comparative model. However, this user is not willing to assume that everyone's contributions
grow by the same rate, and wants to simulate disproportionate growth as a function of
income. The main focus of the model is assumed to lie elsewhere in the tax/transfer system.
That is, the user has no special interest in the impacts of the RRSP increases themselves.
Rather, the user just wants "better" representations of the deduction amounts to be used in all
of the calculations for the relevant transfer system(s).

To make the example more precise, assume that the user wishes to grow existing
contributions by x% for each (whole or partial) slice of $10,000 of paid employment earnings
and self employment earnings over an initial base amount of $20,000. Thus, an individual
with $45,000 in earnings would see his/her RRSP contribution grown by a factor of (1.0 +
3x), where x is a new user-defined parameter. This growth will be IN ADDITION TO, AND
COMPOUNDED WITH, any growth induced via the standard SPSM growth parameter for
RRSP contributions, GFRRSP.

In a possibility NOT developed here, the user might also have induced the presence of RRSP
contributions for individuals who reported zero such contributions. The example developed
later in Section 9.2 provides an illustration of this sort of synthesis of dollar-denominated
amounts.

Programmer’s Guide Page 67
SPSD/M Version 14.0



In the remainder of this subsection, we track the individual steps involved in implementing
this conditional growth (beyond the growth implemented via the aging parameters GFRRSP).
We assume that the user has created the subdirectory GLASSEX4 for the purpose, and
"COPIED IN™ all of the relevant files. (SPSMGL.dsw, apu.h, apdu.cpp, and
adju.cpp, plus the SPSM parameter files relevant for running the new model). In this
directory the user will create an ".API file to provide a value for the new user-defined
parameter.

Because the parameter addition process for aging parameters so closely parallels the
procedure described in previous chapters, and for model parameters, our commentary on
these changes is kept to a minimum. The user is assumed to have modified the project to
include all the relevant files and changed the output name of the compilation to
GLASSEX4 .EXE

We include the aging documentation in the relevant string defined in adju.cpp as described
below.

(A) Changesto apu.h

We begin by defining a user-defined parameter for the user-defined RRSP contributions
growth factor, the "x" factor in the description above. As a mnemonic, UDGFRRSP (User-
Defined Growth Factor, RRSP contributions) seems appropriate. The SPSM provides for up
to 100 bytes worth of user-defined aging parameters, with this allocation independent of the
600 bytes allocated for any model parameters that the user may wish to define.

The additions to apu. h indicate the kind of parameter being defined. They go just before
the function prototype specifications, replacing the dummy user aging parameter
UADUMMY in the apu. h code.

typedef struct UA_ {
int UADUMMY; /* dummy entry */

}
UA_;

In our example, we replace the single UADUMMY line with --
NUMBER UDGFRRSP; /* User-defined growth factor for RRSP Contr. */

(B) Changes to apdu . cpp

In the apdu.cpp function we add invocations to the pmaddent and stradd functions to give the
broader SPSM access to the value of the new parameter. The details of these functions
appear in previous chapters. We make the additions at the end of the apdu. cpp function,
right before the statement --

DEBUG_OFF(*apdu’™);
Our two invocations look as follows:
pmaddent(pap, "UDGFRRSP", (char *)&AP.UA.UDGFRRSP, NULL, P_SCL, C_NUM, 0O, 0, NULL, 0);
and
stradd("'UDGFRRSP"", "User-defined growth factor for RRSP Contr.');

Programmer’s Guide Page 68
SPSD/M Version 14.0



The explanatory text at the beginning of apdu.cpp function describes the AGING-
ORIENTED arguments for pmaddent and stradd. It also provides the templates for our
utilization here (a scalar parameter).

There are two critical differences in the pmaddent utilization as compared with the definition
of new model parameters. (1) The first argument is pap rather than pcp. (2) The third
argument differs in that the new parameter resides in the UA (User Aging) structure within
the SPSM's AP (Aging Parameter) structure. This stands in contrast to the "&MP.UM"
reference used for user-defined model parameters (User Model within Model Parameters).

(C) Changes to adju.cpp

The first change updates the documentary text string relating to data aging. The original
SPSM\GLASS function defines this string at about line 43 as

/*global*/ char AGENAME[IDSIZE+1] = "Unnamed";

We modify it here to read --

/*global*/ char AGENAME[IDSIZE+1] "RRSP Contr(Earnings)™;

With the parameter value available throughout the SPSM, we make the source code additions
to implement the RRSP contribution growth. The first thing we need is some local variables
to aid us in stepping through the individuals in the household being analyzed and possibly
assigning modified RRSP contributions. Thus, we add the following four declarations to the
adju.cpp function, inserting them just after the function's opening brace.

NUMBER earn; /* total paid and self-employment earnings */
int group; /* number of UDGFRRSP multiples to use */
register P_in in; /* pointer to data for current person */

int ini; /* persons processed */

For the aging assignments themselves, the relevant location is near the very end of the
adju.cpp function, inside the code segment --

DEBUG_ON(""adju');

/* Just call the standard adjustment algorithm */

adj (hh);

DEBUG_OFF("adju™);

Our addition goes between the adj (hh) ; and DEBUG_OFF("'adju'") ; Statements.

/* Grow RRSP contributions as a function of total earnings */

for (ini=0, in=&hh->in[0]; ini<hh->hhnin; in++, ini++) {
if (in—>id.idrrsp == (NUMBER)0.0) {
continue;
}

earn = in->id.idiemp + in->id.idisefm + in->id.idisenT;
if (earn <= (NUMBER)20000.0) {
continue;

}
group = (int)(ONE+(earn-(NUMBER)20000.0)/(NUMBER)10000.0);
in—>id. idrrsp*=(ONE+AP_UA _UDGFRRSP*(Float)group) ;

}

The new code, headed by an explanatory comment, breaks out into components that are
relatively straightforward.

Programmer’s Guide Page 69
SPSD/M Version 14.0



(1) The control portion of the "for" statement has been copied, in its entirety, from the
memol.cpp function (computing totals for individuals) in the SPSM\GLASS
subdirectory. It steps across the individuals in the household. The local variables defined
earlier are used in this stepping.

(2) Growing RRSP contributions multiplicatively is not meaningful if there are none to begin
with. Thus, the "if-continue" statement of the next three lines skips the remainder of the
four statements if the individual has no RRSP contributions. The typecast "NUMBER,"
here and later, indicates the user's intentions as regards variable types; it prevents
compiler warnings.

(3) If RRSP contributions are positive, the next line calculates the individual's earnings from
paid employment and from farm or non-farm self-employment. If the total does not
exceed $20,000, then the remainder of the for statement is skipped; Another "if-continue™
statement performs this function.

(4) The assignment to the "group" variable computes the number of multiples of
UDGFRRSP relevant for the growth. The final statement in the body of the loop applies
the growth via a multiplicative assignment. These two statements will only be executed
if some growth is appropriate. The (int) and (NUMBER) casts they contain indicate the
user's explicit intentions as to variable type conversions; they serve to prevent
meaningless warnings during the compilation stage.

(D) Compiling the model enhancement

The model should be debugged before the compilation of GLASSEX4.EXE executable file.
Only then can the model be run for validation testing and production work.

(E) Providing a parameter value

For any particular run of the model, the user must provide a value for the new parameter, e.g.
a value of 0.01. Normally the user will do this "on the fly" during the run of the new model,
or via an ""_API" (Aging Parameter Include) file that will modify the contents of the APR
file specified in the model's control file (*.CPR"). In our example, the "_API" file would
consist of the single line --

UDGFRRSP 0.01
if no existing aging parameters were to be modified.

(F) Validating the model

Before using the model at all seriously, the user would want to validate the model to be sure
it is performing as intended. Though we shall not carry out such a validation in detail here
for reasons of space, normally one would generate a few selected tables for different runs,
checking to ensure that the model produces the expected results. For example, inputting a
UDGFRRSP factor of zero should leave the total amount of the RRSP unchanged. Similarly,
a small value, say 0.01, should have a small or zero effect on low-income units, but should
have a larger effect on higher income units. A table, defined at the level of the individual,

Programmer’s Guide Page 70
SPSD/M Version 14.0



that showed the increase in the RRSP contributions variable as a function of individual
earnings would go a long way toward deciding whether the algorithm yields the right amount
of RRSP increase. It could be generated by using a results file based on the unmodified
database, and comparing numbers of individuals and amounts of RRSP contributions to the
counterparts of these variables after the new RRSP contribution aging.

When one uses the 5% sample SPSD, together with the 1986 population, aging parameters,
and model parameters, one gets the following summary results for a UDGFRRSP factor of
0.01:

Before Growth  After Growth  Difference

RRSP Contributions (M$) 11,134.3 11,329.2 194.9
Federal Income Tax (M$) 41,173.3 41,118.0 55.3
Prov. Income Tax (M$) 24,190.6 24.160.5 30.1

Total RRSP contributions have risen by about 1.75%, and federal and provincial income
taxes have correspondingly dropped by somewhat less than the amount of new RRSP
contributions.

Checklist for Changing Database Variables "Globally"

(A) Check to see whether the SPSM's existing facilities are sufficient to implement the
desired data aging, so that no new logic is required.

Can the desired population aging be implemented via a selection among existing case weight
files? If so, then specify the relevant case weight file (" .WGT" extension) via the INPWGT
(Input Weight) control parameter. Use a . CP1" file to provide the desired INPWGT value,
or enter it on the fly in response to the model's prompts.

Can the adjustment of the data values be accomplished via changes to the values of the
SPSM's data aging parameters, in conjunction with the SPSM's normal data aging algorithm
(adj(hh))? If so, then provide the relevant aging parameter values to the SPSM via an
"_API" file. Specify it to the SPSM either interactively or via a batch file being used to
coordinate execution of the model.

(B) If the desired adjustments to the data cannot be handled via the built-in data aging
procedures, then some new logic will be required. The steps for adding this new data aging
logic are as follows:

1. Copy all of the relevant files to a new directory established for the analysis. The files
\SPSM\GLASS\adju.cpp, SPSMGL.dsw are always relevant. The files
\SPSM\GLASS apu.h and \SPSM\GLASS\apdu.cpp will be relevant when new
aging parameters are required.

2. Alter the project environment to include all the relevant files and change the name of the
compiled model. Alter apu. h if new data aging parameters are being defined.

3. Alter apdu.cpp if new data aging parameters are being defined. The changes will
consist of adding new pmaddent and stradd invocations so that the substance of the new

Programmer’s Guide Page 71
SPSD/M Version 14.0



parameters is available throughout the SPSM. Debug the model.

4. Alter adju.cpp. First change the function's documentary text string,
AGENAME[ IDSIZE+1]. Then implement the new data aging logic. This step will
often involve declaring useful local variables and stepping through individuals or families
in the household.

5. Compile and validate the model before using it for production runs. Parallel tabulations
of relevant individuals and amounts before and after the data aging alterations are
recommended.

6. Carry out production runs using the new, validated aging logic.
MAKING CHANGES THAT AFFECT ONLY THE BASE OR ONLY THE VARIANT

Building a model in which data aging differs between a base system and a variant system is
inherently more complicated than building one in which the two systems are treated
identically. When it is possible, the user should avoid such complication. The SPSM's
capacity for using "results files" (extension ".MRS") provides the major mechanism for
avoiding data aging that is system-conditioned.

The basic approach is to divide the problem into two parts, one for each system. Then,
within each such system, a single data aging algorithm applies, and the methods described
earlier in this chapter. The user first creates a results file for one of the two systems,
choosing the variables necessary for any system specific tabulations and for any comparisons
to be made. In creating this first system, the user applies the data aging assumptions relevant
to that system. Subsequently, the second system is simulated, with the appropriate,
alternative, data aging applied to it. The results file is read-in, in parallel with the processing
of the second system, so that the two systems, with their different data aging assumptions, are
available simultaneously for all required comparisons. Introduction and Overview Guide
provides an illustration of the use of results files.

The remainder of this section is relevant when the results file approach is somehow judged
inappropriate or inadequate to the task at hand. A few examples will illustrate such
circumstances.

1. The user may place a high premium on having a model that is self-contained, and, once it
has been validated, relatively easy to use interactively.

2. The intended application of the model may involve sensitivity analysis that would require
several MRS files, with an inherent possibility that confusion might arise. It might
require, for example, investigation of the impact of altering the aging of one specific
variable, with a variety of other variables repeatedly changed in parallel between the base
and variant systems.

3. The intended application might involve complicated comparisons requiring large .MRS
files (or many of them simultaneously) when disk storage is at a premium.

Programmer’s Guide Page 72
SPSD/M Version 14.0



We believe, however, that these kinds of situations, while occurring occasionally, will be the
exception rather than the rule. We encourage users to seek to avoid parallel system models
in which data aging differs across the two systems.

In broadest outline, the method for making system-specific data changes is similar to that
used to make changes to the TAX/TRANSFER LOGIC of a system. Any new system-
specific data aging parameters are added, via the mpu.h and mpdu.cpp files, as MODEL
parameters, and NOT as data adjustment parameters per se. As described below, the user
may wish to add new MODEL dependent variables to track the changes being made.
Although, if new parameters and dependent variables are not required, the procedure applies
equally to SPSM base and variant models, we shall explain the procedure in terms of the
more common situation of variant models.

The MODEL-oriented approach just summarized is mandated by the design of the SPSM.
Since there is only a single " . APR" file, its parameters inevitably affect the data aging for all
systems within a model. In contrast, changes made via ".MP1" files, and via the system-
specific Adrv.cpp and drv.cpp functions, apply only to a single designated tax/transfer
system. The user can take advantage of this system-specificity to implement system-specific
data adjustments.

The key to the system-specific data aging changes lies with alterations made to the Acall.cpp
file. In essence, the user "intercepts” a household's data record just before it is used by the
functions in that procedure, makes the desired changes, and later restores the data record to
its original state just before execution leaves that procedure. The next section explores these
Acal l . cpp-oriented steps in greater depth.

Implementing Changes in Acall .cpp

The focus in this section rests almost exclusively with the details of changes made within
Acall _.cpp. Because of the similarity of system-specific data adjustments to the kinds of
tax/transfer system revisions described earlier in this Programmer's Guide, certain topics are
not repeated here. Specifically, users are expected to add any new parameters, and any
necessary new dependent variables using the methods documented in previous sections. For
example, a user might wish to add a new model variable to indicate whether the original
database value for a variable has been changed by the system-specific adjustments.

We'll take up the required changes in the order in which a reader would encounter them when
reading Acall.cpp®s source code. Later, a worked example provides a concrete
application of the changes.

(A) Declare New Local (to Acal l .cpp) Variables

Recall that the general procedure requires the user to save the values of the variables to be
adjusted. The storage permits the values to be restored again before leaving Acall . cpp.
Thus, the user must include in Acall.cpp appropriate local declarations to provide the needed
storage. Typically, the variables to be adjusted will be defined at the level of the individual.
Thus, the new variables should typically be defined as vectors of length MAXIND.

Programmer’s Guide Page 73
SPSD/M Version 14.0



(MAXIND is the maximum number of individuals in a family.) The user may also wish to
define other local, working, variables. Normally, the user will declare these variables just
before the opening brace for the function, at about line 99 of the unmodified version of
Acall _cpp.

(B) Save the Values to Be Changed

As the very first thing within the executable portion of Acall . cpp, the user should store
away the original values of the variables that will be changed. If this is done, none of the
other functions invoked inside Acall.cpp can alter the value first or use the unaltered value.
Typically, the storage is accomplished via a "for" statement that steps across the individuals
in a household and copies them, one at a time, into the elements of a vector declared in step
(A). One of the elements in the bestiary provides the relevant stepping control. The user will
do this at about line 90 of the unmodified code, just after the statement -

DEBUG_ON("*Acall™);
(C) Change the Database Values

Immediately after the values have been stored, and still before the household's pointer has
been passed to any of the tax/transfer or roll-up functions, the user should make the desired
changes to the values of the relevant variables. These changes will constitute the bulk of the
"real programming”, i.e. logic that cannot necessarily be conveniently adapted from
elsewhere in the SPSM.

(D) Use the Now Adjusted Values

This step is the easiest of all, since it requires no special effort on the part of the user. It
consists of RETAINING the calls to the several tax/transfer and memo functions. Since the
values of the relevant variables have already been adjusted at this point, all of those functions
will perform their calculations using the adjusted household.

(E) Replace the Original Values

The final step consists of restoring the original values to the variables that were adjusted. It
will typically be done at about line 99 of the unmodified version of Acal l . cpp, just before
control passes out of the function, i.e. just before the statement --

DEBUG_OFF("'Acall™);

Execution of the replacement is important from the perspective of the code's generality,
maintainability, and reusability. The user programs the changes without knowing whether
the system programmed will be a base or variant system. By putting things back the way
they were, the user can minimize the possibility of unwanted side effects elsewhere in the
model. Equally important, this procedure minimizes the potential for unwanted side effects
should the new adjustments be used again in another model.

A Worked Example

(A) The Substance to be Modeled

Programmer’s Guide Page 74
SPSD/M Version 14.0



We begin with a description of the substantive logic used in the example. It will be obvious
that the same data-aging goals could have been achieved using the "avoidance™ techniques
described above; however, since our documentary objective here is the illustration of system-
specific data aging techniques, we arbitrarily deem those avoidance techniques to be
"Inappropriate” for our immediate purposes.

Suppose that some exogenous analysis relating to new income tax reporting requirements
suggests that individuals will be reporting more self-employment income. More specifically,
suppose that 5% of those individuals (1) not reporting more than $100.00 of self-employment
income (farm and non-farm combined) and (2) who are aged both over 25 and under 60 and
(3) who further have half a year or more without work and looking for work, really have non-
farm self-employment income that has not previously been reported, but now will be
reported. Moreover, suppose the amounts of "new" self-employment income for these
persons is believe to be distributed uniformly between zero and $4000 per year.

The user seeks to estimate the additional income taxes collectible from these persons and also
to assess the impact of this "discovered” income on reducing the poverty rate as measured
against the LICOs. To carry out this investigation the user plans, in the variant tax/transfer
system, to impute appropriate amounts of these new incomes to randomly selected persons
who satisfy the three conditions.

(B) Relevant New Parameters and Variables

Following recommended SPSM practices for avoiding hard-wired values in a model, the user
establishes the following new user-defined aging parameters:

Parameter Description: Value:
NSEFLAG "New Self-Employment Income Flag" 1
NSEAMT "New Self-Employment Trivial Amount™ 100.0
NSEFRC "New Self-Employment Fraction" 0.05
NSEWKS "New Self-Employment Weeks Requirement” 26
NSEMINAGE  "New Self-Employment Minimum Age" 25
NSEMAXAGE "New Self-Employment Maximum Age" 60

NSEMAXINC  "New Self-Employment Maximum New Income"” 4000.0

Similarly, the user defines new variables that will permit convenient counts of the numbers
of eligible persons and of the number for whom new incomes are synthesized. It will also be
useful to have an additional new variable for the amounts of synthesized income.

Variable: Description:

uvnseef "Eligible New Self-Empl"
uvnsesf "Received New Self-Empl"
uvnseamt "New Self-Empl Amount™

(C) Setting Up for the Analysis

The user begins by creating a new subdirectory for the analysis, GLASSEX5. S/he copies in
the required template files: SPSMGL.dsw (to control the compilation), mpu.h and

Programmer’s Guide Page 75
SPSD/M Version 14.0



Ampd . cpp (to make the new parameters available), vsu.h and vsdu.cpp (to make the
new variables available), and Acal l .cpp (to implement the new system-specific database
adjustments).

We look at the changes in the order in which the user would be encouraged to make them.
(D) Changes to project

All the relevant files should be included in the project and the name of the output model
changed to GLASSEX5.EXE.

(E) Changes to mpu.h

The user provides declarations for all of the new parameters described above.
int NSEFLAG; /* New Self-Employment Income Flag */

NUMBER NSEAMT; /* New Self-Employment "Trivial Amount®™ */
NUMBER NSEFRC; /* New Self-Employment Fraction */
NUMBER NSEWKS; /* New Self-Employment Weeks Requirement */

NUMBER NSEMINAGE; /* New Self-Employment Minimum Age */
NUMBER NSEMAXAGE; /* New Self-Employment Maximum Age */
NUMBER NSEMAXINC; /* New Self-Employment Maximum New Income */

(F) Changes to Ampd . cpp

The user alters the Ampd . cpp file by providing pmaddent and stradd invocations for all of
the new parameters. Appropriate new pmaddent calls would be as follows:

pmaddent(pcp, "NSEFLAG",  (char *)&MP.UM.NSEFLAG, NULL, P_SCL, C_INT, E_FLAG, 0, NULL,
gméddent(pcp, “NSEAMT"", (char *)&MP.UM.NSEAMT, NULL, P_SCL, C_NUM, O, 0, NULL,
g%éddent(pcp, “NSEFRC", (char *)&MP.UM.NSEFRC, NULL, P_SCL, C_NUM, E_FRCT, 0, NULL,
gméddent(pcp, “NSEWKS", (char *)&MP.UM.NSEWKS, NULL, P_SCL, C_NUM, O, 0, NULL,
g%éddent(pcp, “NSEMINAGE™, (char *)&MP.UM_NSEMINAGE, NULL, P_SCL, C_NUM, O, 0, NULL,
gméddent(pcp, “NSEMAXAGE™, (char *)&MP.UM.NSEMAXAGE, NULL, P_SCL, C_NUM, O, 0, NULL,
§;éddent(pcp, “NSEMAXINC', (char *)&MP.UM_NSEMAXINC, NULL, P_SCL, C_NUM, O, 0, NULL,

The associated stradd invocations would appear as follows:
stradd("'NSEFLAG", "New Self-Employment Income Flag'™);

stradd("'"NSEAMT", "New Self-Employment "Trivial Amount®™);
stradd(*'NSEFRC", "New Self-Employment Fraction');
stradd("'"NSEWKS", "New Self-Employment Weeks Requirement');

stradd(""NSEMINAGE', "New Self-Employment Minimum Age');
stradd("'NSEMAXAGE™, "New Self-Employment Maximum Age');
stradd(""NSEMAXINC™, "New Self-Employment Maximum New Income™);

(G) Changesto vsu.h

In this file the user declares the new variables that will contribute to more convenient
validation and tabulation of the individuals for whom new income is considered or actually
synthesized.

int uvnseef; /* Eligible for New Self-Empl Synthesis */

Programmer’s Guide Page 76
SPSD/M Version 14.0



int uvnsesf; /* Received New Self-Empl Income */
NUMBER uvnseamt; /* New Self-Empl Amount */

(H) Changes to vsdu. cpp

In vsdu.cpp the user invokes vardef and stradd to make the new variables available
throughout the new model. As indicated above, there are two classificatory variables to be
used for crosstabulation outputs, and a NUMBER float value for the amount of synthesized
self-employment income.

/* uvnseef: (Class) Flag: Individual eligible for NSE synthesis? */
vardef("'_uvnseef", IN, im.uv.uvnseef, C_INT, V_CLAS);

stradd(*'uvnseef, "Eligibility for Synth Self-Empl™);
stradd("'nseef", "\tNot Eligible\tEligible');

/* uvnsesf: (Class) Flag: Individual Got Synth. NSE? */
vardef(*'_uvnsest”, IN, im.uv.uvnsesT, C_INT, V_CLAS);
stradd("'uvnsesf", "Synth Self-Empl Receipt');
stradd(*'nsesf", "\tNo Receipt\tReceipt');

/* uvnseamt: (Analysis) NUMBER: Amount of synthesized NSE */
vardef("'_uvnseamt”, IN, im.uv.uvnseamt, C_NUM, V_ANAL);
stradd("'uvnseamt", "Synth Self-Empl Amount'™);

() Changes to Acal l .cpp

i) The changes begin with the declaration of new variables critical to the data adjustment
process. We use standard SPSM notation for the pointer to an individual, and for the number
of persons processed (for the stopping rule within households). In addition, there is a vector
declared to hold the original values of the individuals' non-farm self-employment income.

register P_in in; /* pointer to data for current person */
int ini; /* persons processed */
NUMBER orignfse[20]; /* original non-farm self-empl income */

i) The changes continue with the code to store the existing non-farm self-employment
income so that it can later be restored to its original state. We use one of the standard
elements of the bestiary, stepping across individuals in the household, to implement this
archival.

/* Archive original database values for non-farm self-employment */

for (ini=0, in=&hh->in[0]; ini<hh->hhnin; in++, ini++) {
orignfse[ini]=in->id. idisenf;
}

A slightly more efficient version of this code would make the execution of the storage
instructions conditional upon the NSEFLAG parameter being set to a value of 1 to activate
the synthesis facility. The version here is simpler and slightly safer.

iii) Implement the conditionally augmented self-employment income

[Work in the use of existing pseudo-random variables for both the choice of new persons to
report self-employment earnings (non-farm) and the amount of it to report. Explain how this
is central to replicability given selection of subsets of the data.]

/* Selectively synthesize non-farm self-employment income */

Programmer’s Guide Page 77
SPSD/M Version 14.0



for (ini=0, in=&hh->in[0]; ini<hh->hhnin; in++, ini++) {
in—>im.uv.uvnseef=0; /* assign values to new vars */
in->im.uv.uvnsesf=0;
in->im.uv.uvnseamt=(NUMBER)0.0;
ifT (MP.UM_NSEFLAG==0) {
continue; /* don"t synthesize if facility is off */
}

it ( ((in->id.idisefm+in->id. idisenf)>MP_UM_NSEAMT) ||
(in->id. idnage<MP .UM.NSEMINAGE) ||
(in->id. idnage>MP .UM.NSEMAXAGE) ||
(in->id. idlyun<(int)MP.UM_NSEWKS) ) {
continue; /* ignore ineligible individuals */
}

in->im.uv.uvnseef=1; /* mark indiv. as potentially eligible */

if (in->id.idrand[2]>MP.UM.NSEFRC) {
continue; /* individual was not selected to get income */
T

in->im.uv.uvnsesf=1; /* mark indiv. as recipient */ in->im.uv.uvnseamt=in-
>id. idrand[3]*MP .UM.NSEMAXINC; /*synthesize amt */ in->id.idisenf+=in-
>Iim.uv.uvnseamt; /* add syn amt to non-farm self-empl */

}
The preceding code, though a bit lengthy, is straightforward. Inside the loop through
individuals, one performs the following actions:

Assign default values to the new user-defined variables.

Skip the rest of the loop if the facility was not activated.

Skip the rest of the loop if the individual doesn't meet the qualifying conditions for
synthesis of new self-employment income.

Mark the individual as potentially eligible for synthesis; then skip the rest of the loop
if the individual is not "chosen” to receive income.

If execution reaches this stage, mark the individual as a recipient of synthesized
income and impute the amount, adding the new amount to the person's non-farm self-
employment variable.

Once the loop has been executed, the synthesis of new non-farm self-employment income is
complete for all members of the household. At this point the "regular" statements of
Adrv._cpp follow, calculating the tax/transfer amounts and the several memo items.

iv) Finally, after the adjusted household has been processed through all of the tax/transfer
and memo functions, the new code restores the original non-farm self-employment income
values.

/* Restore original database values for non-farm self-employment */
for (ini=0, in=&hh->in[0]; ini<hh->hhnin; in++, ini++) {

in—>id.idisenf=orignfse[ini]; }

Programmer’s Guide Page 78
SPSD/M Version 14.0



A slightly more efficient version of this code would make the execution of the restoration
instructions conditional upon the NSEFLAG parameter being set to the value of 1 that
activates the synthesis facility. The version here is simpler and slightly safer.

(J) The new MPI and CPI files

It still remains to provide values to the several parameters so that the SPSM, during a
particular run, can implement the desired adjustments. A parameter "include file" (extension
".MPI") with the following entries performs this function.

NSEFLAG 1
NSEAMT 100.0
NSEFRC 0.05
NSEWKS 26.0
NSEMINAGE 25.0
NSEMAXAGE 60.0
NSEMAXINC 4000.0

Similarly, it is necessary to make sure that the relevant independent streams of pseudo-
random variates are generated to serve as inputs to the "random" choices of synthetic income
recipients and the associated amounts of synthesized income.

(K) Compiling and Validating the Model

With all of the source code changes complete, the user should first debug the model and then
compile the desired executable file, GLASSEX5. We conclude this worked example by
characterizing a very quick and dirty set of validation tables. For a serious application, the
user would normally undertake a much more rigorous validation of the changes. Recall too,
that this kind of system-specific data adjustment could more easily have been accomplished
using results files (" -MRS"). Under that mechanism, an equivalent income assignment logic
would have been applied via the adju.cpp file, and the relevant parameters would have been
supplied via an AP file.

Assume, for purposes of this quick and dirty illustrative validation, that the user's exogenous
source has already indicated roughly how many individuals should display new self-
employment income, perhaps as a function of some relevant policy variable.

The user will first want to tabulate the numbers of individuals according to the values
of the two user-defined classificatory variables, uvnseef, and uvnsesf. Then the
entries in this table can be compared to the exogenous source to confirm (1) that the
numbers of eligible individuals agrees with those specified in the "exogenous source,"
(2) that an appropriate proportion of these individuals have had new self-employment
income imputed.

Next, the user would want to confirm that the average amount of new imputed self-
employment income is appropriate (i.e. half of the $4,000 NSEMAXINC parameter
value). It would also make sense to tabulate the total amount of new income imputed,
so that this amount can be compared to the increases in federal and provincial income
taxes. Thus the user can confirm whether an appropriate proportion of the new

Programmer’s Guide Page 79
SPSD/M Version 14.0



income is flowing to the government sector as income taxes.

Even for the validation runs, it makes sense to look at the degree of change in the
incidence of units below the relevant LICOs. Given the relatively tight conditions for
the eligibility to receive the synthesized income, and the relatively small portion of
the eligible population selected to receive new self-employment income, the user
should expect only a small change in that incidence.

Here we show the first part of this validation, verifying the amounts of new self-employment
income. We use the SPSD/M for 1986 with the 5% sample. The changes in "poverty rate,"
not shown here, would be derived using the SPSM's "efpovthr" (poverty threshold) and
"impovinc" (income for comparison against the relevant poverty threshold) variables. The
validation is most conveniently performed via crosstabulations. The relevant control
parameters, input viaa " .CP1" file, are as follows:

XTFLAG 1
XTSPEC

IN: { units }
* uvnseef
* uvnsesT;

IN: { uvnseamt,
uvnseamt/units }
* uvnsesft;

IN: { uvnseamt,
imtxf-_imtxfF,
imtxp-_imtxp }
* uvnsesf

The resulting tables then appear as --

Table 1U: Unit Count (000) for Individuals by Eligibility for Synth Self-Empl and
Synth Self-Empl Receipt

Synth Self-Empl Receipt

Y __ Fom e o +
|[Eligibility for Synth Self-Empl |No Receipt] Receipt |
Y __ Fom e o +
INot Eligible | 23351.7] 0.0]
|Eligible | 809.6] 47.2]
e e T +

Table 2U: Selected Quantities for Individuals by Synth Self-Empl Receipt

Synth Self-Empl Receipt

R o o —— +
|Quantity [No Receipt| Receipt |
- Fmm e Fom +
|Synth Self-Empl Amount (M) | 0.0] 92.5]
Juvnseamt/units | o] | 1962]
R o o —— +

Table 3U: Selected Quantities for Individuals by Synth Self-Empl Receipt

Synth Self-Empl Receipt

R Fom Fom e +
|Quantity |[No Receipt] Receipt |
R Fom Fom e +
|Synth Self-Empl Amount (M) | 0.0] 92.5]
| imexf-_imtxf (M) | 1.0] 12.9]

Programmer’s Guide Page 80
SPSD/M Version 14.0



| imtxp-_imtxp (M) | 0.5] 9.5]

PRy Fom Fom e +

As regards the substance of these tables, we'll assume that the 809.6 thousand persons in
table 1U agrees reasonably well with the hypothesized "exogenous data source.” Since 47.2
thousand of these persons received some new self-employment income, the 5% objective has
been roughly met. Presumably the proportion would be closer to 5% were we to use the full
SPSD.

Table 2U confirms that our new algorithm assigns new self-employment income only to
those eligible to receive it. The total amount of new income, and the associated average
amount, confirm that the expected amounts of the new income are being synthesized
(roughly $2000 per selected individual).

Table 3U then indicates how much of the new income, a bit more than a quarter of it, is being
captured by the tax system. As expected, most of the capture is directly from the recipient
individuals, though there is some from non-recipients, primarily because some recipient
individuals become less valuable as personal exemptions due to their new income. Clearly,
with income of less than $100M being distributed across the whole personal sector, we do
not expect any major impacts on the proportion of the population below the LICOs.

Finally, once the user is satisfied as to the correctness of the adjustment procedures, s/he
would run the full SPSD through the model in one or more production runs. To meet the
illustrative goals described at the start of this section, outputs would have to include the
federal and provincial income tax totals, and the numbers of families above and below the
LICOs, with these outputs being produced both with and without the synthesis of new non-
farm self-employment income. Normally, the user would also include breakouts of these
variables by relevant classificatory variables such as family type.

Checklist for System-Specific Database Changes

(A) Create a new subdirectory for the analysis. Copy into it templates for all of the files that
will needed for the analysis. Items that are likely to be required include SPSMGL.dsw,
mpu.h, Ampd.cpp, vsu.h, vsdu.cpp, Acall._.cpp, and a control (".CPR")
file. The user will also create, in this same subdirectory, other files required for the
analysis for which there are no obvious templates, e.g. the *.MP1" file that will provide
values for the system-specific data aging parameters, or a batch file to control the SPSM
session.

(B) Change the project environment to include all the relevant files and change the name of
the executable output file.

(C)Change mpu.h and Ampd.cpp to declare any new system-specific data adjustment
parameters, and to make them available, via invocations of pmaddent and stradd, to the
rest of the SPSM.

(D)Change vsu.h and vsdu.cpp as required to declare any new system-specific model
variables, and to make them available, via invocations of vardef and stradd, to the rest of
the SPSM.

Programmer’s Guide Page 81
SPSD/M Version 14.0



(E) Change Acal I . cpp to save the original values of the variables to be adjusted, to effect
the adjustments, and then, after the household has been processed, to restore the original
values before leaving the procedure. These steps will typically require the definition of
local VECTORS of values dimensioned for the numbers of possible individuals in a
household.

(F) Compile the new model and correct any problems identified by the compiler.

(G) Supply values for the new system-specific data adjustment parameters via an **.MPI"
file or files. When the aging depends on the use of pseudo-random variables, provide a
"_CPI" file with appropriate changes to the SEED parameter. The model will gain
access to these control and model parameter values at model execution time either
interactively or via an SPSM batch file.

(H) Validate the model carefully, and then make production runs.

Programmer’s Guide Page 82
SPSD/M Version 14.0



