

SPSD/M

Programmer’s Guide

This guide describes how to use the SPSM in glass box

mode. Glass box mode allows users to add new variables

and parameters to the SPSM as well as the ability to alter

the SPSM algorithms or implement new algorithms. The

Microsoft C++ compiler from Microsoft Visual Studio.net

2008 is required for using the glass box mode.

Table of Contents

Introduction ..1

Purpose of the Glass box Mode ...1

Hardware and Software Requirements for the Glass box Mode................................3

Programming Knowledge Required ..4

Operating System Knowledge Required ..4

Fundamental Programming Concepts (Not Language Specific)4

Knowledge of the C Programming Language ...4

Quick Start Example ..5

Preliminaries ..6

Changing the project environment ...7

Adding Files to the Project ..7

Changing the Alternative Driver Function (Adrv.cpp) ..10

Adding the new Earned Income Tax Credit (Agai.cpp) ..11

Testing the Resulting Alternative SPSM Model ..14

Summary ..17

SPSD/M and Glass Box Directory Structure ...17

The SPSD Household/Individual Structure ...19

The SPSD/M's Data Structure ..19

Introduction to Pointers in the SPSD/M ..20

The Bestiary ...21

Examples of Looping: ..21

References With Respect to an Individual: ..23

Summary ..24

SPSM Function Calling Structure ..24

Glass Box Development: Adding Typical Scalar Parameters ...26

General Procedure for Making Glass box Changes: A Recapitulation26

Create Task Sub-directory ...26

Identify Files to be Changed ..27

Copy Relevant Files to Task Sub-directory ...27

Edit Those Relevant Files ..27

Compile the new version ...27

Test the New Version of the Model ...27

Carry Out the Intended Analysis..28

Introduction to Parameter Addition ...28

Copy Files Adrv.cpp, Mpu.h, Ampd.cpp, Agai.cpp,

SPSMGL.vcproj, SPSMGL.sln..29

Update the project ..30

Update the Algorithm Description in Adrv.cpp ..30

Modify Mpu.h to Define the new Parameters ...30

Modify Ampd.cpp to Make the Parameters Available to the SPSM31

Modify the Functions that Use the New Parameter(s) ...33

Validate and Make Black-Box Production Runs ...35

Summary/Conclusion ...36

Glass Box Development: Adding Less Typical Parameters ..37

pmaddent: The Function and its Arguments ..37

Characterizing Scalar Parameters ..41

REAL/float/NUMBER Parameters ..41

INTEGER/int Parameters ..42

FLAG Parameters ..42

FRACTION Parameters ...42

OPTION Parameters ..42

EDIT-FRACTION Parameters ..42

DUMMY Parameters ...43

Vectors of User-defined Parameters ..43

Additions to Mpu.h, Cpu.h or Apu.h...43

Additions to Ampd.cpp ...44

User-Defined Parameter Vector References in the Source Code45

Specification of Parameter Vector Values ...45

Summary ..46

User-defined Schedules for Lookups ...47

Schedule Types and Lookup Functions ...47

Appearance in SPSM Header Files ..48

Appearance in pmaddent Calls in Ampd.cpp ..49

Employing Schedule References in User Code ...49

Appearance in Parameter Files ..50

Key Points for Adding Schedule Parameters ...51

Adding Matrices of Parameters ...51

Appearance in Mpu.h ...52

Appearance in Ampd.cpp ..53

Referencing Matrix Elements in Source Code...53

Appearance in Parameter Files ..53

Summary/Conclusion ...54

Glass Box Development: Adding New Variables ...55

Overview for Adding Variables ...56

Dependent Variable Types and Characteristics ...56

The vardef and stradd Functions and their Arguments ..57

Vardef "Name" Argument (and Definition of Variable "Stem" Name):57

Vardef "Home Structure" Argument: ..58

Vardef "Variable Location" Argument: ...58

Vardef "C-Type" Argument (C_NUM & C_INT):58

Vardef "Usage" (Type) Argument (V_ANAL & V_CLAS):58

Stradd Calls for Numeric Analysis Variables: ...59

Stradd Calls for Integer Analysis Variables: ...59

Stradd Calls for Integer Classification Variables: ...59

The Earned Income Tax Credit Example Extended ..60

Changes to project files and Adrv.cpp ...61

Changes to vsu.h ..62

Changes to vsdu.cpp ...62

Changes to Agai.cpp (Or, more generally, any new substantive source

code) ...63

Identifying String ...63

Local Variables ..63

Calculate and Assign the New Model Variables ...63

Changes to Amemo1.cpp ...65

Compilation..66

Validation ...66

Summary/Conclusions ...70

Changing Base and Variant Data Variables ...71

Making Changes That Affect All Tax/Transfer Systems in a Model71

Typical Income and Population Growth Changes Via API Files72

Changes Involving New Logic For adju.cpp ..73

Adding New Database Adjustment Parameters ...73

A Worked Example..74

Checklist for Changing Database Variables "Globally"78

Making Changes That Affect Only the Base or Only the Variant79

Implementing Changes in Acall.cpp ..80

A Worked Example..82

Checklist for System-Specific Database Changes ...88

Programmer’s Guide Page 1

SPSD/M Version 20.0

Introduction

The Programmer's Guide describes how users can alter the SPSM in order to model

tax/transfer systems or policy options not directly addressable by the SPSD/M as distributed;

e.g. they might make an alteration to the logic of the tax/transfer system in order to assess the

static distributional impacts that would result from a policy proposal.

This chapter introduces a variety of preliminary topics critical for understanding the use of

the SPSM in its glass box mode. Specific chapter topics include:

(1) a description of the glass box mode, especially in contrast to the black box mode,

(2) the hardware and software requirements for using the glass box mode,

(3) the degree of programming knowledge required.

Subsequent sections in the guide then take up the details of actually developing glass box

applications. Thus, the following section describes a "Quick Start" procedure that tests the

success of the SPSM installation by effecting a simple glass box modification to the SPSM as

distributed. The Section entitled SPSD/M and Glass Box Directory Structure characterizes

the subdirectory structure relevant to the various aspects of glass box operations. The SPSD

Household/Individual Structure provides critical details on the key SPSD data structures used

by the SPSM. SPSM Calling Structure describes the calling structure of the SPSM modules

that make up a specific model. Glass Box Development: Adding Typical Scalar Parameters

addresses the mechanism for adding user-defined model parameters to an SPSM model,

treating the most common forms of scalar parameters. Glass Box Development: Adding

Less Typical Parameters then takes up the addition of less typical kinds of scalar parameters,

as well as the addition of vectors and matrices of new model parameters. Glass Box

Development: Adding New Variables describes the addition of new variables to a model.

Changing Base and Variant Data Variables provides the definitive statement on managing

standard and alternate algorithms within the context of glass box operations.

PURPOSE OF THE GLASS BOX MODE

A simplified systems view of the process of simulating taxes and transfers may be as follows:

Programmer’s Guide Page 2

SPSD/M Version 20.0

Parameters

Microdata
 Microdata

Reports

INPUTS OUTPUTS

Family
 Allowance

 Algorithm

GLASS BOX

User
 Changes

Old
 Version

Parameters

Microdata
 Microdata

Reports

New SPSM

BLACK BOX

 INPUTS OUTPUTS

C++
 Compiler

TEXT EDITOR

SPSM

BLACK BOX

A user specifies a series of inputs (parameters and data) which are then processed through a

system of algorithms (the Black Box) which in turn produces a system outputs (tables and

microdata). The user may create many different simulations by varying the inputs and then

analyzing the outputs. He may even deduce some of the contents of the black box through

repeated testing. However, the simulations possible are limited by the contents of the black

box. If, for example, the rules of the Goods and Services Tax are not included in the system

of algorithms (with provisions for appropriate input data and parameters) then this program

can not be simulated without actually opening up and changing the black box. This ability

to look inside the black box and alter its contents is like turning the black box into a glass

Programmer’s Guide Page 3

SPSD/M Version 20.0

box.

This guide explains how to use the SPSM in its glass box mode. Specifically, the term

"glass box mode" refers to a method of modifying versions of the executable SPSM program

to accomplish analyses that are not possible with the original, unmodified SPSM. Glass box

mode may be used to add or modify parameters, variables, and algorithms. Using the “glass

box” mode always entails altering the C++ Language source code and recompiling an

executable version of the program. The "black box mode" refers to the subsequent

execution of an executable version, either as shipped by Statistics Canada or as modified by

user’s in “glass box” mode. It is always through the black box mode that a user carries out a

variety of policy relevant simulations via parameter changes, user variables, and tabulation

expressions.

Because of the extra steps involved, users should attempt to avoid the glass box mode

wherever possible. The SPSM provides a number of devices that enable analysts to achieve

many desired results without re-programming. The most common technique is to alter the

default sets of program parameters that drive the SPSM. The analyst could simulate the

impact of an increase or abolition of Family Allowances by changing the numeric values of

the relevant parameters. In a second example, the analyst can define their own variables in

the control parameter file, and can use the resulting variables in a whole range of SPSM

outputs. The Introductory Guide provides an extensive detailed example in which an

analyst uses the user-defined variables to simulate an earned income tax credit. Similarly,

the analyst can create variables “on-the-fly” as expressions and export or tabulate them just

as if they had been full-fledged variables, and can conveniently represent differences

between a given variable in the base and variant tax/transfer systems. The XTab User’s

Guide provides several examples of this type of on-the-fly definition.

The Glass box mode must be used under the following conditions:

(1) Adding any new parameters.

(2) Adding new variables that require reference to other specific family members.

(3) New proposals which are designed to interact with the tax/transfer system. For

example, a taxable newborn allowance.

(4) New proposals that alter the logic of existing programs in ways that have not yet been

parameterized.

When users need to make such changes in the SPSM to reflect alternative tax/transfers

systems, they need to be familiar with the techniques described in this guide.

HARDWARE AND SOFTWARE REQUIREMENTS FOR THE GLASS BOX MODE

The Introduction and Overview provides the definitive statement on hardware and software

requirements.

The key aspects of software requirements are as follows:

1. Use of the SPSD/M in the glass box mode requires the availability of Visual C++ that

serves to compile the user's C language source code statements into the machine language

format required by the SPSM. For this version of the SPSM, you need Microsoft Visual

Programmer’s Guide Page 4

SPSD/M Version 20.0

Studio .net 2008.

2. The SPSM itself requires an operating system compatible with the version of Visual C++.

PROGRAMMING KNOWLEDGE REQUIRED

Because use of the SPSM in the glass box mode requires the user to do some programming,

glass box user will have to be somewhat more knowledgeable than the typical black box user.

This section characterizes the kinds of things that a glass box user will either have to know or

be prepared to learn.

Operating System Knowledge Required

Using a glass box model with classic SPSM requires that the user be fairly comfortable with

a number of areas relating to the operating system. The user should be familiar with the

concept of the DOS environment and with environment variables such as the PATH variable.

Effective operation in the SPSM’s glass box mode also requires that users be proficient with

a number of DOS commands.

The Visual SPSD/M interface is capable of running glass box models. Users must indicate

that an alternative code base is required in the Scenario Selection box and browse to the path

of the executable glass box file. Once loaded, any new glass box parameters can be

accessed on the hierarchy lists, the new user parameters will be in the final section in the

hierarchy.

Refer to the How to Run the SPSM Guide for references to both Classic and Visual SPSM

usage.

 Fundamental Programming Concepts (Not Language Specific)

The SPSM glass box is not the place to learn your first programming language. Users

should be familiar with at least one high-level computer language prior to using the

Glass-Box (e.g. JAVA, VB, SPSS, and SAS). Because glass box applications involve

programming in a compiled language, it is desirable that glass box users come to the task

already familiar with the key concepts. A user should be comfortable with the idea of using

a text editor to write or revise source code, and with the idea of using a compiler to produce

the desired executable file. The user will benefit from a familiarity with the notions of

libraries, macros, modular programming and program validation.

More critically, a user's experience with these concepts should be applied. Preferably,

before tackling SPSM glass box applications, a user should already have written and

debugged several non-trivial computer programs, not necessarily using the C++ language.

Although it may be possible for a user to learn to program by using the SPSM, we

recommend against the attempt. For prospective SPSM users needing to build or reinforce

basic programming skills, a wide variety of programming texts are available.

Knowledge of the C Programming Language

The SPSM code base was originally written in C language and has since been ported to C++.

References to programming language in this guide use C and C++ interchangeably. Current

Programmer’s Guide Page 5

SPSD/M Version 20.0

glass box users must program in C++. Although the structure of the SPSM means that

certain things like input/output are done for the user, the prospective user will be most

efficient if the basics are previously understood. Users have to understand the purpose of

defining constants and declaring variables, and must appreciate the scopes of these

declarations. They must understand variables and variable types, specifically including

pointer variables and structured variables, and how the C language uses them. They must

understand the nature and structure of functions and the variety of statements that comprise

them. They must be familiar with C's major flow of control statements (if-else, switch,

while, for, do-while), as well as C's table of assignments and operators, including the

increment operator. For users who have worked in other programming languages and are

capable of absorbing this information in a concentrated form, Kernighan and Ritchie's book,

"The C Programming Language" is the standard reference. Similarly, the C++ language

manual that comes as part of the Microsoft C++ Optimizing Compiler is a very useful and

authoritative source for information about C++ and its implementation.

Finally, of course, SPSM users must understand the basics of the Microsoft C++ Compiler.

It is also necessary to understand the thrust of what is going on, and the various error

messages that the compiler may give in response to the user's code. The authority on these

topics is, of course, Microsoft's set of manuals for the C++ compiler.

Quick Start Example

As its title suggests, this chapter provides the user with a quick start at using the SPSM in its

glass box mode. The chapter serves three main functions. First, it allows the user to check

the installation of the compiler and SPSD/M. If the user can carry out the chapter's simple

example successfully, then all of the major portions of the installations were performed

properly. Second, the example introduces key glass box concepts and terminology. Third,

the example illustrates, in an integrated manner, the general flow of glass box applications.

The chapter's approach is primarily narrative. Taking the reader through all the steps of a

simplified glass box application, it concentrates on the general approach. It describes the

key details of the exercise, but does not attempt to be exhaustive. The particular illustration

used here was selected for its simplicity; it addresses the most critical aspects of glass box

applications, but doesn't get bogged down in the additional requirements associated with

more ambitious applications.

To illustrate a relatively straightforward glass box application, we revisit an earlier example

simulation used in black box mode, the introduction of a new Earned Income Tax Credit,

originally outlined in Session 3 of the Example Simulations in the Introduction and Overview

Guide. The basic design of the benefit is repeated below.

Eligibility: Individuals aged 21 years or over are individually eligible if they reside

in census families in which children under the age of 21 years are

present.

Maximum

Benefit:

Maximum benefits are $1,200 for each eligible person.

Programmer’s Guide Page 6

SPSD/M Version 20.0

Income Test: Income testing will be based on the employment income of an

individual plus the employment income of their spouse if present.

Turning Points: Benefits begin with the first dollar of earned income. At $8,000 dollars

of employment income the benefits reach the maximum and continue at

that level until $12,000 of earned income where they begin to be

reduced.

Reduction Rates: 15% of earned income is payable as a benefit up to a maximum of

$1,200. After $12,000 of earned family income maximum benefits are

reduced by 10¢ for each additional dollar of earned income.

As regards the narrative, readers should not worry about the "whys" of the implementation.

Subsequent sections in this Programmer's Guide will address all of them more fully.

However, it is highly desirable that the user work through the example to the point of

actually carrying out all of the tasks described. Only in this way can the first purpose,

confirmation of the installation processes, be realized.

PRELIMINARIES

The user should begin by selecting a subdirectory in which to work. This is the hard disk

subdirectory in which the user will edit copies of the relevant C++ language source code files

and describe the nature of the alternative system. We strongly recommend that the user

employ a directory other than those that the SPSD/M installation establishes for the

SPSD/M itself. The user can make a new subdirectory if necessary. For purposes of this

narrative, we'll assume that a subdirectory named GLASSEX1 is available as the working

subdirectory.

The user begins the process by copying, from the SPSD/M's GLASS subdirectory, to the

GLASSEX1 work subdirectory, all of the relevant template files. Template files are files

that already contain most of the necessary information for a glass box application, and which

the user will modify to create the final versions necessary for the application. For this

example, the relevant template files are as follows:

1. Adrv.cpp, the alternate "driver" template that invokes all of the SPSM’s tax/transfer

functions in the correct order. This template, distributed as part of the SPSM, is

effectively a duplicate of the base driver function (the user should copy it in its

working subdirectory).

2. Agai.cpp, the alternate template that effects the computation of the new guarantees and

refundable credits. This template, distributed as part of the SPSM, is a stub function for

use by glass-box users who wish to incorporate a new program that does not affect

current programs in the tax system (i.e. a new refundable tax credit). (the user should

copy it in its working subdirectory).

3. SPSMGL.sln and SPSMGL.vcproj carry out the compilation and linking of the user's

new model (copy these files from /spsm/glass to your working subdirectory).

For other glass box applications the user may also need to copy other tax/transfer templates

and/or C language header files. In this example, however, the user does not need to alter

Programmer’s Guide Page 7

SPSD/M Version 20.0

any of the header files because the new model creates no new variables and uses no new

formal parameters.

The general procedure for our illustrative glass box application is straightforward.

Working on writable COPIES of Adrv.cpp and Agai.cpp we make the small number of

changes as described below.

1. Then we open the solution SPSMGL.sln utility in Visual Studio.net.

CHANGING THE PROJECT ENVIRONMENT

The key subdirectory \SPSM\DEFS should all be added in Tools: Options: Projects: VC++

Directories: Include files, since definitions relevant to glass box applications reside there.

The key subdirectory \SPSM\WIN32 should all be added in Tools: Options: Projects:

VC++ Directories: Library files, since libraries relevant to glass box applications reside

there.

ADDING FILES TO THE PROJECT

The first step in adding files to the project involves opening the solution file spsmgl.exe from

the working directory. Doubling clicking on this file should result in the following screen

display.

Programmer’s Guide Page 8

SPSD/M Version 20.0

Before adding the selected files, make sure that the solution spsmgl is highlighted (see the

right hand panel in the above snapshot), and that the solution tab is selected on the bottom of

the solution panel.

To add the files Adrv.cpp and Agai.cpp, select Project: Add Existing Item and navigate to the

working directory and select the 2 files, then select Open.

Programmer’s Guide Page 9

SPSD/M Version 20.0

If the files are added correctly, they should appear under the solution spsmgl as per above.

At this point users should build the model to ensure everything is working. This can be

done using the drop down menu Build: Build spsmgl.

In this quick example, the name of the compiled model is modified from the default

executable name of spsmgl to glassex1. This can be accomplished by changing the solution

properties found under the solution panel on the right hand side of the screen. Users should

also ensure that the spsmgl solution is highlighted. Then in the properties panel, next to the

(Name) field, type in the new executable name, in this case GLASSEX1 and save the

changes. Following this step, the build steps should represent the new executable name.

Selection of the drop down Build menu item should represent the name change as per the

next illustration.

Programmer’s Guide Page 10

SPSD/M Version 20.0

CHANGING THE ALTERNATIVE DRIVER FUNCTION (ADRV.CPP)

Adrv.cpp contains two kinds of information that the glass box user will want to alter. The

first kind consists of labelling information that the SPSM uses in its reports and error

messages. When the user makes appropriate changes here, the resulting output becomes

more informative. The second kind consists of the function calls that effect the substance of

the model's tax/transfer calculations.

The user makes the labelling changes in the portion of the code, starting at about line 79, that

looks as follows:

==================== GLOBAL VARIABLE DEFINITIONS ============== */

/*global*/ char ALTNAME[IDSIZE+1] = "Unnamed";

/* Give global string describing version of this module */

/*global*/ char FAR Tdrv[] = "Untitled"

The ALTNAME[IDSIZE+1] string provides an identifying name for the alternative

driver; the user replaces the placeholder "Unnamed" with the more informative name "EITC

Quick Start". The new name must not exceed 20 characters in length. This alternative

name will then appear in the greeting screen. The Tdrv[] string provides a title for the

alternative driver; the user replaces the placeholder "Untitled" with the more informative title

"EITC Quick Start". The new title may not exceed 20 characters in length. TDrv's

contents appear as information in the control parameter file as an algorithm description.

Programmer’s Guide Page 11

SPSD/M Version 20.0

Upon completion of these substitutions, the revised "labelling section" appears as follows:

/* ==================== GLOBAL VARIABLE DEFINITIONS ============== */

/*global*/ char ALTNAME[IDSIZE+1] = "EITC Quick Start";

/* Give global string describing version of this module */

/*global*/ char FAR Tdrv[] = "EITC Quick Start"

In the substantive portion of the code, the user needs to make only a single change to

indicate that the calculation of benefits for the variant system should use an alternate

credit calculation.

The relevant portion of the code, a single line appearing at about line 164, appears as follows:

gai(hh); /* compute new guarantees, refundable credits */

Unmodified, it invokes a function that simply assigns 0 to the variable imiosa for all

members of the household. The user changes the line to invoke, instead, the alternative new

credit calculation that we shall describe shortly. The modification consists solely in the

substitution of the new function name, and the revised source code appears as follows:

Agai(hh); /* compute new guarantees, refundable credits */

For this quick start example, these three simple changes constitute the entire set of

modifications for the Adrv.cpp function.

ADDING THE NEW EARNED INCOME TAX CREDIT (AGAI.CPP)

The Agai.cpp function is designed for glass box users to add new programs that do not

effect other programs in the current tax system for the alternative model. In a manner

analogous to the Adrv.cpp changes, the user's changes fall into two categories, labelling

changes and substantive changes.

The labelling change is very straightforward. At about line 48, the function provides for a

title, Tgai[], for the module, with the title being used in the report in which the SPSM

indicates the functions used to calculate the taxes and transfers. As with the title for the

driver, this title appears as an algorithm description in the control parameter file. The

relevant portion of the code appears as follows:

=============== GLOBAL VARIABLE DEFINITIONS ================== */

/* Give global string describing version of this module */

/*global*/ char FAR Tgai[] = "Untitled"

The user changes the "Untitled" string to something rather more informative. The resulting

section then appears as follows:

=============== GLOBAL VARIABLE DEFINITIONS ================== */

/* Give global string describing version of this module */

/*global*/ char FAR Tgai[] = "EITC Quick Start"

The substantive portion of the Agai.cpp changes is a bit more complicated, but not

extremely so. This function contains a variable (imiosa – Other SA or guarantees) that is

always ‘zero’ in black box mode, but can be used in ‘glass box’ algorithms to model new

programs. The value of ‘imiosa’ is included in federal transfer programs (imftran) which is

also included in disposable income (immdisp). This setup is handy for glass box users to

model new programs for which the impacts on disposable income could be measured.

Programmer’s Guide Page 12

SPSD/M Version 20.0

The Agai.cpp file contains a small household loop that initializes the value of imiosa to 0

for everyone.

 register P_in in;

 register int ini;

 DEBUG_ON("Agai");

 /* process persons in household */

 for (ini=0, in=&hh->in[0]; ini<hh->hhnin; ini++, in++) {

 in->im.imiosa = ZERO;

 }

 DEBUG_OFF("Agai");

This block of code can be removed (or commented out) and replaced with the following.

 register P_in in;

 register int ini;

 register P_in ineld;

 register P_in inspo;

 register P_cf cf;

 register int cfi;

 int nceitc;

 NUMBER cfempinc;

 NUMBER eitc;

 DEBUG_ON("Agai");

 /* process persons in household – currently commented out*/

/* for (ini=0, in=&hh->in[0]; ini<hh->hhnin; ini++, in++) {

 in->im.imiosa = ZERO;

 }

*/

 /* process each census family in household */

 for (cfi=0, cf=&hh->cf[0]; cfi<hh->hhncf; cfi++, cf++) {

 /* initialise elder's pointer */

 ineld = cf->cfineld;

 /* calculate elder's contribution to family net income */

 cfempinc = ineld->id.idiemp;

 if (cf->cfspoflg) {

 DEBUG1("%s spouse present\n");

 inspo = cf->cfinspo; /* spouse's in pointer */

 /* add spouse's net income to family net income */

 cfempinc += inspo->id.idiemp;

 }

 nceitc= 0;

 /* process children in census family */

 for (ini=0, in=cf->cfinch; ini<cf->cfnchild; ini++, in++) {

 if (in->id.idage >= 21) {

Programmer’s Guide Page 13

SPSD/M Version 20.0

 DEBUG2("%s discarding old child, aged %d\n",

in->id.idage);

 continue;

 }

 /* Count up remaining children */

 nceitc++;

 }

 eitc = 0;

 if (nceitc > 0) {

 if (cfempinc < 8000) {

 eitc = .15 * cfempinc;

 }

 else if (cfempinc <= 12000) {

 eitc = 1200;

 }

 else if (cfempinc < 24000) {

 eitc = 1200 - ((cfempinc - 12000) * .10);

 }

 else {

 eitc = 0;

 }

 }

 /* process persons in census family */

 for (ini=0, in=cf->cfin; ini<cf->cfnpers; ini++, in++) {

 if (in->id.idage > 20) {

 in->im.imiosa = eitc;

 }

 }

}

DEBUG_OFF("Agai");

The basic logic of the code is to process each census family separately. First, the head of the

census family is identified and the head’s earned income is added to the temporary variable

cfempinc (census family earned income). Next, it is determined if a spouse exists and if so,

the spouse’s earned income is added to cfempinc. Then a loop is necessary to go through

the children in the census family and count up the number of children aged 0 to 20. Then

for families where there is at least one child under the age of 21, the amount of the earned

income benefit is calculated. For families with earned incomes of less than $8000, the

benefit would be equal to 15% of their earned incomes. Families with incomes greater than

$8000 but less than or equal to $12,000 are assigned a maximum benefit amount of $1200.

Families with earned incomes greater than $12,000 and less than $24,000 get a reduced

benefit equal to the maximum amount of $1200 less 10% of their earned income in excess of

$12,000. Finally families with earned incomes in excess of $24,000 are not entitled to the

earned income tax credit and are thus assigned a value of 0. One more final loop through

persons in a census family is performed to assign the family’s value for the earned income

tax credit to every person aged 21 or over in families with children under the age of 20.

Programmer’s Guide Page 14

SPSD/M Version 20.0

With the completion of the changes to Agai.cpp, the user's real work in implementing the

changes is now essentially done. All of the relevant substance and labelling changes are

complete and, assuming there have been no errors during their entry, all that remains is the

compilation of the new model and then its validation. Most important, though, it is the

resulting executable file from C++ compile, in this example GLASSEX1.EXE, that the user

runs to analyze the impacts of the change that was modeled.

TESTING THE RESULTING ALTERNATIVE SPSM MODEL

Users have 2 options of running the glass box model.

1. Visual SPSM - The Visual interface is designed to read alternative model code – once the

visual interface is opened and the user selects to run a new simulation, the user can then

select the glass box option and browse to the subdirectory containing the glass box

executable file. They can then also select to run a base and/or variant scenario using either

the standard SPSM modules and/or the glass box model.

2. Classic SPSM – Users who are comfortable in classic SPSM use may run glass box

models in much the same manner with a simple substitution of the executable model’s name

(and the directory path if necessary) in the batch file.

Users should refer to the How to Run the SPSM Guide for further details.

With all of the changes made, and the resulting files compiled and linked to create the new

executable file, we are ready to test the new model. The two related goals of this step are:

1. to seek evidence about whether we have successfully made the desired change, and

2. to generate outputs that will help us diagnose errors should we have made any.

A very natural form of evidence takes the form of crosstabulations from a comparative run

that uses the unmodified tax/transfer system as its base system and the modified form as its

variant system. Later in this section we offer examples of two such crosstabulations.

In order to make the desired comparative run of the new model and get the output we need,

we must alter the control parameters for the model. The Parameter Guide provides the

authoritative description of SPSM control parameters; here we simply list the key parameter

values for our purposes: (The "glassx1a" portion of the two file names is an acronym for

"Glass box example 1, version a".)

OUTCPR glassx1a.cpr # Name of control parameter file (out)

VARALG EITC Quick Start # Name of variant algorithm

VARMETH 3 # Method of creating variant variables

BASMETH 2 # Method of creating base variables

OUTTBL glassx1a.tbl # Name of report file (out)

Note that it is extremely important to supply the control parameter to run the alternative

algorithm by setting VARMETH to 3 if using classic SPSM.

A few tables will suffice for validation in this example:

Programmer’s Guide Page 15

SPSD/M Version 20.0

1. tabulate the amount of EITC benefit, the number of gainers as defined as a positive

change in disposable income between the base and variant scenarios, the number of

individuals unaffected by the new benefit (no difference in base and variant disposable

incomes) by age groupings to illustrate that the benefit is going to the right individuals,

and

2. tabulate the average EITC benefit for gainers by employment income group to show that

we are giving the new tax credit to only the right kinds of units, and

3. provide a similar tabulation as the first two by base disposable income grouping.

Using the analysis from the Session 3 Example, with a slight change as the variable imiosa is

already included in disposable income, the UVAR statements for this validation will look as

follows:

gainer = @immdisp > 0;

label(gainer) = “Received EITC Flag (Gainer)”;

nochange = (@immdisp==0);

label(nochange)=”Unaffected by EITC Flag”;

agegrp=split(idage,20,64);

label(agegrp)=”Age”;

empigrp=split(idiemp,0,8000,12000,24000);

dispgrp=split(_immdisp,5000,10000,15000,20000,25000,

 30000,35000,40000,45000);

label(dispgrp)=”Base disposable income group”;

Note that the glass box results were produced using a previous version of the SPSM model.

The XTSPEC parameter to generate these tables will look as follows:

XTSPEC

IN:{imiosa, gainer:S=3, nochange:S=3} * agegrp+;

IN:empigrp+ * {imiosa, imiosa/gainer:L=”Average Benefits”,

 gainer:S=3, nochange:S=3};

IN:dispgrp+ * {imiosa, gainer:S=3, nochange:S=3, scfrecs};

The highlights of this request are as follows:

(Note that since the validation of results will be similar to the Session 3 Example in the

Introduction and Overview Guide, the explanation of the tables here will be brief.)

1. The first table demonstrates that the program has been correctly implemented in the sense

that no benefits are being paid to children aged 20 and under.

2. Table 2U illustrates that the tax credit is not paid out to persons with over $24,000 in

employment income as designed and that some individuals with no earned income do

receive the credit as they are in an eligible census family (based on the presence of

children) and that the head/spouse earned income is less than $24,000.

3. The third table simply tabulates the distribution of EITC benefits over individuals by

Programmer’s Guide Page 16

SPSD/M Version 20.0

disposable income group. Those individuals with high disposable incomes who receive

the EITC amount have income from other sources than employment..

The tables that result when one executes the new GLASSEX1 model appear as follows:

Table 1U: Selected Quantities for Individuals by Age

+----------------------------------+--------+--------+--------+--------+

|Quantity | Min-20 | 21-64 | 65-Max | All |

+----------------------------------+--------+--------+--------+--------+

|Other SA or guarantees (M) | 0.0| 804.1| 3.7| 807.9|

|Received EITC Flag (Gainer) (000) | 0.0| 1226.7| 7.4| 1234.0|

|Unaffected by EITC Flag (000) | 8146.0| 17946.5| 4184.0| 30276.6|

+----------------------------------+--------+--------+--------+--------+

Table 2U: Selected Quantities for Individuals by Wages & salaries Group

+-----------+-------------+-------------+-------------+-------------+

|Wages & | Other SA or | Average |Received EITC|Unaffected by|

|salaries | guarantees | Benefits |Flag (Gainer)| EITC Flag |

|Group | (M) | | (000) | (000) |

+-----------+-------------+-------------+-------------+-------------+

|Min-0 | 201.0| 641.2102| 313.4| 14751.3|

|1-8000 | 246.1| 594.5951| 413.9| 3191.6|

|8001-12000 | 143.0| 1006.2308| 142.1| 1073.4|

|12001-24000| 214.6| 597.1696| 359.3| 2556.5|

|24001-Max | 3.2| 608.0466| 5.2| 8703.8|

+-----------+-------------+-------------+-------------+-------------+

|All | 807.9| 654.6415| 1234.0| 30276.6|

+-----------+-------------+-------------+-------------+-------------+

Table 3U: Selected Quantities for Individuals by Base disposable income group

+-----------+----------+----------+----------+----------+

|Base | Other SA | Received |Unaffected| SLID |

|disposable | or |EITC Flag | by EITC | Records |

|income |guarantees| (Gainer) |Flag (000)| |

|group | (M) | (000) | | |

+-----------+----------+----------+----------+----------+

|Min-5000 | 73.7| 139.3| 9226.9| 19744|

|5001-10000 | 94.3| 151.2| 2547.6| 5722|

|10001-15000| 136.1| 202.1| 2987.8| 7607|

|15001-20000| 173.8| 237.2| 2987.4| 8349|

|20001-25000| 163.0| 241.8| 2440.6| 6443|

|25001-30000| 72.7| 118.2| 2309.0| 5650|

|30001-35000| 39.2| 59.9| 1888.1| 4544|

|35001-40000| 17.5| 27.8| 1421.2| 3378|

|40001-45000| 9.5| 12.0| 1041.9| 2378|

|45001-Max | 28.2| 44.5| 3426.1| 7311|

+-----------+----------+----------+----------+----------+

|All | 807.9| 1234.0| 30276.6| 71126|

+-----------+----------+----------+----------+----------+

Programmer’s Guide Page 17

SPSD/M Version 20.0

We conclude from the values appearing in these tables that the changes made above have

quite probably been successful in implementing our intentions.

The testing just described completes our quick start example. Because of the example's

focus we have perhaps not been quite as careful and methodical as would be warranted in the

case of a real application. Thus, we mention briefly here a number of things that we might

have chosen to do in implementing our hypothetical change.

We might have added "revision history" comments to the files Adrv.cpp and Agai.cpp

to document the nature of the changes and our reasons for implementing them as we did.

This form of documentation is an element of sound professional practice for software

development and maintenance.

We might have made a parameter out of the maximum earned income tax credit amount

($1200) value, in case we wanted to repeat the analysis later for a different value of the

Earned Income Tax Credit. Similarly, we might have made a parameter for the age

restriction on children in the census family that determines the eligibility for the EITC

amount. Also parameters for the rates and income turning points could have been made.

In general, the style of alteration and the degree of testing conducted here are appropriate for

the limited goals of this introductory example. However, for a more serious glass box

application the user will probably wish to be more methodical in making the necessary

changes, devoting more attention to issues of documentation, labelling, validation and

possibly to efficiency of computation.

SUMMARY

This chapter has provided a first-pass description of glass box applications in the SPSM,

illustrating them with a specific example. Section topics included changing the substantive

calculations for a new Earned Income Tax Credit, altering the SPSM driver function that

coordinates the calculation of taxes and transfers, and using the C++ compiler to create a new

version of the model. A short section on validation illustrated the generation of tables to

assess the success of the change.

SPSD/M and Glass Box Directory Structure

An initial, general-level comment is in order -- THE USER SHOULD NOT CHANGE

ANYTHING IN ANY OF THESE SPSM SUBDIRECTORIES. (1) Glass box

applications will always involve working with COPIES of some of the files in these

subdirectories. (2) All of the user's glass box work will be done in one of the SEPARATE

SUBDIRECTORIES that the user has created to contain the working files for glass box

applications.

DEFS This subdirectory contains a number of header files that define structures and

constants used throughout the SPSM. Of greatest interest to the glass box

user will be the vs.h file that defines the hierarchical data structure that

Programmer’s Guide Page 18

SPSD/M Version 20.0

holds the SPSD/M's information about households and individuals. Recall,

however, that the user will never have occasion to modify this structure.

The user's addition of user-defined variables is accomplished via a COPY of

the vsu.h file.

EXAMPLE This subdirectory contains various "INCLUDE" files that serve to specify

parameters for the sample runs described in the tutorial portion of the

Introduction and Overview Guide. Although they are potentially very

useful in testing for the successful installation of the SPSM and in learning

how to use models that have already been developed, these files are not

directly relevant to the development of glass box models, and can be ignored

for purposes of this glass box oriented discussion.

GLASS This subdirectory contains templates that the user will use as starting points

for the code that s/he writes to create variant tax/transfer systems and

models. (1) It contains the source code for all of the SPSM’s tax and benefit

functions; the user will probably find it most efficient to create any new

functions by modifying COPIES of these elements. (2) It contains functions

that make the user defined parameters and variables accessible to the broader

SPSM, together with associated header files that define the relevant

structures to hold the user-defined variables and parameters.

MODEL This subdirectory contains examples of the definitions of model variables

and parameters. The elements in the subdirectory are intended ONLY to

serve as concrete examples for the user when s/he begins to define new

parameters and variables for glass box applications. The user will never

have occasion to modify the contents of these files, nor even to use or alter

copies of the files.

WIN32 This subdirectory contains a small number of WINDOWS 32 bits

"controlling object files" that govern the form of the overlay structure that

the SPSM uses. At a very general level, these items are similar to those in

LIB in the sense that SPSMGL.sln needs them and knows how to use them

in the compilation of a new version of the model. It also contains some

executable files used in the modification of SDSD in a project.

For the Quick Start example, ADRV.CPP and AGAI.CPP are the C++ source code files

copied from the GLASS subdirectory and then modified to reflect the desired new program

logic; their OBJ counterparts are the object files produced as outputs when the ".CPP" files

are compiled in WINDEBUG and WINREL. GLASSEX1.EXE and GLASSEX1.ncb were

created by the compile command.

The critical information in this chapter can then be summarized as follows:

1. No SPSM user should change ANYTHING in the SPSM subdirectory or in any of its

subdirectories created during the SPSM installation.

2. The glass box user will establish separate "task" subdirectories for glass box applications.

Preferably these will not be subdirectories under SPSM.

Programmer’s Guide Page 19

SPSD/M Version 20.0

3. The glass box user will copy the relevant elements from the SPSM\GLASS directory,

using them as templates for the changes to be made. The changes themselves are

then made to these COPIES. Subsequent sections in this Programmer's Guide indicate

in considerable detail what the user must change and where the relevant templates are

located.

4. The key subdirectories \SPSM\DEFS should all be added in Tools: Options: Directory,

since definitions relevant to glass box applications reside there.

The SPSD Household/Individual Structure

This chapter has three major goals, each of them developed in a separate section, but all of

them relating to the general topic of the SPSD/M's data structures and their usage.

This following section provides a snapshot overview of the SPSM’s framework for storing

data about the household, its families, and their component individuals. An appreciation of

this structure is crucial to the glass box user as he/she seeks to refer to or alter the values of

existing data variables and modeled variables, and to create such new variables as would be

necessary for a customized version of the SPSM.

The second section develops the use of pointer variables as a major tool by which the user

accesses individual elements of the data. It also describes the major naming conventions

relevant for glass box applications. These topics are relevant both for users building their

own glass box applications, and those seeking to understand the standard SPSM algorithms.

The underlying "philosophy" for this development is consistent with the rest of this guide --

in many respects it is considerably more important for the glass box user to know how,

mechanically, to do something in a standardized, robust fashion, than to understand all of the

design-oriented reasons behind the structures and techniques. In other words, the section's

focus is determinedly practical; it concentrates much more on the mechanics of "how-to"

than the niceties of "why”.

The third section provides a "bestiary" of code fragments for performing common glass box

tasks, particularly as regards to data structures. The idea is not only that the user should be

able to copy an existing wheel rather than re-inventing it, but that the copied wheel should

further exist in a standardized format, and not require debugging. The section's code

fragments include (a) processing relevant individuals/families via "for" statements, (b)

referring to other family members, (c) accessing existing database and modeled variables,

and (d) assigning new values to variables.

THE SPSD/M'S DATA STRUCTURE

The SPSD is a file whose order is fixed. It cannot be sorted by the user. The sort order of

the database is critical to understand when attempting to loop through households. The

database is clustered into households that are randomly sorted in a stratified way. Each

individual household is then sorted as follows:

Household

Programmer’s Guide Page 20

SPSD/M Version 20.0

Economic Families

Census Families

Nuclear Families

Head of Family

Spouse if present

Youngest Child to Oldest Child

Within a household, individuals are grouped into economic families. Within an economic

family, individuals are grouped into census families. Within the census family, individuals

are grouped into nuclear families. Within the nuclear family, the head is always first

followed by the spouse if present. Children then follow sorted according to their age.

An entire household is loaded into the data structure specified above. Loops may then be

established to process any of the units of analysis within a household.

Detailed descriptions of the substance of individual SPSD/M variables themselves appear in

the Variable Guide. Much of the detail with respect to the content of the several structures

can be found in vs.h. The key items required to define variables can be found in spsm.h.

Some of the macros allow the user to do things symbolically to make their meanings clearer,

or for consistency in numerical precision:

#define LOGICAL int /* type used to store true or false values */

#define TRUE 1 /* manifest constants to make code more readable */

#define FALSE 0

#define NUMBER float

#define ZERO (float) 0.0

#define HALF (float) 0.5

#define ONE (float) 1.0

#define THOUSAND (float) 1000.0

#define MILLION (float) 1000000.0

INTRODUCTION TO POINTERS IN THE SPSD/M

The uv structure is one whose contents are defined by the user, in terms of both substance

and variable names. A chapter describes how the user creates new variables, e.g. defining a

new tax or transfer program. The user controls the substance of "uv" via the vsu.h header

file, and the vsdu.cpp file, but can alter the values of the defined elements themselves

anywhere inside Adrv.cpp. These definitional and assignment capacities are the

essence of glass box applications when the user needs to add new variables. Of course the

user must be careful to give any new variable/tax to the right individual(s) so that roll-ups

will work properly throughout the remainder of the SPSM.

The C++ language makes heavy use of pointer variables, i.e. variables that point to a

particular area of memory, and especially to a specific data structure. Although the portions

of the SPSM's source code dealing with tax/transfer algorithms make less use of pointers and

pointer arithmetic than those portions closed to the user, the glass box user will still have to

Programmer’s Guide Page 21

SPSD/M Version 20.0

employ pointers. Even though the usage of pointers is essential, the design of the SPSM has

made it as simple as the designers could manage. A variety of macros and code fragments

are provided to make the pointer usage as simple and often as mechanical as was feasible.

The Bestiary section briefly shows how these pointers are applied for typical glass box tasks

such as looping and referencing. Note, however, that this section is in no way intended to

provide a comprehensive course in pointer usage more generally outside the SPSM.

THE BESTIARY

A bestiary is a "collection of descriptions of real or imaginary animals”. The particular

"animals" collected and described here are real. They are fragments of C++ language source

code likely to be useful to the glass box user as s/he reads and writes the code for tax/transfer

programs. The code fragments described here are all included in the code base for the

SPSM algorithms (found in the GLASS directory) so that the user can copy the segments

without having to retype them.

The elements of the bestiary are provided in support of a philosophy emphasized throughout

this guide. More precisely, users should not have to reinvent the wheel, but should be given

every assistance in taking advantage of things that already exist within the SPSM. Being

able to copy existing code, perhaps modifying it in the process, provides four major

advantages.

1. The existing source code is known to be correct, and thus doesn't have to be debugged.

2. There will be greater consistency between the user's code and that of the distributed

SPSM.

3. Copying is much faster than re-entry.

4. The user can often get the needed job done, safely, without having to understand all of

the underlying detail. The general format used is that of a heading, followed by the code

itself, and, sometimes, a short comment or explanation.

Examples of Looping:

One of the most common tasks in reading, modifying or writing code is looping through the

relevant units in a household or one of its substructures. The following set of code segments

probably come close to being exhaustive as regards the looping required by the user. Note

that the source code segments include the relevant definitions required. E.g. in the first

example below, the user must declare the pointer 'in' of type 'P_in,' and the integer, 'ini' so

that they can be used in the operation of the loop. In practice, the definitions will appear in

the source code prior to the loop itself.

/** * PROCESS ALL INDIVIDUALS IN HOUSEHOLD hh **/

register P_in in;

int ini;

for (ini=0, in=&hh->in[0]; ini<hh->hhnin; ini++, in++) {

 DEBUG2("%s processing individual %d in household\n", ini);

 /* code here, using pointer 'in' */

 }

Programmer’s Guide Page 22

SPSD/M Version 20.0

In the preceding loop, and the others that follow, the C++ 'for' statement is used. Items

before the initial semicolon initialize variables for the looping. The condition between the

two semicolons specifies when the loop is to continue. The items still within the

parentheses, but after the second semicolon specify the incrementing necessary for the next

iteration. Also included in the code fragment is a 'code here' comment. It indicates where

the SPSM's code, or the user's code, should go to act on the unit through which the loop

cycles. The 'code here' comment also identifies that unit in terms of the pointer that the loop

controls.

/*** PROCESS ALL INDIVIDUALS IN ECONOMIC FAMILY ef **/

 register P_in in;

 int ini; for (ini=0, in=ef->efin; ini<ef->efnpers; ini++, in++) {

 DEBUG2("%s processing individual %d in economic family\n", ini);

 /* code here, using pointer 'in' */

 }

 /*** PROCESS ALL INDIVIDUALS IN CENSUS FAMILY cf **/

 register P_in in;

 int ini;

 for (ini=0, in=cf->cfin; ini<cf->cfnpers; ini++, in++) {

 DEBUG2("%s processing individual %d in census family\n", ini);

 /* code here, using pointer 'in' */

 }

 /*** PROCESS ALL CHILDREN (including 18+) IN CENSUS FAMILY cf **/

 register P_in in;

 int ini;

 for (ini=0, in=cf->cfinch; ini<cf->cfnchild; ini++, in++) {

 DEBUG2("%s processing child (including 18+) %d in census family\n", ini);

 /* code here, using pointer 'in' */

 }

 /*** PROCESS YOUNG CHILDREN IN CENSUS FAMILY cf **/

 register P_in in;

 int ini;

 for (ini=0, in=cf->cfinch; ini<cf->cfnkids; ini++, in++) {

 DEBUG2("%s processing child (<18) %d in census family\n", ini);

 /* code here, using pointer 'in' */

 }

 /*** PROCESS ALL INDIVIDUALS IN NUCLEAR FAMILY nf **/

 register P_in in;

 int ini;

 for (ini=0, in=nf->nfin; ini<nf->nfnpers; ini++, in++) {

 DEBUG2("%s processing individual %d in nuclear family\n", ini);

 /* code here, using pointer 'in' */

 }

 /*** PROCESS CHILDREN IN NUCLEAR FAMILY nf **/

 register P_in in;

 int ini;

 for (ini=0, in=nf->nfinch; ini<nf->nfnkids; ini++, in++) {

 DEBUG2("%s processing child %d in nuclear family\n", ini);

 /* code here, using pointer 'in' */

Programmer’s Guide Page 23

SPSD/M Version 20.0

 }

 /*** PROCESS ALL ECONOMIC FAMILIES IN HOUSEHOLD hh **/

 P_ef ef;

 int efi;

 for (efi=0, ef=&hh->ef[0]; efi<hh->hhnef; efi++, ef++) {

 DEBUG2("%s processing economic family %d\n", efi);

 /* code here, using pointer 'ef' */

 }

 /*** PROCESS ALL CENSUS FAMILIES IN HOUSEHOLD hh **/

 P_cf cf;

 int cfi;

 for (cfi=0, cf=&hh->cf[0]; cfi<hh->hhncf; cfi++, cf++) {

 DEBUG2("%s processing census family %d\n", cfi);

 /* code here, using pointer 'cf' */

 }

 /*** PROCESS ALL NUCLEAR FAMILIES IN HOUSEHOLD hh **/

 P_nf nf;

 int nfi;

 for (nfi=0, nf=&hh->nf[0]; nfi<hh->hhnnf; nfi++, nf++) {

 DEBUG2("%s processing nuclear family %d\n", nfi);

 /* code here, using pointer 'nf' */

 }

References With Respect to an Individual:

Another common glass box task involves referring to other individuals in a structure or

substructure, or to units of analysis "higher up" in the structure. It is via such references that

the user can refer to characteristics such as the province of residence for an individual, the

income of the spouse of the eldest member of a census family (if that spouse exists), or the

age of the second oldest child living in any of the census families within a common economic

family.

 /*** REFERENCE SPOUSE OF INDIVIDUAL in **/

 if (in->id.idspoflg) {

 P_in inspo;

 inspo = in->id.idinspo;

 /* code here, using pointer 'inspo' */

 }

 Notice here that there will not always exist a spouse.

 /*** REFERENCE HOUSEHOLD OF INDIVIDUAL in **/

 P_hh hh;

 hh = in->id.idhh;

 /* code here, using pointer 'hh' */

With the pointer to the household retrieved, the user then has access to household

Programmer’s Guide Page 24

SPSD/M Version 20.0

characteristics such as province of residence. In contrast to the situation with the spouse of

an individual, the household will always exist.

 /*** REFERENCE ECONOMIC FAMILY OF INDIVIDUAL in **/

 P_ef ef;

 ef = in->id.idef;

 /* code here, using pointer 'ef' */

Similarly, the individual's economic family will always exist, and will be relevant for

ascertaining whether the individual lives in a below - LICO unit.

 /*** REFERENCE CENSUS FAMILY OF INDIVIDUAL in **/

 P_cf cf;

 cf = in->id.idcf;

 /* code here, using pointer 'cf' */

 /*** REFERENCE NUCLEAR FAMILY OF INDIVIDUAL in **/

 P_nf nf;

 nf = in->id.idnf;

 /* code here, using pointer 'nf' */

These key references, coupled with the looping fragments of the previous section, permit the

user to do, relatively conveniently, almost anything likely to be needed for tax/transfer

simulation.

SUMMARY

The first part of this chapter described the data structure used for SPSD/M. That part also

identified the most important manifest constants and function macros the user will encounter

in the SPSM's source code. The later portions described the role of pointer variables in the

SPSM and characterized the major pointer types used. They concluded with a bestiary of

code fragments for common glass box tasks, looping through individuals and family units,

and referring to an individual's spouse or to the units of analysis that contain him/her.

The next chapter builds on this foundation by describing how the SPSM processes

households in terms of calculating taxes and transfers. That description is in turn a

foundation for the later chapters that indicate how to add user-defined parameters and

variables in the course of modifying the logic of the tax/transfer system.

SPSM Function Calling Structure

The calculation of taxes and cash transfers for a household is controlled by a function whose

only task is to call all other individual tax/transfer algorithm functions. The sequence of

calls is critical to the simulation due to the informational requirements of the tax/transfer

functions. For example, net income must be known before GIS can be calculated. The

following list gives the functions called by drv and adrv in the order in which they are

called.

Function Description

ui(hh)

famod(hh)

oas(hh)

Compute Employment Insurance benefit

Compute family allowances

Compute old age security

Programmer’s Guide Page 25

SPSD/M Version 20.0

dem(hh)

txinet(hh)

gis(hh)

gist(hh)

samod(hh)

txitax(hh)

txhstr(hh)

txcalc(hh)

txctc(hh)

txfstc(hh)

txprov(hh)

gai(hh)

memo1(hh)

ctmod(hh)

memo2(hh)

cceopt(hh, drv)

classu(hh)

Compute new demogrants

Compute net income

Compute guaranteed income supplement for elderly

Compute provincial elderly top-ups

Compute social assistance

Compute taxable income

Compute child & spouse deductions

Compute federal tax

Compute child tax credit

Compute federal sales tax credit

Compute provincial taxes and credits

Compute new guarantees, refundable credits

Compute disposable income, etc.

Compute commodity taxes and allocate to persons

Compute consumable income, etc.

Zero CCE for young kids if optimal

Compute user-defined reporting variables

The calling order of the component functions of drv reflects the logical precedence between

them.

 The first functions, ui, famod and oas, simulate programs whose benefits are determined

by factors other than income and as such are called first.

 dem is a stub routine for glass box applications that require calculations to occur before

entering the tax system routines.

 txinet calculates net income prior to certain transfers.

 gis calculates transfers to the elderly.

 samod calculates social assistance or guaranteed income transfers.

 Federal and provincial taxes are calculated next in the next four functions with the tx

prefix (txitax, txhstr, txcalc, and txprov).

 gist, txctc, and txfstc calculate income tested transfer programs.

 gai is another stub routine that is intended for use by glass box users who wish to

simulate options requiring information on all personal income taxes and cash transfers.

For example, users may use this function to simulate an income supplementation

program.

 The memo1 and memo2 functions create aggregate variables for reporting.

 In the ctmod function, sales and excise taxes are calculated by applying Input/Output

based effective sales tax rates to observed family expenditures.

 cceopt optimizes income by maximizing the childcare expense credit and the child tax

credit.

 classu is a stub routine that allows the glass box user to compute and assign values to new

or re-defined variables.

The functions called by drv call other functions and sub-functions in order to complete their

calculations. Please refer to the specific function in the Algorithm Guide for a more detailed

description. Sub-functions can be found listed under the function that calls them. Thus for

a complete understanding of the calculation of net income one would have to consult both the

Programmer’s Guide Page 26

SPSD/M Version 20.0

txinet and txccea functions.

Sub-functions are defined within the function (file) that calls them. The following example

is a call of a sub-function uiclm() in ui.cpp where uiclm is defined in a section of ui.cpp.

valid_claim = uiclm(in, &in->id.uc1, in->id.uc1.ucy1, &in->im.ub1,

 hh->hd.hdprov, hh->hd.hdurb, wctb, in->id.uc1.ucstart);

Glass Box Development: Adding Typical Scalar Parameters

As its title suggests, this chapter explains to the glass box user the mechanics of the

programming tasks associated with adding typical scalar parameters during the development

of glass box applications. Structurally, the chapter communicates this information via a

detailed worked example. The first section reviews the general procedure for developing

glass box applications, describing the steps that are fundamental to any model alteration, be it

changing code, adding parameters or adding variables. The second section takes up several

preliminaries to parameter addition. It also describes the nature of the example to be used,

an introduction of a Earned Income Tax Credit example used in this Guide's Quick Start

Chapter. The remaining sections then use the example to explain in detail the steps involved

in adding the most common kinds of scalar parameters to a model. Finally, the last section

summarizes the key points regarding the addition to a model of these common forms of

parameters.

GENERAL PROCEDURE FOR MAKING GLASS BOX CHANGES: A RECAPITULATION

The previous section has already described the general procedure for developing glass box

applications, including the reasoning behind the steps. We summarize the key points here in

capsule form.

 Create Task Sub-directory

 Identify Files to be Changed

 Copy relevant Files to Task Sub-directory and remove the ‘read only’ properties

 Edit Relevant Files

 Compile the new version

 Test the New Version of the Model

 Carry Out the Intended Analysis

Create Task Sub-directory

The user creates a new "task subdirectory" to hold the files relevant for the new glass box

application. She/he will edit files in the task subdirectory, leaving all of the other SPSD/M

files alone.

Programmer’s Guide Page 27

SPSD/M Version 20.0

Identify Files to be Changed

The user identifies those files in c:\spsm\glass for which variants will have to be

created. For example, in the Quick Start example, we identified Agai.cpp, Adrv.cpp,

SPSMGL.vcproj and SPSMGL.sln. The example appearing in this chapter indicates

how other files, e.g. Mpu.h and Ampd.cpp, are relevant to adding new parameters to a

glass box application. A section will explain how still other files, Vsu.h and Vsdu.cpp,

are relevant when the user wishes to add new variables to a model. Clearly, the tax/transfer

function files that use the new parameters must also be changed. At times, the user may find

it more efficient to use files already developed in a previous application as templates, rather

than going all the way back to the glass subdirectory's template files.

Copy Relevant Files to Task Sub-directory

The user copies all of the identified-relevant files across to the task subdirectory. The user

will work only with these copies, leaving the originals unchanged. The user will have to

remove the ‘read only’ property from the files in the working sub-directory to allow them to

be edited.

Edit Those Relevant Files

The user makes appropriate changes in each of the files identified as relevant. We

recommend that the changes be made in the following order:

1. Include all relevant files into the project and change the output file name in Project:

Setting: Link.

2. Edit the Adrv.cpp file, as necessary.

3. Edit the Mpu.h and Ampd.cpp files, when appropriate, to add any new parameters to

the model.

4. Edit the Vsu.h and Vsdu.cpp files, when appropriate, to add any new output variables

to the model.

5. Edit the source code files to add the desired new substantive logic to the tax/transfer

system.

We shall follow this prescribed order in the examples we present in this and subsequent

sections.

Compile the new version

The user should activate the Debugging setting in Build: Set Active Configuration and then

run a debug execution of the project. When the program changes are properly implemented

then the new model should be compiled.

Test the New Version of the Model

The user tests the new version via a set of validation analyses designed to reveal any

Programmer’s Guide Page 28

SPSD/M Version 20.0

problems with the logic that has been added or modified. This step may require going back

to some of the earlier ones to remedy any deficiencies that are discovered.

Carry Out the Intended Analysis

Finally, once the validation is complete, the user can proceed with "production runs" of the

new executable code to simulate the consequences of the change that was modeled.

INTRODUCTION TO PARAMETER ADDITION

This section takes up a few critical preliminaries to the procedure for adding typical scalar

parameters. First, it illustrates why a user might wish to add one or more parameters to a

model. In addition, it describes the substance of the new parameters we use to illustrate the

addition of typical parameters.

As noted at the end of the Quick Start example, our hypothetical analyst there took a few

shortcuts that might be done differently in a real-world policy development exercise,

especially if the new model was intended to be used repeatedly or by multiple analysts. One

of these shortcuts was to "hardwire" the tax credit and income levels for the Earned Income

Tax Credit in Agai.cpp function. Although this might be acceptable if the user would

never want to try another value for the benefit amount, it is not particularly efficient should

there be any interest in examining the impacts of other values. The user would need to

re-edit the code and then to recompile the model for each separate value to be examined; the

user might, for example, seek to confirm a belief that the impacts are generally proportional

to the amount of the benefit, and wish to try multiple values by way of investigation. With

appropriate parameters added to the model, no additional editing is required, and the user can

investigate multiple values without re-compilation by simply supplying new parameter

values to the modified model.

Consequently, several sections in this chapter describe the steps necessary to add new

parameters to the model, cleaning up the Quick Start example by way of a specific

illustration. This chapter restricts itself to the most commonly used forms of scalar

parameters. We believe that the kinds of additions described here will meet perhaps 80% of

the parameter addition needs of glass box users. We leave the definition of more esoteric

scalar parameters, and of vectors and matrices of parameters, to the last sections. Whatever

the type of new parameters, once added to a model, they are available to all functions called

by Adrv.cpp; they are not restricted to the function for any single transfer program.

Substantively, we shall add seven parameters to a variant of the Quick Start model. These

additions correspond to the three most common forms of parameters that glass box users will

have occasion to use.

1. The first type of parameters, scalar "float" or "real" value, will provide the value of the

maximum Earned Income Tax Credit amount, the income thresholds that define the

design of the credit and the phase-in and phase-out rates used in the calculation of the

credit. We’ll call these:

EITCMAX – Earned Income Tax Credit Maximum Amount

Programmer’s Guide Page 29

SPSD/M Version 20.0

EITCPIR – Earned Income Tax Credit Phase In Rate

EITCPOR – Earned Income Tax Credit Phase Out Rate

EITCTPMX – EITC Income Turning Point for Maximum Credit

EITCTPRC – EITC Income Turning Point for Reduced Credit

2. The second parameter, a scalar integer value, will indicate the age eligibility of children

in the census family and will eliminate the hardwired ‘20’ used in the Quick Start

example. We'll call this parameter EITCAGE (Earned Income Tax Credit Child Age for

Census Family Eligibility).

3. The third parameter, a "flag" variable that is effectively a boolean switch, will indicate

whether any attention is to be paid to the first two parameters. In this, its function

parallels that of the many "flag" variables used throughout the SPSM. When turned "on"

it will enable the computation of the tax credit; when turned "off" the model will ignore

any calculations related to the new EITC. We'll call this parameter EITCFLAG (Earned

Income Tax Credit Activation Flag).

Our description assumes that the user has chosen to use \glassex2 as the task directory,

creating it if necessary.

COPY FILES ADRV.CPP, MPU.H, AMPD.CPP, AGAI.CPP, SPSMGL.VCPROJ,
SPSMGL.SLN

The user copies to the new task subdirectory all of the files for which changes are required.

Similarly, the user will wish to modify Adrv.cpp to update the description used for the

substantive files (here only Agai.cpp) being changed. Thus, Adrv.cpp needs to be

copied.

Two other files, Mpu.h and Ampd.cpp, are always relevant when the user wishes to add a

new model parameter. Mpu.h (Model Parameters, User) is a C language header file that

defines the nature of the new parameter. Ampd.cpp (Alternate Model Parameter

Definitions) contains the function invocations that make the user's parameters known

throughout the rest of the SPSM, e.g. so that they can be referenced by name for purposes of

changing values "on the fly" when the user executes an SPSM executable file.

The user must copy these Mpu.h and Ampd.cpp files across from the glass subdirectory.

If, for example, the user has already, elsewhere, modified these files to define other

parameters, and wishes to retain those previous modifications, s/he can copy templates for

Mpu.h and Ampd.cpp from the subdirectory in which they exist. By the term "templates"

we refer to existing files, or pieces of text or code, that serve as a convenient starting point

for making any desired modifications. For example, it would make no sense at all for the

user to enter, from scratch, completely new versions of the relevant files. In this example,

Programmer’s Guide Page 30

SPSD/M Version 20.0

we'll assume that these are the first parameters being added, and will copy the templates from

glass.

Finally of course, the user must copy the substantive tax/transfer function or functions that

will use the new parameter. For our purposes the only relevant substantive function is the

Agai.cpp function. Rather than copying it from glass and then having to start from

scratch, we'll copy it from glassex1 so that some of our work is already done, e.g. locating

where the assignment of the increment should be made.

The user will have to copy SPSMGL.vcproj and SPSMGL.sln that describes the project

environment.

UPDATE THE PROJECT

All the required files should be included in the project and the name of the output executable

changed in Project: Properties: Configuration Properties: Linker: General: Output File to

glassex2.exe.

UPDATE THE ALGORITHM DESCRIPTION IN ADRV.CPP

Recall from the Quick Start example that the altname[] and Tdrv[] global variables

received new values to reflect and document the nature of the changes to be made. Here,

with a new version of the model being created, a corresponding substitution is in order. The

two substitutions, consisting exclusively of the contents of the two strings, result in the

following code:

==================== GLOBAL VARIABLE DEFINITIONS ============== */

/*global*/ char ALTNAME[IDSIZE+1] = "Parameterized EITC";

/* Give global string describing version of this module */

/*global*/ char FAR Tdrv[] = "Parameterized EITC"

MODIFY MPU.H TO DEFINE THE NEW PARAMETERS

The user next needs to change the file Mpu.h to define the type of the new parameters.

When the change is made in the glass version of Mpu.h, the line containing the string

"UMDUMMY" is replaced with definitions of the new parameter(s). The name

"UMDUMMY" refers to "User Model Dummy parameter." We're calling the first new

parameter EITCMAX to indicate that it is the maximum amount of the Earned Income Tax

Credit. Before the change the indicated line (about line 77) reads:

int UMDUMMY; /* dummy entry */

Because, as the label indicates, this entry is only a placeholder, dummy, entry so that the

SPSM will have something to work with if the user has not yet defined any user parameters,

we delete this line completely. We replace it with the lines:

NUMBER EITCMAX; /* Earned Income Tax Credit Maximum Amount */

NUMBER EITCPIR; /* Earned Income Tax Credit Phase In Rate */

NUMBER EITCPOR; /* Earned Income Tax Credit Phase Out Rate */

NUMBER EITCTPMX; /* EITC Turning Point for Maximum Credit */

NUMBER EITCTPRC; /* EITC Turning Point for Reduced Credit */

int EITCAGE; /* Earned Income Tax Credit Child Age for Census Family Eligibility

*/

int EITCFLAG; /* Earned Income Tax Credit Activation Flag */

Programmer’s Guide Page 31

SPSD/M Version 20.0

In the first line, "NUMBER" is a macro used by the SPSM to ensure portability across

machines; it corresponds to the type "float". EITCMAX is the name of the new parameter.

The SPSM convention is such that parameter names are capitalized. The other “NUMBER”

parameters define the phase in and phase out rates as well as the earned income turning

points that determine the level of the credit. The other two parameters are naturally integers.

For readability, we have also added comments on the right to indicate the nature of the

parameter values.

These simple additions complete our changes to Mpu.h. Typically, if we were adding new

parameters to a non-empty set of user parameters already in place, we would simply add the

new definitions to the bottom of the existing list in Mpu.h.

The SPSM allocates space for up to 500 such new parameters, easily enough for typical glass

box user applications. Even more parameter additions are possible when some of them are

of the smaller "int" type. Any attempt to exceed this limit will result in a compile-time

error message that will make the problem apparent.

MODIFY AMPD.CPP TO MAKE THE PARAMETERS AVAILABLE TO THE SPSM

The user also needs to change the Ampd.cpp file to make the new parameter "visible"

throughout the portions of the SPSM that may need to reference it. The SPSM provides a

function "pmaddent" (Parameter Module, Add Entry) to carry out this task. The user calls

the function once for each new parameter, just before the "DEBUG_OFF (Ampd)" statement

near the end of Ampd.cpp, at about line 190.

If the user is working on a copy of Ampd.cpp that already contains invocations of

pmaddent for other parameters, those other calls can be used as templates. In our example

though, since there are, as yet, no other parameters added, we copy a pmaddent template

from the file C:\SPSM\MODEL\Mpd1.cpp (Model Parameter Definition File 1). For our

first parameter, EITCMAX, we recognize that this NUMBER type parameter should be very

similar to the BOAS parameter appearing at about line 530. We simply copy that pmaddent

invocation and make appropriate substitutions. This, practice, copying something generally

similar that already exists and works, and then modifying it, is standard practice in glass box

development. The invocation, as copied, looks like:

pmaddent(pcp, "BOAS", (char *)&MP.BOAS, NULL, P_SCL, C_NUM, 0, 0, NULL, 0);

We modify it for our purposes by changing the two references to BOAS to correspond to our

new parameter. Replacing "BOAS" by "EITCMAX" and "(char *)&MP.BOAS" by "(char

*)&MP.UM.EITCMAX", because the new parameter is an element of the substructure UM

(User Model) that lies within the MP (Model Parameters) structure, we obtain the result:

pmaddent(pcp, "EITCMAX", (char *)&MP.UM.EITCMAX, NULL, P_SCL, C_NUM, 0, 0, NULL, 0);

For the moment we simply retain all of the other arguments to the function without having to

worry about what they represent. As long as we have chosen an appropriate template to

steal from, there is no problem. Later, we'll look at the meaning of each of the arguments to

pmaddent so as to facilitate more informed judgements about appropriate sources for

pmaddent templates, and more effective recovery from any incorrect choices.

Programmer’s Guide Page 32

SPSD/M Version 20.0

This template may also be used for the 2 income turning point parameters, EITCTPMX and

EITCTPRC, where the revised pmaddent would be as follows:

pmaddent(pcp, "EITCTPMX", (char *)&MP.UM.EITCTPMX, NULL, P_SCL, C_NUM, 0, 0, NULL, 0);

pmaddent(pcp, "EITCTPRC", (char *)&MP.UM.EITCTPRC, NULL, P_SCL, C_NUM, 0, 0, NULL, 0);

The other NUMBER type parameters are rates for the phase in and phase out calculations for

the EITC. Taking an example from mpd1.cpp, we see that OASRR can be used as it

represents a reduction rate. The invocation, as copied, looks like:

pmaddent(pcp, "OASRR", (char *)&MP.OASRR, F_FRACT, P_SCL, C_NUM, 0, 0, NULL, 0);

We modify it for our purposes by changing the two references to OASRR to correspond to

our new parameter. Replacing “OASRR” by “EITCPIR” and “(char *) &MP.OASRR” by

“(char *) &MP.UM.EITCPIR”, we obtain the result:

pmaddent(pcp, "EITCPIR", (char *)&MP.UM.EITCPIR, F_FRACT, P_SCL, C_NUM, 0, 0, NULL, 0);

We can then copy this line and edit it for the phase out rate parameter to obtain the result:

pmaddent(pcp, "EITCPOR", (char *)&MP.UM.EITCPOR, F_FRACT, P_SCL, C_NUM, 0, 0, NULL, 0);

We choose UIWAITWKS (the integer number of weeks in the Employment Insurance

waiting period) as our template for our integer parameter specifying the age of children in the

census family that determines census family eligibility for the credit. The invocation, as

copied, looks like:

pmaddent(pcp, "UIWAITWKS", (char *)&MP.UIWAITWKS, NULL, P_SCL, C_INT, 0, 0, NULL, 0);

 As with the parameters above, we modify the template in two places, substituting the name

of the parameter with the new parameter and its relation to the MP structure, that is, with the

inclusion of the UM indicator. The modified pmaddent invocation would appear as follows:

pmaddent(pcp, "EITCAGE", (char *)&MP.UM.EITCAGE, NULL, P_SCL, C_INT, 0, 0, NULL, 0);

Similarly, we choose an existing flag parameter to serve as the template for our new Earned

Income Tax Credit flag; OASFLAG, which controls whether Old Age Security benefits are

computed at all, seems a good choice. Before our modifications, this last invocation appears

as follows:

pmaddent(pcp, "OASFLAG", (char *)&MP.OASFLAG, NULL, P_SCL, C_INT, E_FLAG, 0, NULL, 0);

As with the previous examples, we modify the templates in two places. The modified

pmaddent invocation appears as follows:

pmaddent(pcp, "EITCFLAG", (char *)&MP.UM.EITCFLAG, NULL, P_SCL, C_INT, E_FLAG, 0, NULL, 0);

These simple additions complete the modification of Ampd.cpp as regards making the

VALUES of the new parameters available throughout the SPSM, once we have somehow

assigned those values. Later in this section we address some of the mechanisms by which

the user can make the assignments. However, we still need to provide clear labels for the

parameters so that the SPSM can use them to give meaningful documentation of the model

parameters as appropriate.

Once again, the design of the SPSM renders our job easy. There is a ready-made function.

Programmer’s Guide Page 33

SPSD/M Version 20.0

stradd, to implement the labelling. Just after the pmaddent statements we insert these

lines to invoke this function, stradd --

stradd("EITCMAX", "Earned Income Tax Credit Maximum Amount");

stradd("EITCPIR", "Earned Income Tax Credit Phase In Rate");

stradd("EITCPOR", "Earned Income Tax Credit Phase Out Rate");

stradd("EITCTPMX", "EITC Income Turning Point for Maximum Credit");

stradd("EITCTPRC", "EITC Income Turning Point for Reduced Credit");

stradd("EITCAGE", "EITC Child Age for Census Family Eligibility");

stradd("EITCFLAG", "Earned Income Tax Credit Activation Flag");

The stradd (String Add) function, when executed, "attaches" the descriptor string to the

parameter so that the descriptor will automatically appear in all relevant SPSM

documentation and labelling. With the (stradd) function's arguments this simple, i.e. one

string identifying the name of a new parameter, with a second string providing the associated

description, we do not even need to resort to a template.

The final item within this step, partial compilation of the Ampd.cpp function, is optional,

but we recommend it as conducive to the orderly development of glass box applications.

This type of partial compilation enables the user to have the compiler check for syntax errors

while the nature of the modifications are still fresh in one's mind. It does not ensure that the

modified source code meshes with the rest of the SPSM. Note that one has to have modified

any relevant header files, here the Mpu.h header file, first in order for the Debug

compilation to work.

MODIFY THE FUNCTIONS THAT USE THE NEW PARAMETER(S)

To complete the programming changes involved in adding the parameter, we next need to

alter the Agai.cpp function so that it makes use of the new symbolic parameters rather

than the "hardwired" values that appeared in the Quick Start example. We begin by

adjusting the label defined for the function; more specifically we modify the code defining

the label so that it reads --

/*global*/ char FAR Tgai[] = "Agai.cpp Parameterized"

With this label supplied, the SPSM can use it whenever it has occasion to use the function's

description in its documentation.

The substantive changes to the Agai.cpp function are simple to implement.

Where the Quick Start example used "1200.0", we substitute the symbolic representation

"MP.UM.EITCMAX". This naming convention, exactly identical to the one used in the

"pmaddent" function invocation in the Ampd.cpp change above, reflects EITCMAX's

location within the UM (User Model) substructure of the MP (Model Parameter) structure

that the SPSM uses to store all of the model parameters.

Where the Quick Start example used 20 to represent the age of children required in the

family for the family to be deemed eligible for the tax credit, we substitute

MP.UM.EITCAGE. All relevant formulae are adjusted accordingly. We can also use this

parameter to denote the age limit for those individuals who may receive the credit once the

family’s eligibility has been determined.

Programmer’s Guide Page 34

SPSD/M Version 20.0

Thus, the key Quick Start example source code block will be revised to the following:

void Agai(

 P_hh hh

)

{

 register P_in in;

 register int ini;

 register P_in ineld;

 register P_in inspo;

 register P_cf cf;

 register int cfi;

 int nceitc;

 NUMBER cfempinc;

 NUMBER eitc;

 DEBUG_ON("Agai");

 /* process persons in household – currently commented out*/

/* for (ini=0, in=&hh->in[0]; ini<hh->hhnin; ini++, in++) {

 in->im.imiosa = ZERO;

 }

*/

 if (MP.UM.EITCFLAG) {

 /* process each census family in household */

 for (cfi=0, cf=&hh->cf[0]; cfi<hh->hhncf; cfi++, cf++) {

 /* initialise elder's pointer */

 ineld = cf->cfineld;

 /* calculate elder's contribution to family net income */

 cfempinc = ineld->id.idiemp;

 if (cf->cfspoflg) {

 DEBUG1("%s spouse present\n");

 inspo = cf->cfinspo; /* spouse's in pointer */

 /* add spouse's net income to family net income */

 cfempinc += inspo->id.idiemp;

 }

 nceitc = 0;

 /* process children in census family */

 for (ini=0, in=cf->cfinch; ini<cf->cfnchild; ini++, in++) {

 if (in->id.idage > MP.UM.EITCAGE) {

 DEBUG2("%s discarding old child, aged %d\n",

in->id.idage);

 continue;

 }

 /* Count up remaining children */

 nceitc++;

 }

 eitc = 0;

Programmer’s Guide Page 35

SPSD/M Version 20.0

 if (nceitc > 0) {

 if (cfempinc < MP.UM.EITCTPMX) {

 eitc = MP.UM.EITCPIR * cfempinc;

 }

 else if (cfempinc <= MP.UM.EITCTPRC) {

 eitc = MP.UM.EITCMAX;

 }

 else {

 eitc = nneg(MP.UM.EITCMAX - ((cfempinc -

MP.UM.EITCTPRC) * MP.UM.EITCPOR));

 }

 }

 /* process persons in census family */

 for (ini=0, in=cf->cfin; ini<cf->cfnpers; ini++, in++) {

 if (in->id.idage > MP.UM.EITCAGE) {

 in->im.imiosa = eitc;

 }

 }

 }

 }

 DEBUG_OFF("Agai");

}

The underlying logic remains unchanged, but now it is specified parametrically. In writing

the source code in this fashion, we have trusted that users of the model will supply only

reasonable values of the parameters. For example, we trust here that no user will

inadvertently supply a value of zero (0) for MP.UM.EITCAGE and unintentionally create a

tax credit for those families with only children aged 0,and then assign the credit to all

members of the eligible family who are over the age of 0. Later, we'll show how the user

can use the SPSM's edit-check facilities to guarantee that the parameters values are

reasonable.

Once again we perform a Debug compilation to catch any syntactic errors before compiling

the new model.

VALIDATE AND MAKE BLACK-BOX PRODUCTION RUNS

As with the Quick Start example, we still need to test the new variant of the model to ensure

that it gives reasonable results. With SPSM runs being essentially free, and not terribly time

consuming, two particular validation runs immediately suggest themselves.

Users can either read in a model parameter include file (.mpi) if running in classic SPSM, or

input values for glass box parameters on the fly if using Visual SPSM. In Visual SPSM,

glass box parameters are found in the Tax/transfer tab in last section – User defined

tax/transfer parameters (if any) for base/variant scenario, depending on the user’s selection of

standard/alternative models in the scenario set up box for Visual SPSM usage.

1. The first is a run with the EITCMAX and EITCPIR parameters set to zero, using a

base/variant run and checking the results on disposable income. For this run we set the

EITCMAX parameter to 0, EITCPIR to 0 and the EITCFLAG parameter to 1. We

Programmer’s Guide Page 36

SPSD/M Version 20.0

expect that there will turn out to be no differences between the base and variant systems

because the zero value for the tax credit amount parameter renders the change nil.

2. We modify the first test to supply a value of 1200 for the EITCMAX parameter, leaving

the EITCFLAG parameter at 1, and setting EITCPIR to 0.15, EITCPOR to 0.10,

EITCTPMX to 8000 and finally EITCTPRC to 12000. Again we request the

base/variant tables from the previous test as output, expecting to observe the same results

we obtained from the original Quick Start example with its hardwired values.

3. We modify the EITCMAX to take on a value of 2400, expecting that this will

considerably increase the cost of the hypothetical option, since the maximum credit

amount is doubled. The specific tables allow us to ascertain easily, at least for the gross

amount of the credit, whether the right amounts of tax credit have been calculated for

each of the eligible families based on their earned income.

4. Finally, we add a fourth test to turn the tax credit off via the EITCFLAG parameter. In

making this validation test, we leave the all the other parameters at their set values so that

we can be sure that any effect is caused by resetting the flag parameter to zero. As with

the first validation run described above, we expect that there will be no differences

between the base and variant disposable income, as the computation of the tax credit has

been suppressed.

For carrying out the validation tests, it remains only to assign the desired values to the new

parameters. The design of the SPSM makes this easy. If we simply run the new model

without having bothered to specify a needed parameter value, the SPSM notes the omission,

allowing us to provide the value via the "on-the-fly" parameter editing facility. Similarly,

the new parameter file could have been specified in an MPI (Model Parameter Include) file.

Authoritative descriptions of these latter two methods may be found in User's Guide.

Upon making the tests described above, we are encouraged that our change, the addition of

the new parameters, has been properly implemented because all of the sets of outputs appear

as anticipated. The results of the third test, where we double the EITCMAX (EITC

maximum amount) parameter, are especially important. There we can check to see if

appropriate amounts of supplement benefits are added to the same families and that they are

at the benefit amounts expected. Now, with the model changes validated, we are ready to

make the relevant set of production runs. For example, a client might ask us to use a

EITCAGE parameter value of 18 to confirm our his expectation that there will be fewer

families eligible for the tax credit than at the age setting for 20, and that the costs, in

aggregate would be slightly less. Similarly, we might substitute a much larger value, say

5000.0 for EITCMAX, to confirm our expectation that, with such a large transfer, the change

in disposable income would be much more dramatic for the individuals affected.

SUMMARY/CONCLUSION

It is useful to conclude by highlighting, but without any redevelopment, the key points

relevant for adding typical scalar parameters to a model. In noting these points, it is taken as

given that the analyst is working with COPIES of the relevant files, and is performing all of

Programmer’s Guide Page 37

SPSD/M Version 20.0

the modifications in a task subdirectory dedicated to the analysis at hand. We also assume

that the user has updated the project to include all of the relevant source code files. In terms

of technique, we assume that the user will most often be grabbing a chunk of similar existing

code as a template, and then modifying it as required.

1. Modify the Mpu.h header file, adding one statement for each new parameter. The

statement indicates the name of the parameter and its type, with NUMBER used for float

values.

2. Modify Ampd.cpp source code file, adding two statements for each new parameter.

 Add one "pmaddent" invocation for each parameter so that the SPSM can make its

value available to all functions called by Adrv.cpp. Normal practice is to copy the

invocation from an existing invocation and then modify it in two places -- the name

of the parameter and its address.

 Add one stradd invocation for each parameter so that the SPSM attaches the

parameter's label to that new parameter.

3. Modify the relevant substantive function(s) to make use of the new parameter(s),

changing the labelling as well as the internal logic of the function.

4. Debug and Compile the new model. Make the necessary "production runs" of the

model and then interpret the results.

Glass Box Development: Adding Less Typical Parameters

This chapter describes in greater detail the arguments for the pmaddent function and that

function's use when the user adds scalar, vector and matrix parameters to glass box

applications. To do this, it builds on the foundation established in the previous section

(Adding typical scalar parameters), developing the new considerations for less typical scalar

parameters, for vectors and lookup schedules, and for matrices. Finally, the last section

summarizes the key points for regarding the addition, to a model, of these less common

forms of parameters.

The first section of this chapter presents the set of arguments for the key pmaddent function,

describing the key features of each of them. The following section then presents a list of the

types of scalar parameters the user might wish to add. For each type, it indicates briefly the

purpose of that specific type, describes the key pmaddent arguments for the type, and

identifies an appropriate pmaddent template to use when creating a parameter of that type.

Also included are sections that take up the special considerations involved in adding vectors

of parameters, following with schedule "lookup" parameters, and matrices of parameters.

PMADDENT: THE FUNCTION AND ITS ARGUMENTS

Recall from section on description of adding typical parameters that the most complicated

aspect of making a new parameter available to a model lies with the changes to Ampd.cpp,

the changes to Mpu.h being very straightforward definitions of the parameters' types.

Programmer’s Guide Page 38

SPSD/M Version 20.0

Within the Ampd.cpp changes, the only significant challenge, and not by any means a

particularly onerous one, comes from the invocation of the pmaddent function. We noted

that the glass box user can usually sidestep the complexities of that function simply by

choosing an "appropriate" template invocation, one copied from an "appropriately similar"

parameter already defined. In this section we explain more fully the sense of the various

pmaddent arguments, so that the glass box user will be able to use the pmaddent function

confidently, even when there is no obvious template to be copied and modified.

Our starting point for the description of the pmaddent arguments is the explanatory comment

that appears in Ampd.cpp itself (at about line 150 of the GLASS version). We'll take up

each of the ten arguments in sequence. We emphasize, however, that the user should have

relatively little occasion to require this information. Most of the time, the parameter to be

added will be well understood, and an appropriately similar template parameter readily

identifiable. In all those cases the user should simply modify the relevant templates and get

on with the modeling, leaving the intricacies of pmaddent to those doing non-standard tasks.

Ampd.cpp's summary of the pmaddent arguments is as follows:

/**

* pmaddent(

* pcp, <= parameter chain being extended (leave as is)

* "XXXXX", <= name by which the parameter will be known

* (char *)&MP.UM.XXXXX, <= address of the parameter

* Format, <= printing information for the parameter

* Agg_Type, <= Aggregate type (scalar, vector, etc.)

* C_Type, <= C-type (integer, number, string)

* Edit, <= Edits to be performed

* Row_max, <= Maximum number of rows, or option edit limit.

* Rows_addr, <= Address of int holding current number of rows

* Limit, <= Number of columns);

**/

The first argument (pcp) is particularly straightforward; the user ALWAYS enters the

variable pcp. The argument identifies the specific parameter chain that the user is

extending. Although the SPSM employs other parameter chains in its operations, the user

may add parameters ONLY to the pcp chain.

The second argument, characterized by the "XXXXX" placeholder in the comment, is the

user’s name for the parameter. The name here will be the same one that the user employed

in the Mpu.h definition. Users should be careful to choose reasonable mnemonics for these

names, e.g. the EITCFLAG name we used previously. The SPSM convention is that these

names should start with an upper-case letter and should contain only upper-case letters and

digits.

The third argument, characterized by the (char *)&MP.UM.XXXXX placeholder, is the

address for the parameter. The initial (C language "cast") portion of the argument, '(char *)'

is invariant. Similarly, the 'MP.UM' portion is invariant because the user's parameters are

always added to the "Model Parameter, User Model" structure. The 'XXXXX' portion

represents the name of the user's parameter; it is set to the string used as the second

argument, but without the delimiting quotes. Finally, reflecting C's treatment of variable's

addresses, the ampersand (&) is present if the parameter is a scalar, and typically absent if it

Programmer’s Guide Page 39

SPSD/M Version 20.0

is not (i.e. absent if the parameter is a vector, lookup parameter or a matrix). The common

C-language device of specifically referring to the first element of an array is taken up later as

a special topic. For the special case of a 'DUMMY' parameter, described below, this third

argument takes on the value of 'NULL'.

The fourth argument, characterized in the description above as 'Format', is a string. It

contains information about how the SPSM should display the value of the parameter when

documenting it. Typically, the user will use the predefined format 'NULL', indicating that

the SPSM is to print the parameter as it sees fit. Another predefined format, "F_FRACT",

contains the string "8.5" and is particularly suited for printing out the value of a fraction.

The user can also enter an explicit string for the argument; e.g. using "8.0" specifies that the

value should occupy 8 characters, and that it should not include a fractional part. An

argument of "7.2" would specify a string occupying 7 characters, with two digits beyond the

decimal point. When appropriate, e.g. for the lookup style parameters, the argument can

include multiple format indicators, e.g. "8.0 8.2 8.2". The predefined format F_LKTUR,

used for P_LKPXY type parameters provides a concrete example of this usage.

The fifth argument, characterized in the description above by 'Agg_Type', indicates the type

of the parameter. This argument reflects a forced choice among the six integer values 0

through 5. Each of the six values has a mnemonic counterpart that the user can employ, for

clarity, in place of the numeric value itself. The six values, their mnemonic counterparts,

and their interpretations are as follows:

The value 0, represented mnemonically by P_SCL, is the most common value. It is used for

a parameter that is a scalar value (integer, float, fraction, etc.).

The value 1, represented mnemonically by P_VCT, is used when the parameter is a vector.

Other key information about the vector, e.g. the number of elements it contains, is given by

other pmaddent arguments.

The values 2 and 3, represented by the mnemonics P_LKPXY and P_LKPSL, are used

within the SPSM for two special kinds of schedules in which lookups are performed, one

with an X-Y format and the other with a range-slope format. In the event that the user

wishes to create parameters of these types, the GISST and FTX parameters provide

operational examples. These two parameter types define schedules that correspond to

functions LKUP1 and LKUP2 respectively; the LKUP1 and LKUP2 functions themselves

are documented in the Algorithm Guide. The use of schedules in the SPSM is documented

more fully in this chapter. The value 4, represented by the mnemonic P_TBL, is used when

the parameter is a two dimensional matrix (table). Other key information about the matrix,

e.g. the numbers of rows and columns, is given by other pmaddent arguments. The

commodity tax matrix CTTXRM provides a good example.

The value 5, represented by the mnemonic P_DUMMY, will not generally be used by glass

box users. This parameter type corresponds to a dummy entry used to hold the name of a

header string for documentation purposes.

The sixth argument, characterized in the description above by 'C_Type', indicates the type of

Programmer’s Guide Page 40

SPSD/M Version 20.0

the parameter. There are three possible entries for this argument. The value C_INT is

appropriate when the parameter value is inherently an integer, i.e. consists of a number with

no fractional part, and has a value within the C language's bounds for integer values. The

user will employ a value of C_INT for this argument when the Mpu.h entry for the

parameter used an 'int' declaration. Parameters that are "flags" or "options" will naturally be

integers.

The value C_NUM is appropriate when the parameter value may have a fractional part, or

when it is too large to be stored as an integer. The user will employ a value of C_NUM for

this argument when the Mpu.h entry for the parameter used a 'NUMBER' declaration.

The value C_STR is used when the parameter value is a dummy entry used for a header

string. Glass box users will not generally have occasion to use C_STR.

The seventh argument, characterized in the description above by 'Edit', indicates the edit

checks to be imposed on the value of the parameter. The activation of these edit checks will

force the value of the parameter to obey various constraints that may be appropriate. In

addition, they may constrain a user's ability to modify the parameters' values at execution

time via the SPSM's parameter editing facilities. The pmaddent argument governing such

edit checks is an integer value. Typically, the user will choose a value by entering an

element from a set of predefined mnemonic values (described below).

The codes and their interpretations are as follows:

E_NONE (value 0) indicates that no edit checks are to be performed on this parameter.

E_FIXL (value 1) applies only when the parameter is a vector, lookup table or array (and

thus has a known maximum number of rows). This edit code prevents the user from

attempting to change the actual number of rows from the maximum value. The mnemonic

here indicates that the row limit is regarded as fixed.

E_FLAG (value 2) indicates that the parameter is a flag. Under SPSM conventions, this

means that the parameter is treated as a binary variable (defined as an integer) that must take

on either the value 0 (zero) or the value 1 (one).

E_FRCT (value 4) indicates that the parameter is a fractional value that must fall in the

domain 0.0 and 1.0, inclusive.

E_NOCH (value 8) indicates that the user is not allowed to make any changes to the value of

the parameter via the SPSM's built-in parameter editor. This edit check can apply to any of

the types of parameters, C_INT, C_NUM or C_STR.

E_OPT (value 16) indicates that the parameter is of a special "option" type, corresponding to

a forced (integer) choice of values from 1 to the maximum option number permitted. The

maximum number itself is provided, for option parameters, by the eighth pmaddent

argument.

Should multiple codes be relevant, the user can simply add the relevant component values

Programmer’s Guide Page 41

SPSD/M Version 20.0

together. E.g. a value of 12 indicates a parameter that must be a fraction, and that the user is

not permitted to edit dynamically at run time.

The eighth argument, characterized in the description above by 'Row_max', indicates the

maximum number of rows for certain types of parameters (P_VEC, P_LKPXY, P_LKPSL,

or P_TBL). (Note however, the SPSM's flexibility, in that the actual number of rows used

in a specific application may be less than this maximum.) For the other parameter types

(P_SCL and P_DUMMY) this argument should take on a value of 0 (zero), except for

OPTION parameters, where it indicates the number of legitimate option values. (A value of

N for an OPTION parameter indicates that the legitimate values range from 1 to N inclusive.)

Since scalar parameters (P_SCL) are the norm, this argument will most often take on the

value 0.

The ninth argument, characterized in the description above by 'Rows_addr', contains the

address of the integer variable corresponding to the current (actual) number of rows for

certain kinds of parameters, P_VEC, P_LKPXY, P_LKPSL, and P_TBL. When the number

of rows is irrelevant, e.g. for a scalar or DUMMY parameter, the user enters a value of

'NULL' for this argument; thus, this argument will typically take on the 'NULL' value.

The tenth pmaddent argument, characterized in the description above by 'Limit', indicates, for

parameters of type P_TBL, the number of columns in the table. In contrast to the flexibility

provided for rows, where the actual number of rows may be smaller than the maximum

number, the SPSM requires that the actual number of columns be fixed beforehand. For all

other parameter types, this argument takes on the value of 0 (zero).

There are two more optional arguments which may be added to the list. They do not

currently have a use in glass box code. The eleventh argument is a label for the rows of

table and vector parameters. The twelfth is a label for the columns of table parameters.

These labels control the display of the parameters in Visual SPSM.

CHARACTERIZING SCALAR PARAMETERS

With the description of pmaddent's arguments complete, we turn first to the kinds of scalar

parameters that the user may wish to add. The discussion here treats them in roughly

descending order as regards expected frequency of use. For each of the types the description

indicates (1) the general nature of the parameter, (2) the key pmaddent arguments, and (3) an

appropriate pmaddent template. Even though this chapter deals primarily with more

specialized types of parameters, we have, for completeness, included in this scalar

parameters section instances of the more common parameter types already described in

previous section of this Programmer's Guide.

REAL/float/NUMBER Parameters

The analyst uses this type of parameter when needing to supply a real value, e.g. some

program guarantee expressed in dollars and cents. The Mpu.h definition will use the

NUMBER specification. In the pmaddent call, the key argument is the C_NUM entry for

C_Type. An appropriate template is --

pmaddent(pcp, "FCBBAS", (char *)&MP.FCBBAS, NULL, P_SCL, C_NUM, 0, 0, NULL, 0);

Programmer’s Guide Page 42

SPSD/M Version 20.0

INTEGER/int Parameters

The analyst uses this type of parameter when needing to supply a value that is inherently an

integer, e.g. the typical number of weeks in the waiting period for employment insurance.

The Mpu.h definition will use the int specification. In the pmaddent call, the key argument

is the C_INT entry for C_Type. An appropriate template is --

pmaddent(pcp, "UIWAITWKS", (char *)&MP.UIWAITWKS, NULL, P_SCL, C_INT, 0, 0, NULL, 0);

FLAG Parameters

The analyst uses this type of parameter when wishing to supply a "switch" value, e.g. an

indicator that will specify whether certain other calculations are to be performed or not. The

Mpu.h definition will use the int specification for such a parameter. In the pmaddent call,

the key arguments are the C_INT entry for C_Type and the E_FLAG entry for Edit. An

appropriate template is --

pmaddent(pcp, "FAFLAG", (char *)&MP.FAFLAG, NULL, P_SCL, C_INT, E_FLAG, 0, NULL, 0);

FRACTION Parameters

The analyst uses this type of parameter when wishing to supply a value that is inherently a

fraction, and thus more constrained in value than a float. Tax rates and contribution rates

are good examples of this type of parameter. The Mpu.h definition will use the NUMBER

specification for such a parameter. In the pmaddent call, the key arguments are the C_NUM

entry for C_Type and the F_FRACT entry for Format. In the template call we suggest for

this type of parameter, the user has chosen NOT to require an Edit check that will constrain

the value between zero and unity; the template itself is --

pmaddent(pcp, "UIPF", (char *)&MP.UIPF, F_FRACT,P_SCL, C_NUM, 0, 0, NULL, 0);

OPTION Parameters

The analyst uses this type of parameter when the parameter reflects a forced choice among a

small fixed number of alternatives; a numerical value is used to indicate a nominal or

qualitative selection. As an example of such a qualitative distinction, one might consider a

parameter that indicates whether the Caregivers Tax Credit amount is to be determined by (1)

providing the maximum value of the credit, or (2) apply the greenbook value for the credit, or

(3) to model the caregivers amount with the appropriate income test. In the pmaddent call,

the key arguments are the C_INT entry for C_TYPE, the E_OPT entry for Edit, and the

numeric entry giving the number of legitimate categories for the Row-max argument. An

appropriate template is --

pmaddent(pcp, "CGTCOPT", (char *)&MP.CGTCOPT, NULL, P_SCL, C_INT, E_OPT, 3, NULL, 0);

EDIT-FRACTION Parameters

The analyst uses this type of parameter when it is desirable to constrain any user-supplied

value to fall in the interval from zero to unity. For example, the parameter might represent a

taxback rate that would be considered unreasonable if it corresponded to a rate of less than

zero percent or greater than one hundred percent. The Mpu.h definition for an editable

fraction parameter will use a NUMBER specification. In the pmaddent call, the key

arguments are the C_NUM entry for C_Type and the E_FRCT entry for Edit. The user

might wish also to specify a Format specification of F_FRACT. An appropriate template is

--

Programmer’s Guide Page 43

SPSD/M Version 20.0

pmaddent(pcp, "CHATR1", (char *)&MP.CHATR1, NULL, P_SCL, C_NUM, E_FRCT, 0, NULL, 0);

DUMMY Parameters

The user will not typically specify DUMMY parameters, which are intended for conveying

labelling and sectioning information when parameter configurations are being documented.

An illustrative template is -

pmaddent(pcp, "2.3.1", NULL, NULL, P_DUMMY, C_STR, 0, 0, NULL, 0);

For all types of scalar parameters, the user has the choice among mechanisms for supplying

values to them:

1. specification via presence in a supplementary inclusion parameter file (MPI, CPI and

API), and

2. specification via the Visual SPSM parameter editing facility. Note that user specified

parameters can be found in the last section in the tree hierarchy under the specific

control/adjustment/model parameter tabs.

VECTORS OF USER-DEFINED PARAMETERS

The preceding portions of this chapter have focused primarily on scalar parameters, in part

because they are the most common types, and in part because they are easiest to describe.

However, the SPSM also offers the user the capacity to create vectors of parameters. Such

vectors will be most relevant when the user wants to create a set of related parameters with

the members of the set occurring in a natural "indexable" order along a single dimension.

As an example, consider the case of an analyst modeling some proposed housing supplement

program. For each family size up to ten this hypothetical program has an income limit

beyond which a family becomes categorically ineligible to receive benefits. Unfortunately,

these limits, though increasing with family size, are not related to that family size in any

smooth or readily calculated manner. Instead, the user wants to have ten different

parameters, corresponding to families of size one to ten-plus, to represent the benefit cutoff

levels. It makes much more sense to have a vector of parameters, indexed on family size,

than to develop code that treats each of the ten possibilities as a separate, independently

developed case.

In this section then, we characterize the key points the user must understand to define vectors

of user parameters for SPSM models. Our earlier comments about parameter addition in

general continue to hold (order of changes to files, use of mnemonic values, validation, etc.),

but we focus on those aspects specific to the effective use of vectors of user-defined

parameters.

Additions to Mpu.h, Cpu.h or Apu.h

Just as the user declares scalar parameters in Mpu.h (or Cpu.h or Apu.h), s/he must also

declare any user-defined parameter vectors in these files. The scalar and vector declarations

look very similar, except that the vector declaration indicates, via an expression in square

brackets, the length of the vector. The SPSM treats parameter vectors as column vectors;

thus the length of the vector is its number of rows.

Programmer’s Guide Page 44

SPSD/M Version 20.0

For our housing program example, suppose that the user has declared a (manifest) constant

HHPYCOMAX (Hypothetical Housing Program, Income Cutoff Maximum Rows). The

user has assigned it the value 10 because there will be a distinct cutoff for each family size up

to ten-plus. The definition would be accomplished via a statement of the form --

#define HHPYCOMAX 10 /* maximum # of number of rows in the HHPYCO vector */

See the Mp.h file in the SPSM\DEFS subdirectory (starting at about line 400) for

illustrations using parameter vectors that are part of the black box SPSM, rather than being

user-defined.

The vector itself is to be named HHPYCO, with the value of the i'th entry corresponding to

the cutoff for a family of size i+1. (Recall that the C language starts all vectors with the

zero'th entry.) The Mpu.h entry for the new vector will then look something like --

NUMBER HHPYCO[HHPYCOMAX]; /* Hypothetical Housing Program Income Cutoffs */

Although it is possible to "hardwire" the length directly into the declaration, e.g. using

something like HHPYCO[10], we strongly discourage it. We recommend instead the

manifest constant approach described above. The reason behind this recommendation stems

from the need, in the corresponding Ampd.cpp's pmaddent invocation, of an entry for the

maximum number of rows. Using a given manifest constant in both locations precludes the

possibility of a later revision leading to one value being used in Mpu.h while another is used

in Ampd.cpp. If the user should create a discrepancy between the Mpu.h (or Apu.h or

Cpu.h) and Ampd.cpp values, the errors that result could be infuriatingly difficult to track

down.

Recall that the actual number of rows present in the (column) vector for a given SPSM

execution may be different from (less than) the maximum number possible for that

parameter. Thus, the user must also declare, in the same header file, a variable in which the

SPSM will store the actual number of rows being used (a value that may vary from run to run

of a given executable version of a glass box model). The user provides a variable for the

SPSM to store the actual number of rows via an additional declaration in the header file.

Following the SPSM convention that these length variables are named as the parameter name

with a suffix of "rows", the Mpu.h file should also contain a declaration of the form --

int HPPYCOrows; /* number of rows in HPPYCO */

The mp.h file in the SPSM\DEFS subdirectory provides many examples in its section on

array limits (about line 2500). Later on, Ampd.cpp's pmaddent call for HPPYCO will

refer to the address of the HPPYCOrows variable.

Additions to Ampd.cpp

So that the SPSM can make the values in the new parameter vector available to the user's

substantive code, the user must set up the appropriate linkages via an invocation of

pmaddent, just as with scalar parameters. The invocation would look like one of the

following:

pmaddent(pcp, "HHPYCO", (char *)MP.UM.HHPYCO, NULL, P_VCT, C_NUM, E_NONE, HHPYCOMAX,

&MP.UM.HHPYCOrows, 0);

or

Programmer’s Guide Page 45

SPSD/M Version 20.0

pmaddent(pcp, "HHPYCO", (char *)&MP.UM.HHPYCO[0], NULL, P_VCT, C_NUM, E_NONE,

HHPYCOMAX, &MP.UM.HHPYCOrows, 0);

In the first illustrative invocation the third argument uses no ampersand because the reference

is to the new parameter vector; C treats such a reference as the address of the first element.

In the second illustrative invocation the user has elected to refer more explicitly to the

address of the first element by including the ampersand and the [0] index. The MpdX.cpp

files in the SPSM\MODEL subdirectory contain examples of both types of references.

Three other pmaddent arguments deserve special comment for our description of the

highlights for user-defined parameter vectors. The Agg_Type argument (#5) necessarily

takes on the value P_VCT. The Row-max argument (#8) is the manifest constant created in

Mpu.h to specify the maximum number of rows; in our housing program example this

corresponds to the HHPYCOMAX entry. Finally, the Rows-addr entry (#9) corresponds to

the name of the variable declared to store the actual number of rows, preceded by an

ampersand; in our housing program example this corresponds to the

&MP.UM.HHPYCOrows entry.

Note that other capacities activated by pmaddent's arguments remain available to the user.

Thus, C_Type is used to indicate whether the variable is a float value or an integer. The

user can use the Format argument to specify, if desired, a format for each of the individual

values in the vector. And the user employs the Edit argument to impose any relevant edit

checks.

Just as with scalar parameters, the user will also wish to modify the Ampd.cpp file to add

an invocation of stradd for each new user-defined parameter vector. This addition will

ensure that when the SPSM documents the new user-defined parameter, the user's textual

description of the parameter will form part of that documentation.

User-Defined Parameter Vector References in the Source Code

Once the user has completed the header file and Ampd.cpp changes necessary to make the

parameter vector available to the substantive functions, it remains to refer to the relevant

parameter values in those substantive functions. To continue with the hypothetical housing

program example, suppose that the user has available an integer variable, HHPFS,

(Hypothetical Housing Program Family Size) that gives the family size as defined by the

anticipated regulations governing the program. Suppose too, that the user is absolutely

confident that HHPFS's value will lie in the domain 1 through 9 inclusive. To refer to the

relevant income cutoff for benefits from the hypothetical program, the user, recognizing that

the C language always numbers a vector's elements starting with 0, would employ an

expression of the following form:

MP.UM.HHPYCO[HHPFS-1]

Specification of Parameter Vector Values

In order for the user's new code to accomplish anything, the values of the vector's elements

must be made available to the SPSM so that it, in turn, can make them available to the user's

code. Typically, the user will specify these values in an ".MPI" file (or their ".CPI", or

".API" counterparts). The FLVCRT vector, specifying the percent of labour sponsored

Programmer’s Guide Page 46

SPSD/M Version 20.0

funds cost allowed as a credit by province, provides a good example.

FLVCRT 10 # Percent of labour sponsored funds costs allowed as a credit

 0.15

 0.15

 0.15

 0.15

 0.15

 0.15

 0.15

 0.15

 0.15

 0.15

The format is clear. The first line contains the name of the parameter, followed by the

number of ACTUAL elements to be used; an optional documentary comment should be

added to make the nature of the parameter obvious to any reader of the file. Successive lines

specify, one value per line, the values for the vector. It is important that the number of

elements entry not exceed the maximum rows value specified in the pmaddent entry, and that

the number of additional lines in the parameter file be equal to the number on the parameters

first line; the SPSM will check to ensure that these requirements are met.

To continue with our hypothetical housing program example, the user might enter, in an

".MPI" file, something like the following:

HHPYCO 10 # Income cutoffs for housing program, by family size

 5000.0

 6120.0

 7250.0

 8400.0

 9500.0

 10600.0

 11600.0

 12500.0

 13300.0

 13900.0

Summary

The key factors in adding vectors of user parameters to an SPSM glass box model can be

summarized in the following checklist:

1. Make appropriate changes in the header file (e.g. Mpu.h).

 Use a manifest constant for the maximum length of the vector, e.g.

 #define HHPYCOMAX 10 /* maximum # of rows for HHPYCO */

 Declare the vector itself,

 NUMBER HHPYCO[HHPYCOMAX]; /* comment */

 Declare a variable to hold the actual length of the vector, e.g.

 int HPPYCOrows; /* actual number of rows in HPPYCO */

2. Make appropriate changes in the Ampd.cpp file.

 Insert an appropriate pmaddent invocation, usually by modifying a copy of an

existing one.

 Enter an invocation of stradd so that the SPSM can label the new parameters

Programmer’s Guide Page 47

SPSD/M Version 20.0

when appropriate.

3. Write the C-language source code that uses the parameters. Remember C's convention

that vectors begin with the zero elements. Debugging compilation is often useful here

too.

4. Supply values for the elements of the vector via a multi-line entry in an appropriate

parameter file.

5. Don't forget the need for validation and testing to make sure that the new code is doing

what is intended of it.

USER-DEFINED SCHEDULES FOR LOOKUPS

Parameters in the form of schedules are useful primarily when one needs to perform some

sort of a lookup, i.e. given an x-value, find the corresponding y-value. This section employs

as examples two schedules already present in the SPSM, and one hypothetical new

user-defined schedule to be added as a parameter. Together, the three examples cover the

major forms of schedule parameters that a glass box user might normally need.

The first of the existing schedule examples involves federal taxes -- given taxable income,

calculate the corresponding tax from the tax table/schedule.

The second existing schedule example addresses program take-up rates -- assuming that the

decision of whether to apply for benefits in a program is believed to depend on the benefit

that could be claimed (the higher the benefit that would be received, the more likely a unit is

to file to claim that benefit), given a unit's potential benefit, look up its probability of

applying for (taking up) those benefits.

The third, new parameter, example involves a totally hypothetical earnings supplement based

very loosely on the U.S. Earned Income Tax Credit, but applied to individual earnings. In it,

a hypothetical earnings supplementation program subsidizes initial earnings, up to $10,000

annually, at a rate of 15%, does not further subsidize any earnings from $10,000 to $15,000,

and then, beyond $15,000, reduces the subsidy previously given at the rate of 10% of

earnings above $15,000, so that there is no subsidy payable to individuals earning $30,000 or

more. The new parameter will describe the subsidy payable as a function of the individual's

earnings. The relevant coordinate pairs are thus (0, 0), (10000, 1500), (15000, 1500),

and (30000, 0).

In terms of their specification as SPSM parameters, schedules are very similar to vectors.

The main exception is that schedules have a fixed number of columns, three, rather than the

single column for a vector. (In use, the schedules employ the SPSM's lkup1 and lkup2

functions.) Thus, with the relatively minor exceptions highlighted in this section, one adds a

schedule to a glass box application very much as one would add a vector of parameters.

Consequently, the vector-oriented prescriptions about mnemonic names, stradd labelling,

partial compilation, validation etc. are not repeated here.

Schedule Types and Lookup Functions

Programmer’s Guide Page 48

SPSD/M Version 20.0

An appreciation of two separate dichotomies is absolutely critical for the effective use of

schedules in the SPSM.

The first dichotomy involves the type of schedule. The user makes the choice as to type via

the fifth argument of the pmaddent call.

If the argument is P_LKPXY, then lookups in the schedule are done in X-Y format, using the

first (x-values) column of the schedule and the second (y-values) column; the slope values of

the third column (the slopes across the successive segments of the schedule) are present, but

ignored (that information being redundant because it could be calculated from the X-Y pairs).

If the fifth pmaddent argument is P_LKPSL, then lookups in the schedule are done in slope

format, using the information in the first (x-values) column and the third (slopes) column,

plus the first value in the second (y-values) column. The remaining values in the second

column are ignored in the sense that they are redundant because they could be calculated

using the rest of the information in the schedule.

The second dichotomy reflects whether or not the user wishes to apply interpolation in the

calculation when performing the associated lookup with the schedule. When interpolation is

desired (when the desired value might lie BETWEEN entries in the y-values column), the

user invokes the lkup1 function from the SPSM algorithm library. When no interpolation is

desired, the user invokes the lkup2 sister function. The Algorithm Guide provides the

authoritative description of these two algorithms.

Appearance in SPSM Header Files

Exactly as with vectors of parameters, user-defined parameters that are schedules require

certain entries in an appropriate header file (Mpu.h, Cpu.h, or Apu.h).

One of these is (usually) a manifest constant to define the maximum length of the schedule.

The federal tax schedule (FTX) uses the maximum length FTXMAX. The GIS single

pensioner take-up schedule (GISST) uses GISSTMAX. For our earnings supplement

schedule, ESS, we'll use ESSMAX. The corresponding definitions (in Mp.h for FTXMAX

and GISSTMAX, and in Mpu.h for ESSMAX) are as follows:

#define FTXMAX 15 /* maximum of number of rows in FTX table */

#define GISSTMAX 8 /* maximum of number of elements in GISST table */

and

#define ESSMAX 5 /* maximum number of rows in ESS schedule */

The second of these is a variable in which the SPSM stores the actual number of rows used

by the schedule in a given run; it must, of course, be less than or equal to the maximum

number. Following SPSM conventions, the Mp.h definitions for variables to contain the

actual numbers of elements are as follows:

int GISSTrows; /* number of rows in GISST table */

int FTXrows; /* number of rows in FTX */

In mpu.h, we'll follow this convention and define a variable ESSrows for the actual number

of rows in ESS --

int ESSrows; /* number of rows in ESS schedule */

Programmer’s Guide Page 49

SPSD/M Version 20.0

Mp.h (for the FTX and GISST schedules) and Mpu.h (for the ESS schedule) also need to

contain the definitions for the schedules proper. Typically, these are carried out using the

manifest constants defined earlier. The SPSM provides a constant, LKP_COLS, that

indicates clearly its role as defining the number of columns for lookup schedules. The

definitions themselves are straightforward:

NUMBER FTX[FTXMAX][LKP_COLS]; /* Federal tax table [taxable income,basic federal tax]

*/

NUMBER GISST[GISSTMAX][LKP_COLS]; /* GIS take-up rate: single pensioner by benefit level

[benefit,rate] */

NUMBER ESS[ESSMAX][LKP_COLS]; /* Earnings supplement schedule [earnings, benefit level]

*/

Appearance in pmaddent Calls in Ampd.cpp

The user defining schedule parameters will need to modify the Ampd.cpp file, adding

invocations of pmaddent, to enable the SPSM to make the parameter available to the

substantive source code. We begin by looking at the relevant pmaddent entries for the

SPSM's existing FTX and GISST schedules.

The FTX example, drawn from the Mpd2.cpp file, appears as follows:

pmaddent(pcp, "FTX", (char *)&MP.FTX[0][0], NULL, P_LKPSL, C_NUM, 0, FTXMAX,

&MP.FTXrows, 0);

Note that the third argument indicates clearly that the schedule has both rows and columns,

and that the fifth argument denotes this as a slope-oriented schedule; the eighth and ninth

arguments make use of the manifest constant and actual-number-of-rows entries defined in
Mp.h.

The GISST example, drawn from the Mpd1.cpp file, appears as follows:

pmaddent(pcp, "GISST", (char *)&MP.GISST[0][0],F_LKTUR, P_LKPXY, C_NUM, E_FRCT,

GISSTMAX, &MP.GISSTrows, 0);

Here the fifth argument indicates that this is an X-Y type schedule. Again, the eighth and

ninth arguments make use of the elements defined for the schedule in the mp.h file.

For the hypothetical earnings supplementation program, we would add to the Ampd.cpp file

an invocation of pmaddent (probably copied from an existing call and then modified as

appropriate) that appears as follows:

pmaddent(pcp, "ESS", (char *)&MP.UM.ESS[0][0], NULL, P_LKPXY, C_NUM, 0, ESSMAX,

&MP.UM.ESSrows, 0);

The strong parallels with the existing GISST schedule should be apparent. Note, however,

the key differences that mark a user-defined parameter schedule: the UM qualifier in the third

and ninth arguments, and the user-defined (maximum rows) constant and (actual rows)

variable address for the eighth and ninth pmaddent arguments.

Employing Schedule References in User Code

Glass box applications that use schedules will reference them almost exclusively via the

SPSM's two lookup functions, lkup1 and lkup2. This makes source code expressions using

Programmer’s Guide Page 50

SPSD/M Version 20.0

the parameters very straightforward. Illustrations using our three examples indicate the

nature of these references.

The GLASS subdirectory's ATXCALC.CPP function serves to calculate federal income

taxes. This computation involves looking-up, for an individual, that individual's tax as a

function of his/her taxable income. The user chooses whether or not to apply interpolation

(via the choice between lkup1 and lkup2), supplies the schedule, the actual number of rows,

and the relevant x-value, and the lookup function does all the rest automatically. Here, the

user does want interpolation, applied in a schedule. The relevant source code appears as

follows:

if (isnzero(in->im.imitax)) {

/* calculate federal tax */

in->im.imfedtax = (NUMBER) lkup1(MP.FTX, MP.FTXrows, in->im.imitax);

DEBUG2("%s fedtax =%.2f\n", in->im.imfedtax);

}

The GLASS subdirectory's AGIS.CPP function calculates GIS benefits. This computation

involves looking-up, as a function of the potential benefit that would be payable, the

probability that the unit will take-up (i.e. apply for) the benefit. Here the user chooses not to

invoke interpolation -- the desired takeup rate is the one in the last row in which the potential

benefit is at least as great as the row's x-value. The user provides the schedule, the actual

number of rows, and the potential GIS benefit, and the lookup function returns the takeup

probability. (Once again, the schedule itself appears in the next sub-section.) The

expression to ascertain the takeup probability appears as

lkup2(MP.GISST, MP.GISSTrows, (double) gis))

For the earnings supplement illustration, assume that the user has assigned the appropriate

definition of earnings for an individual to a (double) variable named iearn. Then the

expression for looking up the individual's corresponding earnings supplement would be --

lkup1(MP.UM.ESS, MP.UM.ESSrows, iearn)

Note the necessity for the UM qualifier indicating that ESS is a user-defined schedule.

Appearance in Parameter Files

As with any other parameter, the user is responsible for defining schedule parameters in the

appropriate parameter file (.MPI, .CPI, .API or on the fly). In parallel with the

specification of a parameter vector, the first line provides the parameter name and number of

rows, along with a comment identifying the parameter. The remaining rows for the schedule

are the x-value, y-value, slope triplets. Probably the only non-obvious characteristic is that

the redundant items (those that will not be used for the computations) are enclosed in

parentheses.

The slope-oriented FTX schedule describes tax payable as a function of taxable income --

FTX 10 # Federal

tax table

 0

40726

81452

0

(6109)

(15069)

0.150

0.220

0.260

Programmer’s Guide Page 51

SPSD/M Version 20.0

126264 (26720)

0.290

The X-Y type GISST schedule describes takeup probabilities as a function of amount of GIS

benefit available. The use of the lkup2 function with this schedule means that these takeup

rates are modeled as jumping sharply at the key benefit levels.

GISST 5 # GIS take-up rate: single pensioner by benefit

level

 0

169

419

919

3169

0.365

0.510

0.660

0.820

1.000

(0.0009)

(0.0006)

(0.0003)

(0.0001)

(0.0001)

The X-Y type ESS schedule describes the earnings supplement benefit as a function of an

individual's earnings; it is used with the lkup1 function because interpolation is desired.

ESS 4 # Hypothetical earnings supplement schedule

 0 0 (0.15)

 10000 1500 (0.00)

 15000 1500 (-0.10)

 30000 0 (0.00)

Key Points for Adding Schedule Parameters

Most of the key points for schedule parameters are identical to those for vector parameters.

1. Modify the relevant header file to include a manifest constant for the maximum number

of rows, an integer variable to store the actual number of rows, and the definition for the

schedule itself.

2. Modify the Ampd.cpp file to include appropriate pmaddent and stradd invocations,

generally ones copied from elsewhere and then modified.

3. Provide the schedule via an appropriate parameter file or parameter inclusion file, and

don't forget to validate the addition.

Two other key points are specific to schedule parameters.

1. Be absolutely sure, in the parameter include file, that the x-value column of the schedule

contains values that are in strictly ascending order.

2. Don't forget to "mark" the redundant values in the schedule by enclosing them in

parentheses.

ADDING MATRICES OF PARAMETERS

For some specialized purposes involving groups of parameters, even vectors or schedules of

parameters are not sufficiently convenient. For example, rather than managing several

equal-length vectors in parallel, it may be much more efficient to perform lookups in a matrix

of values. The design of the SPSM permits the definition and utilization of such matrices,

Programmer’s Guide Page 52

SPSD/M Version 20.0

though it limits the number of dimensions to 2 (rows and columns). This section will

describe the use of matrices of parameters via two examples, one drawn from the black box

version of the SPSM, and a second involving the specification of a new user-defined matrix

of parameters. Given the close relationship between parameter vectors and parameter

matrices, there is no special highlights division for this section.

The black box illustration uses the CTPRST matrix specific to the commodity tax capacities

of the SPSM. This parameter provides a large (48 commodities (rows) by 10 provinces

(columns)) matrix of factors relevant for the calculation of the provincial sales tax.

The second example, in which the user adds a new matrix of parameters to the SPSM,

involves a matrix of income cutoffs levels for an (hypothetical) experimental poverty

measure. To facilitate the classification of families as in or out of poverty, the user wants to

have a matrix that provides the relevant cutoffs as a function of integer variables specifying

the families' structures (rows) and the sizes of place of residence (columns). Thus, the

matrix's (3,2) entry will contain the poverty line for a family whose structure index is 3 and

whose size of place of residence index is 2. The user has elected to name this matrix

EPMCO (experimental poverty measure cutoffs). For the sake of this example, we'll assume

that the user has chosen a measure defined in terms of 18 family structures (involving, say,

combinations of the numbers and ages of family members) and four categories of size of

place of residence.

Appearance in Mpu.h

Taking the black box matrix example first, we are not surprised to find the relevant header

information for CTPRST in file Mp.h of the DEFS subdirectory. Thus, there is an integer

definition, to define the actual number of rows (commodities) CTNUMCOM, as follows:

int CTNUMCOM; /* number of rows for commodity dimension parms */

In addition, there is a definition for the matrix itself --

NUMBER CTPRST[NUMCOM][NUMREG]; /* Provincial retail sales tax [com x prov]

*/

 However, Mp.h does not contain manifest constants for the dimensions of the matrix

(NUMCOM and NUMREG) since these are so closely related to the design of the

commodity tax facility in the SPSM that they have been defined elsewhere so that the

commodity tax module can more conveniently use the constants.

Turning to our experimental poverty measure cutoff matrix, we appreciate that we shall have

to provide the relevant "defining" information to the SPSM via entries in the Mpu.h file.

The specific needs are (1) manifest constants for the dimensions, (2) a variable for the

actual number of rows, and (3) the matrix itself. The Mpu.h lines for these items might

appear as follows:

#define EPMFAMMAX 18 /* maximum of number of family structures (rows) for EPMCO matrix */

#define EPMSIZE 4 /* number of size of place of residence categories for EPMCO matrix */

Programmer’s Guide Page 53

SPSD/M Version 20.0

int EPMCOrows; /* number of rows for EPMCO matrix */

NUMBER EPMCO[EPMFAMMAX][EPMSIZMAX]; /* experimental poverty measure cutoffs [fam x size] */

Appearance in Ampd.cpp

In parallel with the requirements for vectors of parameters, the SPSM requires for each

parameter matrix a call to pmaddent so that the parameter values can be made available to the

user's source code.

For our black box example, this call, found in file Mpd4.cpp, appears as follows: (There

is, of course a corresponding stradd call.)

pmaddent(pcp, "CTPRST", (char *)MP.CTPRST, NULL, P_TBL, C_NUM,

E_FIXL, NUMCOM, &MP.CTNUMCOM, NUMREG);

The only arguments of any special interest at this point are the P_TBL entry for the fifth

(Agg_Type) argument, and the NUMREG entry for the final (number of columns) argument.

The eighth and ninth entries (maximum and address of actual numbers of rows) are just as we

would expect them given the preceding descriptions for vectors and schedules.

Turning to our poverty measure glass box example, we recognize that it is necessary to add a

pmaddent call to the Ampd.cpp file to permit the SPSM to give the user's source code

access to the parameter matrix. That call might well appear as follows:

pmaddent(pcp, "EPMCO", (char *)MP.UM.EPMCO, NULL, P_TBL, C_NUM, E_NONE, EPMFAMMAX, &MP.UM.EPMCOrows,

EPMSIZE);

Presumably, the user would also add to the Ampd.cpp file a call to stradd to permit the

SPSM to produce appropriate documentary information.

Referencing Matrix Elements in Source Code

Referencing the elements of a parameter matrix is easy. Assuming the variable i holds the

(integer) commodity category and variable j the (integer) province code, then the associated

removal factor for that combination is --

MP.CTPRST[i][j]

Similarly, if the integer variable fstruct holds the family structure code, and the integer

variable sizecode provides the category for the size of place of residence, then the

experimental poverty measure cutoff for that structure/size combination is given by --

MP.UM.EPMCO[fstruct][sizecode]

The primary factor to consider in such references is the C-language's convention that each

dimension begins with the zero element; e.g. our 18 by 4 array uses indices that run from 0

through 17, and 0 through 3, respectively. A user must make the decision about the

appropriate trade-off between using "natural, positive" integers as indices into the matrices,

and economizing on the fixed block of memory available for user parameters (including any

necessary row address variables).

Appearance in Parameter Files

Programmer’s Guide Page 54

SPSD/M Version 20.0

Just as with all other forms of parameters, the user must provide values for the parameters.

Normally this will occur via entries in the appropriate parameter inclusion files (i.e. .MPI,

.CPI, or .API) or on-the-fly for Visual SPSM users. For parameter matrices a parameter

file entry consists of a first line that specifies the name of the parameter and the actual

number of rows, plus typically a documentary comment. The succeeding lines for the

parameter then supply the rows of the matrix. In our illustrations here, we provide only the

first, identifying, line and then the first of the lines of numeric values.

For the black box example –

CTPRST 40 # Provincial retail sales tax

 0.01326 0.01326 0.01326 0.01326 0.01316 0.01406 0.02242 0.00626 0.00010 0.00550

 0.15257 0.15257 0.15257 0.15257 0.13057 0.24354 0.15684 0.13914 0.00013 0.29100

 0.17538 0.17538 0.17538 0.17538 0.16338 0.22635 0.13837 0.08953 0.00010 0.00605

 0.08125 0.08125 0.08125 0.08125 0.08424 0.07750 0.06300 0.08521 0.00009 0.07406

 0.08029 0.08029 0.08029 0.08029 0.07239 0.06953 0.05715 0.07306 0.00010 0.06512

 0.08293 0.08293 0.08293 0.08293 0.06684 0.05282 0.05581 0.00305 0.00008 0.06866

 0.00296 0.00296 0.00296 0.00296 0.00359 0.00197 0.00130 0.00171 0.00001 0.00141

 0.00997 0.00997 0.00997 0.00997 0.00934 0.00753 0.01018 0.01073 0.00024 0.01057

 0.00886 0.00886 0.00886 0.00886 0.01140 0.01421 0.00969 0.00879 0.00022 0.01017

 0.08363 0.08363 0.08363 0.08363 0.06777 0.00206 0.02368 0.04331 0.00004 0.00662

 0.08283 0.08283 0.08283 0.08283 0.35376 0.00201 0.02646 0.00544 0.00004 0.02263

 0.09406 0.09406 0.09406 0.09406 0.06143 0.00733 0.01685 0.01645 0.00064 0.02582

 0.08515 0.08515 0.08515 0.08515 0.07698 0.09175 0.07097 0.06762 0.00011 0.08368

 0.08160 0.08160 0.08160 0.08160 0.09371 0.08702 0.06739 0.06646 0.00008 0.07739

 0.08086 0.08086 0.08086 0.08086 0.08141 0.08654 0.06925 0.06538 0.00009 0.07740

 0.08238 0.08238 0.08238 0.08238 0.08320 0.08203 0.06751 0.05395 0.00011 0.07746

 0.08331 0.08331 0.08331 0.08331 0.09420 0.01711 0.07477 0.01461 0.00009 0.01935

 0.00067 0.00067 0.00067 0.00067 0.00054 0.00464 0.00740 0.00678 0.00006 0.00690

 0.05967 0.05967 0.05967 0.05967 0.05408 0.04822 0.02270 0.01925 0.00017 0.01865

 0.00821 0.00821 0.00821 0.00821 0.01031 0.00618 0.00623 0.00397 0.00011 0.00738

 0.00043 0.00043 0.00043 0.00043 0.00034 0.00124 0.00145 0.00173 0.00002 0.00059

 0.01581 0.01581 0.01581 0.01581 0.00875 0.10256 0.01323 0.00799 0.00025 0.01145

 0.02112 0.02112 0.02112 0.02112 0.02389 0.04246 0.03516 0.00786 0.00013 0.01465

 0.07207 0.07207 0.07207 0.07207 0.06970 0.08270 0.07019 0.04924 0.00005 0.10050

 0.07667 0.07667 0.07667 0.07667 0.07584 0.08081 0.06841 0.03319 0.00014 0.04053

 0.14145 0.14145 0.14145 0.14145 0.14506 0.01002 0.00841 0.00897 0.00012 0.01248

 0.04574 0.04574 0.04574 0.04574 0.04843 0.08112 0.03185 0.02851 0.00021 0.02790

 0.03739 0.03739 0.03739 0.03739 0.04921 0.01000 0.02035 0.01185 0.00019 0.01653

 0.08336 0.08336 0.08336 0.08336 0.08897 0.07353 0.06346 0.06354 0.00003 0.04449

 0.07581 0.07581 0.07581 0.07581 0.08182 0.07966 0.05424 0.06289 0.00007 0.07054

 0.07746 0.07746 0.07746 0.07746 0.08965 0.04561 0.05949 0.03563 0.00009 0.04247

 0.04765 0.04765 0.04765 0.04765 0.04967 0.02692 0.02058 0.02111 0.00016 0.01419

 0.00489 0.00489 0.00489 0.00489 0.00411 0.00745 0.00795 0.00733 0.00017 0.00929

 0.08402 0.08402 0.08402 0.08402 0.11465 0.08444 0.06428 0.06551 0.00008 0.07433

 0.07875 0.07875 0.07875 0.07875 0.07826 0.08018 0.07052 0.06623 0.00015 0.07777

 0.04826 0.04826 0.04826 0.04826 0.04245 0.00867 0.00918 0.00758 0.00008 0.01028

 0.06598 0.06598 0.06598 0.06598 0.07010 0.05898 0.07703 0.01556 0.00707 0.02343

 0.02430 0.02430 0.02430 0.02430 0.02547 0.02539 0.00705 0.00708 0.00018 0.01004

 0.01002 0.01002 0.01002 0.01002 0.01255 0.00805 0.00822 0.00735 0.00029 0.01300

 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

For our postulated poverty measure example --

EPMCO 18 # Experimental poverty measure cutoffs

 5600.0

6210.0

6530.0

7050.0

SUMMARY/CONCLUSION

It is useful to conclude by highlighting, but without redeveloping them in any detail, the

general level key points relevant for adding less typical scalar parameters and non-scalar

parameters to a model. In noting these points, we are assuming that the analyst is following

Programmer’s Guide Page 55

SPSD/M Version 20.0

the general procedures outlined for scalar parameters. For example, it is taken as given that

the analyst is working with COPIES of all the relevant files, and is performing all of the

modifications in a task subdirectory dedicated to the analysis at hand. We also assume that

the user has updated the project environment, and is following the appropriate "checklists"

provided for the less typical parameters.

1. We recommend the "copycat" approach as a general way to proceed. Throughout this

chapter we've provided concrete illustrations of the items a user might want to use as

templates. Users should rarely need to employ the detailed material on

Mpu.h/Cpu.h/Apu.h (definitions, manifest constants for max rows, and actual rows)

and Ampd.cpp (pmaddent and stradd).

2. Advanced users may want to be aware of the special "services" available via the

pmaddent arguments: the ability to specify printing formats, edit checks, and the

maximum number of allowable rows or options.

3. Vectors can sometimes be much more efficient than a number of individually named

scalar parameters. The SPSM provides for this capacity, though the user must supply

additional information in the pmaddent call and be sure to provide another variable for

the number of relevant rows, as well as a constant for dimensioning. We've offered

several potential templates to facilitate the copycat approach.

4. In many respects, schedules are like a special case of vectors, applicable when one needs

to look up a y-value, as a function of an x-value, from a fixed relationship.

5. Matrices (2-dimensional) are also possible. Some additional information, the number of

columns, becomes necessary, but the matrix approach can be considerably more efficient

than juggling multiple parallel vectors. Once again, the copy and modify approach is

recommended.

Glass Box Development: Adding New Variables

This chapter describes how to add new user-defined dependent variables to an SPSM glass

box application. Thus, it shows how to address challenges such as those raised in the Quick

Start example, where the user would like to have had a separate variable for the hypothetical

Earned Income Tax Credit. The availability of user-defined dependent variables is even

more important if the user is modeling some new program, e.g. an earnings supplement that

could not be conveniently combined into any existing model dependent variable.

Structurally, this chapter covers all of the major issues and steps involved in adding new

dependent variables to a model. Included in this chapter is an introductory overview of the

process, and also a section that characterizes the major types of variables that the user may

wish to add. An explanation follows of the critical vardef function that establishes the

linkages between the user's source code and the rest of the SPSM and also describes how to

use the stradd function to make the new variables' labelling available throughout the SPSM.

We then introduce an illustrative extension of the Earned Income Tax Credit example used in

the Quick Start example, which defines a new variable that will be available to the SPSM's

Programmer’s Guide Page 56

SPSD/M Version 20.0

several output facilities. Following this are examples of the source code changes that the

user has to make, and the descriptions of the compilation and validation of the resulting

model.

OVERVIEW FOR ADDING VARIABLES

In broadest outline, the key steps involved in adding new variables can be characterized as

follows.

1. Decide what new dependent variables are needed, choose appropriate names and

descriptions for them, and copy all of the relevant header and source code files over to

the subdirectory in which the new model will be built.

2. Make the relevant changes to the project environment (identifying all of the appropriate

source code files associated with the new dependent variables), and update Adrv.cpp

(providing documentary text strings).

3. Make the necessary changes to vsu.h and vsdu.cpp to render the new dependent

variables accessible throughout the SPSM model that will be created.

4. Supply new source code (in new or existing modules) to calculate the values for the new

dependent variables.

5. Compile the new model and validate it for correctness.

The preceding points are, of course, only an overview. Section on adding parameters and

the recapitulation section provide a much fuller description of the model creation process as a

whole. This chapter, however, concentrates on those details especially relevant for the

addition of new dependent variables.

DEPENDENT VARIABLE TYPES AND CHARACTERISTICS

The SPSM provides users with the capacity to create three different types of user-defined

dependent variables. All three types are scalars. The SPSM does not provide for vectors or

matrices of dependent variables. The specific types are as follows:

1. Numeric analysis -- This is the most common type of user-defined dependent variable.

It consists of a numeric (float) value that will be used as an analysis variable, e.g.

tabulated as a cell entry in the control parameter XTSPEC. A good example of this type

of dependent variable is the value of some new income-tested benefit that will be payable

to a family.

2. Integer analysis -- Less frequently used, this type of dependent variable consists of an

integer (int) value that will be used as an analysis variable. The primary use of this type

of variable is export in SAS format, where an integer variable takes up fewer characters

than a numeric analysis variable. Examples of this type of variable might be the

minimum and maximum numbers of weeks that a family could be without earnings

income during the year (as deduced from the labour-force variables for the family

members, e.g. weeks without work and looking for work).

Programmer’s Guide Page 57

SPSD/M Version 20.0

3. Integer class -- this type of dependent variable consists of an integer (int) value that will

be used as a classificatory variable, e.g. to define the categories for a classificatory

variable in the XTSPEC parameter. This type of variable is particularly relevant when

its values represent purely nominal categories, e.g. a classification of families by types.

A few other characteristics of user-defined dependent variables, individually and collectively,

will be of considerable importance to the glass box user --

First, all user-defined dependent variables are defined at the level of the individual. Thus,

the user must take care to assign values to "appropriate" individuals so that when the unit of

analysis is at a higher level, say the census family level, the SPSM's roll-up algorithms will

yield the desired results.

Second, the space allocated for such variables can handle approximately 50 variables.

Violation of this limit can result in obscure errors that are difficult to track down.

THE VARDEF AND STRADD FUNCTIONS AND THEIR ARGUMENTS

The vardef and stradd functions are absolutely critical to the capacity to create new

user-defined variables and have them used properly throughout the rest of the SPSM. It is

only via the information communicated via calls to these functions that the rest of the SPSM

learns about the nature of the new variables and the documentary text that goes with them.

This section documents first the vardef function, and then the stradd function.

The vardef function plays the same general role for user-defined variables that pmaddent

does for user-defined parameters. There will be one vardef call for each variable that the

user defines. Vardef defines the characteristics of the new variable so that the SPSM can

link it into the same variables framework used by the SPSD/M's own database, analytic and

classificatory variables. The vardef calls are always made in the vsdu.cpp function. The

following short description of the function's arguments appears at about line 100 of that

function --

* vardef("_uvew", <= the name of the variable, quoted, with '_'

* IN, <= home structure (leave at 'IN')

* im.uv.ew, <= variable location (always in im.uv)

* C_INT, <= C-type (C_INT or C_NUM)

* V_CLAS <= type of variable (V_CLAS or V_ANAL)

*);

We'll describe the nature of the vardef arguments one at a time, in order. Subsequent

sections in this chapter provide specific illustrations for the use of both the vardef and stradd

functions.

Vardef "Name" Argument (and Definition of Variable "Stem" Name):

The first argument gives the variable's name as a double-quoted text string. The user should

always include an underscore as the first character after the initial double quote, and then the

characters "uv" as the second and third characters to indicate the "user variable" status. The

remainder of the name, i.e. everything after the "_uv" prefix, is known as the variable's stem

name. Generally speaking, this stem portion should be as informative and mnemonic as is

feasible.

Programmer’s Guide Page 58

SPSD/M Version 20.0

Vardef "Home Structure" Argument:

The second argument indicates the structure in which the new variable resides. Because

user-defined variables are ALWAYS defined at the individual level, the user should always

enter this argument as an (unquoted) 'IN'.

Vardef "Variable Location" Argument:

The third argument indicates the location of the variable (as regards the SPSM's data

structures). The location is specified via three components, two of which are invariant.

Specifically, the first portion of the location is ALWAYS equal to "im.uv" (but unquoted).

This information tells the SPSM that the new variable is inside the user variable (uv) portion

of the im structure (individual level model variables). The final portion of the location

specification is the new variable's stem name, as defined above for the first argument.

Vardef "C-Type" Argument (C_NUM & C_INT):

The fourth argument specifies the C language type of the variable. It will take on one of two

values. Numerical analysis variables will use the entry "C_NUM" (unquoted). Integer

analysis and integer classification variables will use the value "C_INT" (unquoted).

Vardef "Usage" (Type) Argument (V_ANAL & V_CLAS):

The fifth and last argument specifies whether the SPSM is to treat the variable as an analysis

variable (tabulatable) or a classificatory variable (categorical). It will take on one of two

values. Both numerical and integer analysis variables will use the entry "V_ANAL"

(unquoted). Integer classification variables will use the "V_CLAS" (unquoted).

The combination of the fourth and fifth entries tells the SPSM how many bytes of memory it

needs to allocate for the variables. As noted above, the requirements are six bytes for a

numerical analysis variable, three bytes for an integer analysis variable, and one byte for an

integer classification variable.

We have already seen simple applications of the stradd function when we discussed the

documentation of user parameters. The same function serves a similar purpose here, but in a

more sophisticated fashion, since it is used to define both a short description of the user

variables themselves, but also, in the special case of integer analysis and integer

classification variables, the range of values and the textual labels associated with particular

values of the variables. The vsdu.cpp file contains, at about line 110, capsule

documentation for both the variable description and value label uses.

* stradd("uvew", <= the name of the variable, quoted

* "Region" <= a printing label for the variable

*);

** stradd("ew", <= the stem name of the variable, quoted

* "\tEast\tWest" <= string containing a label for each valid

*); level, preceded by a tab '\t' character.

As with the vardef function above, we shall take up the arguments in sequence. A

complicating factor here is that the NUMBER OF stradd INVOCATIONS and structure of

the stradd arguments depends on the type of variable for which stradd is being used.

However, the number of stradd arguments is always constant at two. Favouring clarity over

Programmer’s Guide Page 59

SPSD/M Version 20.0

brevity, we shall describe each of the three types (numeric analysis, integer analysis, and

integer classification) individually.

Stradd Calls for Numeric Analysis Variables:

Numerical analysis variables require only a single invocation of the stradd function. The

first argument specifies the variable name. It is identical to that used for the first vardef

argument, EXCEPT THAT THE LEADING UNDERSCORE PRESENT THERE IS

OMITTED HERE.

The second argument for a numerical analysis variable is the (quoted) string that the SPSM

will use when it needs to print a description of the variable.

For example --

stradd("uvnewben", "New Hypothetical Benefit");

Stradd Calls for Integer Analysis Variables:

Integer analysis variable additions require two separate stradd invocations. The first

invocation defines the label for the variable as a whole. The second invocation defines, via

a set of labels for the individual integer values, the range of values for the variable.

In the first (variable label) invocation, the first argument specifies the variable name. It is

identical to that used for the first vardef argument, EXCEPT THAT THE LEADING

UNDERSCORE PRESENT THERE IS OMITTED HERE.

In the first (variable label) invocation, the second argument is the (quoted) string that the

SPSM will use when it requires a description of the variable as a whole, e.g. in documenting

a table.

In the second (value labels) invocation, the first argument is the STEM NAME for the

variable; neither the underscore nor the leading “uv” string should be present.

In the second (value labels) invocation, the second argument is a quoted string that tells the

SPSM how many categories are relevant. The string consists of the repeated pattern ‘tx’

where x always varies from zero to “one minus the total number of categories”. Thus, for a

variable having four categories, the second argument would take the form -- “t0\t1\t2\t3”.

The slash-t notation is the C language’s standard way of denoting a tab character.

For example --

stradd("uvnputpp", "Number persons unemployed 2+ periods");

stradd("nputpp", "\t0\t1\t2\t3\t4");

Stradd Calls for Integer Classification Variables:

The stradd invocations for integer classification variables are identical to those for integer

analysis variables WITH ONE CRITICAL EXCEPTION. In the second (value labels)

invocation, the second argument is a quoted string that provides the textual labels for the

several categories of the variable. In essence, the several, user-supplied, labels correspond

to the integers 0 .. "categories minus 1" entries of the second stradd invocation for an

Programmer’s Guide Page 60

SPSD/M Version 20.0

integer analysis variable. Thus, for example, the labels for “region" documentation might

look as follows:

\tAtlantic\tQuebec\tOntario\tPrairies\tBritish Columbia

These labels, which may contain embedded blanks (since the tab characters serve as

delimiters) would appear as labels when the user employed the SPSM's crosstabulation

capacity or exported the new variable to a SAS file.

For example --

stradd("uvfamcat", "Nominal Family Income Category");

stradd("famcat", "\tVery Poor\tPoor\tNear Poor\tNon-Poor\tRich");

Beyond the descriptive definitions of vardef and stradd arguments, appearing about lines

100-115 of the vsdu.cpp function, vsdu.cpp also contains template combinations of the

vardef and stradd calls for all three types of new variables. In typical SPSM fashion, users

will normally find it convenient to modify copies of these templates when defining new

variables. These templates appear at about lines 125-145 of vsdu.cpp.

* ------------------

* A numeric variable:

* ------------------

vardef("_xxxxxxxx", IN, im.uv.xxxxxxxx, C_NUM, V_ANAL);

stradd("xxxxxxxx", "Variable label");

* --

* An integer analysis variable, with values 0 through 4:

* --

vardef("_yyxxxxxx", IN, im.uv.yyxxxxxx, C_INT, V_ANAL);

stradd("yyxxxxxx", "Variable label");

stradd("xxxxxx", "\t0\t1\t2\t3\t4");

* ---

* An integer class variable, with values 0 through 4:

* ---

vardef("_yyxxxxxx", IN, im.uv.yyxxxxxx, C_INT, V_CLAS);

stradd("yyxxxxxx", "Variable label");

stradd("xxxxxx", "\tLABEL0\tLABEL1\tLABEL2\tLABEL3\tLABEL4");

THE EARNED INCOME TAX CREDIT EXAMPLE EXTENDED

Although the preceding characterization of adding user-defined variables is complete from a

definitional perspective, it is useful to see how the several steps look in practice. In this

section we summarize the concrete example that the remaining sections will flesh out. In

essence the example is a further extension of the Earned Income Tax Credit exploration

introduced in Quick Start and subsequently enhanced with the addition of user-defined

parameters.

Our explicit objective here is to provide a worked example that gives concrete illustrations of

all three types of user-defined variables, and to do so without burdening the reader with the

overhead that would inevitably be associated with a completely new example. In the service

of this objective we have not hesitated to sacrifice some realism (as to institutional

motivation and practice) in favour of a clean, specific example.

We extend the Earned Income Tax Credit example by adding the following three

user-defined variables:

Programmer’s Guide Page 61

SPSD/M Version 20.0

1. A numeric analysis variable: the new variable is the gross amount of Earned Income Tax

Credit received; we'll name it "uveitc" (user variable, Earned Income tax credit). We

shall assign this variable to the appropriate members of the eligible census families.

2. An integer analysis variable: the new variable is the number of children in the census

family who fall under the prescribed age for census family eligibility for the Earned

Income Tax Credit. We'll name the variable "uvnceitc" (user variable, number of

children for Earned Income Tax Credit eligibility). We shall assign this variable to the

head of the census family.

3. An integer class variable: the new variable categorizes the level of Earned Income Tax

Credit received by eligible family members; we'll name the variable "uveitclvl" (user

variable, Earned Income Tax Credit level). We shall use it primarily as a categorical

variable for tables designed to validate our extensions to the Earned Income Tax Credit

code. We shall assign this variable to eligible family members, based on the age cutoff.

As we proceed to the actual changes and coding needed to implement these new user-defined

variables, we assume that the relevant files (Adrv.cpp, vsu.h, vsdu.cpp,

Agai.cpp, SPSMGL.vcproj, SPSMGL.sln, etc) have been COPIED over to an

appropriate new subdirectory; here we'll assume that it is named GLASSEX3, this being our

third worked glass box example. Note that one more file will be required, based on the

nature of this example, and that is the Amemo1.cpp file, which should be copied over from

the GLASS subdirectory. The changes necessary to this file will be outlined later.

CHANGES TO PROJECT FILES AND ADRV.CPP

We begin by including all the relevant files into the project and by changing the name of the

executable file in Project: Setting: Links to glassex3.exe.

The changes to Adrv.cpp are simple, consisting entirely of (a) updating the short textual

descriptions for the model and (b) indicating that Agai (rather than gai) is to be used for

Earned Income Tax Credit calculations. Also the user should redirect Adrv.cpp to use

Amemo1 (rather than memo1), the changes to Amemo1 will be discussed later.

Of the two descriptions, the SPSM displays the first on its opening screen, to tell the user

about the nature of the alternative system. The SPSM outputs the second description as part

of the '.CPR' (control parameter) documentation that it produces when it runs the model.

Recall that the positioning of this text (in the screen and in the output file) prevents the use of

descriptions longer than 20 characters. After adding the new descriptions, the relevant

portion of Adrv.cpp (about line 80) appears as follows:

================ GLOBAL VARIABLE DEFINITIONS =================== */

/*global*/ char ALTNAME[IDSIZE+1] = "EITC New Vars Ex";

/* Give global string describing version of this module */

/*global*/ char FAR Tdrv[] = "EITC New Vars Ex"

#ifdef MSC

" [" __TIMESTAMP__ "]"

#endif

;

Programmer’s Guide Page 62

SPSD/M Version 20.0

The altered line (about line 165) to indicate that the alternate driver uses Agai.cpp, rather

than gai.cpp, appears as --

Agai(hh); /* compute new guarantees, refundable credits */

The user must also alter the following line to redirect to the driver to the alternative memo1

function, the new line appears as –

Amemo1(hh); /* compute disposable income, etc. */

Finally, compile a Debug version in Build:Start:Debug. The required links and compilations

will be identified.

CHANGES TO VSU.H

The file vsu.h serves to define the C language structure that holds the user-defined

variables. The relevant portion of this file, copied from the SPSM\GLASS subdirectory,

appears as follows:

typedef struct uv_ {

 NUMBER uvdummy; /* dummy variable */

} uv_;

We replace the uvdummy line by three lines that define our new variables, uveitc, uvnceitc &

uveitclvl. These new lines indicate the types of the new variables. After the changes, the

new portion of vsu.h appears as follows:

typedef struct uv_ {

 NUMBER uveitc; /* Earned Income Tax Credit amount */

 int uvnceitc; /* Number Children for EITC eligibility */

 int uveitclvl; /* Earned Income Tax Credit level */

} uv_;

Note the naming conventions used here. The typedef statement requires that the variables be

prefaced with the uv prefix, but does NOT employ the leading underscore used in the vardef

statements that appear later in the changes to vsdu.cpp.

One need not always modify, as we have done here, the GLASS version of vsu.h. If an

already existing (user-defined) version of vsu.h contains user-defined variables that are to

be retained, simply make a copy of that existing file and modify it as appropriate. Recall,

however, that there is an overall limit of 200 bytes per individual for the user-defined

variables.

CHANGES TO VSDU.CPP

The necessary changes to the copy of vsdu.cpp consist of the vardef and stradd

invocations that allow the SPSM to access the new variables and their documentation.

Given the simplicity of these invocations, we use the example templates from the beginning

of the file. We shall make these invocations as the end of the vsdu.cpp file, just before

the final 'DEBUG_OFF("vsdu");' statement. The additions appear as follows:

/* uveitc: (Analysis) Earned Income Tax Credit amount */

 vardef("_uveitc", IN, im.uv.uveitc, C_NUM, V_ANAL);

 stradd("uveitc", "Earned Income Tax Credit amount");

Programmer’s Guide Page 63

SPSD/M Version 20.0

/* uvnceitc: (Analysis) number of children for EITC eligibility */

 vardef("_uvnceitc", IN, im.uv.uvnceitc, C_INT, V_ANAL);

 stradd("uvnceitc", "# Children for EITC eligibility");

 stradd("nceitc", "\t0\t1\t2\t3\t4\t5\t6\t7");

/* uveitclvl: (Class) Earned Income Tax Credit level */

 vardef("_uveitclvl", IN, im.uv.uveitclvl, C_INT, V_CLAS);

 stradd("uveitclvl", "Earned Income Tax Credit level");

 stradd("eitclvl", "\t0 EITC\tReduced EITC\tFull EITC");

Notice the second stradd call for each of the two integer variables, and the omission of the uv

prefix in that (second) call that defines the number of cases (integer analysis variable) or the

category labels (integer classification variable).

CHANGES TO AGAI.CPP (OR, MORE GENERALLY, ANY NEW SUBSTANTIVE

SOURCE CODE)

The preceding tasks have been preliminary to our central task, revision of Agai.cpp to

reflect the new calculation of the Earned Income Tax Credit. We are using Agai.cpp

here, but, more generally, at this stage, the user is ready to write/modify the source code

necessary to make the desired changes to the calculation of SPSM variables, whatever

modules those changes may involve. We'll illustrate the changes for our Earned Income Tax

Credit example one portion at a time, showing for each portion what the unmodified

Agai.cpp file looks like, and then how we have changed it to add our desired variables.

Identifying String

Documentation is important. As we proceed through the Agai.cpp file for our changes,

we first update the description. Where the GLASS version of Agai.cpp provides (at

about line 48) the placeholder description --

/*global*/ char FAR Tgai[] = "Untitled"

we substitute a more informative description:

/*global*/ char FAR Tgai[] = "EITC Vars Version"

Local Variables

Intermediate (local) variables can be very useful. Where the original GLASS version of

Agai.cpp does not use any local variables, we will add some local variables in the

Extended Quick Start Example, as illustrated below. The initialization of NUMBER/float

variables with ZERO is recommended.

/* user-defined intermediate (local) variables in support of glass box example 3

(user-defined SPSM variables) */

 NUMBER eitc = ZERO; /* amount of earned income tax credit */

 int nceitc; /* number of children for EITC eligibility */

Calculate and Assign the New Model Variables

We are now ready to calculate the new variables, and to assign them to the appropriate

user-defined SPSM variables. For our Agai.cpp example, we seek to calculate the

amount of the possible refundable tax credit. We do so immediately after all federal and

provincial taxes have been defined in the SPSM, but before disposable income been assigned

as outputs from the Amemo1 routine.

We will also keep the initial loop that assigns a 0 value to everyone in the household for the

Programmer’s Guide Page 64

SPSD/M Version 20.0

variable imiosa. We no longer will need imiosa as a dedicated variable uveitc has been

created to represent the Earned Income Tax Credit amount. If the user has simply

commented out the initial loop in the earlier phases of this example for Agai.cpp, then one

simply revives the code. If the user removed the loop in the earlier versions, then simply

copy the loop from the GLASS version of Agai.cpp.

void Agai(

 P_hh hh

)

{

 register P_in in;

 register int ini;

 register P_in ineld;

 register P_in inspo;

 register P_cf cf;

 register int cfi;

 int nceitc;

 NUMBER cfempinc;

 NUMBER eitc;

 DEBUG_ON("Agai");

 /* process persons in household */

 for (ini=0, in=&hh->in[0]; ini<hh->hhnin; ini++, in++) {

 in->im.imiosa = ZERO;

 }

 if (MP.UM.EITCFLAG) {

 /* process each census family in household */

 for (cfi=0, cf=&hh->cf[0]; cfi<hh->hhncf; cfi++, cf++) {

 /* initialise elder's pointer */

 ineld = cf->cfineld;

 /* calculate elder's contribution to family net income */

 cfempinc = ineld->id.idiemp;

 if (cf->cfspoflg) {

 DEBUG1("%s spouse present\n");

 inspo = cf->cfinspo; /* spouse's in pointer */

 /* add spouse's net income to family net income */

 cfempinc += inspo->id.idiemp;

 }

 nceitc = 0;

 /* process children in census family */

 for (ini=0, in=cf->cfinch; ini<cf->cfnchild; ini++, in++) {

 if (in->id.idage > MP.UM.EITCAGE) {

 DEBUG2("%s discarding old child, aged %d\n",

in->id.idage);

 continue;

Programmer’s Guide Page 65

SPSD/M Version 20.0

 }

 /* Count up remaining children */

 nceitc++;

 }

 eitc = 0;

 if (nceitc > 0) {

 if (cfempinc < MP.UM.EITCTPMX) {

 eitc = MP.UM.EITCPIR * cfempinc;

 }

 else if (cfempinc <= MP.UM.EITCTPRC) {

 eitc = MP.UM.EITCMAX;

 }

 else {

 eitc = nneg(MP.UM.EITCMAX - ((cfempinc -

MP.UM.EITCTPRC) * MP.UM.EITCPOR));

 }

 }

 /* process persons in census family */

 for (ini=0, in=cf->cfin; ini<cf->cfnpers; ini++, in++) {

 if (in->id.idage > MP.UM.EITCAGE) {

 in->im.uv.uveitc = eitc;

 if (eitc > 0) {

 if (eitc == MP.UM.EITCMAX) {

 // individual assigned a maximum EITC amount

 in->im.uv.uveitclvl = 2;

 }

 else {

 // individual assigned a reduced EITC amount

 in->im.uv.uveitclvl = 1;

 }

 }

 else {

 // individual did not receive any EITC amount

 in->im.uv.uveitclvl = 0;

 }

 }

 // assign the number of children under the age cutoff

that determines family eligibility

 // to the head of the census family

 if (in->id.idcfrh == 0) {

 in->im.uv.uvnceitc = nceitc;

 }

 }

 }

 }

 DEBUG_OFF("Agai");

}

Changes to Amemo1.cpp

Programmer’s Guide Page 66

SPSD/M Version 20.0

One addition has to be made to Amemo1.cpp to include the Earned Income Tax Credit in

the value of federal transfers – imftran, which is in turn included in disposable income.

From the code assignment in Amemo1.cpp, the original assignment of imftran is as follows:

in->im.imftran = in->im.imioas + in->im.imiotg

 + in->im.imigis + in->im.imispa

 + in->im.imfcben + in->im.imicqp

 + in->im.imiuib + in->im.imfstc

 + in->im.imqtar + in->im.imiosa

 + in->im.imfortc + in->im.imiuccbr

 + in->im.imheatrl + in->im.imfecb ;

One addition needs to be made to imftran, that is to add the value of the new user variable

‘uveitc’ since the Earned Income tax credit program now has it’s own dedicated variable in

the glass box code. It was not necessary to edit Amemo1.cpp in the beginning stages of

this example, since we used the built-in variable imiosa, which is already included in imftran.

So for this purpose, the new variable is added just after ‘imiosa’ and ‘imiosa’ is reset to 0 for

everyone.

in->im.imftran = in->im.imioas + in->im.imiotg

 + in->im.imigis + in->im.imispa

 + in->im.imfcben + in->im.imicqp

 + in->im.imiuib + in->im.imfstc

 + in->im.imqtar + in->im.imiosa

 + in->im.imfortc + in->im.imiuccbr

 + in->im.imheatrl + in->im.imfecb

 + in->im.uv.uveitc ;

Compilation

We should debug the model and test if it work properly and then compile the new model

GLASSEX3.EXE.

VALIDATION

Once the compilation is complete and the GLASSEX3.EXE file exists, the user can validate

it to check whether the logic is performing as was intended. Since validation was illustrated

in some length in the earlier stages of this example, we include here only one illustrative set

of crosstabulation outputs. In everyday operation, the user will want to ensure the

correctness of the model before proceeding on to make production runs of the desired tables.

The mini-validation here consists of a new set of tables to test the glass box variables. For

this validation, we’ll test the credit as per its original design, that is an income tested tax

credit of $1200 for individuals in eligible census families, which is determined by the

presence of children under the prescribed age limit. The relevant XTSPEC appears as

follows:

XTSPEC

IN:{uveitc, gainer:S=3, nochange:S=3} * agegrp+;

IN:empigrp+ * {uveitc, uveitc/gainer:L="Average Benefits",

Programmer’s Guide Page 67

SPSD/M Version 20.0

 gainer:S=3, nochange:S=3};

IN:dispgrp+ * {uveitc, gainer:S=3, nochange:S=3, scfrecs};

CF:uvnceitc+ * {uveitc};

IN:uveitclvl+ * {uveitc, gainer:S=3, nochange:S=3} * agegrp+;

The first 3 tables are similar to the earlier table specifications from glassex1, along with the

UVAR statements, with the replacement of uveitc for imiosa to illustrate the use of a

user-defined variable as an analysis variable. Note that the usage is just the same as if the

variables had been part of the original SPSM, even to the ability to use the "+" qualifier to

indicate the aggregation across a categorical variable's dimension. The table results should

be identical to that from glassex1.

Note that the glass box results were produced using a previous version of the SPSM model.

Table 1U: Selected Quantities for Individuals by Age
+------------------------------------+--------+--------+--------+--------+

|Quantity | Min-20 | 21-64 | 65-Max | All |

+------------------------------------+--------+--------+--------+--------+

|Earned Income Tax Credit amount (M) | 0.0| 804.1| 3.7| 807.9|

|Received EITC Flag (Gainer) (000) | 0.0| 1226.7| 7.4| 1234.0|

|Unaffected by EITC Flag (000) | 8146.0| 17946.5| 4184.0| 30276.6|

+------------------------------------+--------+--------+--------+--------+

Table 2U: Selected Quantities for Individuals by Wages & salaries Group

+-----------+-------------+-------------+-------------+-------------+

|Wages & |Earned Income| Average |Received EITC|Unaffected by|

|salaries | Tax Credit | Benefits |Flag (Gainer)| EITC Flag |

|Group | amount (M) | | (000) | (000) |

+-----------+-------------+-------------+-------------+-------------+

|Min-0 | 201.0| 641.2102| 313.4| 14751.3|

|1-8000 | 246.1| 594.5951| 413.9| 3191.6|

|8001-12000 | 143.0| 1006.2308| 142.1| 1073.4|

|12001-24000| 214.6| 597.1696| 359.3| 2556.5|

|24001-Max | 3.2| 608.0466| 5.2| 8703.8|

+-----------+-------------+-------------+-------------+-------------+

|All | 807.9| 654.6415| 1234.0| 30276.6|

+-----------+-------------+-------------+-------------+-------------+

Table 3U: Selected Quantities for Individuals by Base disposable income group

+-----------+----------+----------+----------+----------+

|Base | Earned | Received |Unaffected| SLID |

|disposable |Income Tax|EITC Flag | by EITC | Records |

|income | Credit | (Gainer) |Flag (000)| |

|group |amount (M)| (000) | | |

+-----------+----------+----------+----------+----------+

|Min-5000 | 73.7| 139.3| 9226.9| 19744|

|5001-10000 | 94.3| 151.2| 2547.6| 5722|

|10001-15000| 136.1| 202.1| 2987.8| 7607|

|15001-20000| 173.8| 237.2| 2987.4| 8349|

|20001-25000| 163.0| 241.8| 2440.6| 6443|

|25001-30000| 72.7| 118.2| 2309.0| 5650|

|30001-35000| 39.2| 59.9| 1888.1| 4544|

Programmer’s Guide Page 68

SPSD/M Version 20.0

|35001-40000| 17.5| 27.8| 1421.2| 3378|

|40001-45000| 9.5| 12.0| 1041.9| 2378|

|45001-Max | 28.2| 44.5| 3426.1| 7311|

+-----------+----------+----------+----------+----------+

|All | 807.9| 1234.0| 30276.6| 71126|

+-----------+----------+----------+----------+----------+

The fourth table demonstrates the use of a user-defined variable as a classification variable.

Here we use the CF: qualifier to output the amounts of EITC to census families by the

number of children that were used to determine the family’s eligibility. In the Agai.cpp

module, we assigned the uvnceitc to the head of the census family, thus that table would

make more sense to be reported at the census family level. This table provides one more

layer of confidence in the code structure as no Earned Income Tax Credits are being paid to

census families without any eligible children.

Table 4U: Earned Income Tax Credit amount (M) for Census Families by # Children for

EITC eligibility

+-----------+----------+

|# Children | Earned |

|for EITC |Income Tax|

|eligibility| Credit |

| |amount (M)|

+-----------+----------+

|0 | 0.0|

|1 | 340.4|

|2 | 296.3|

|3 | 116.9|

|4 | 37.8|

|5 | 13.1|

|6 | 3.4|

|7 | 0.0|

+-----------+----------+

|All | 807.9|

+-----------+----------+

The final table provides an example of the use of a user-defined variable as a classification

variable with defined levels. Here we output the level of Earned Income Tax Credit by the

level of the credit (0, reduced credit, full credit) at the individual level. Here we repeated

the structure of the first table and used the user-defined classification variable as an extra

dimension. It confirms further that the code is working as intended as. The first table in the

series confirms that no EITC benefits are paid out to individuals with the classification

variable ‘uveitclvl’ set to ‘0 EITC’. The second table in the series outputs the number of

individuals who have received a reduced EITC benefit, and there are no individuals in this

table slice that are unaffected as they have all received at least some amount of Earned

Income Tax Credit. The third table in this series includes only those individuals who

received the full EITC amount. We can see that the majority of benefit recipients qualified

Programmer’s Guide Page 69

SPSD/M Version 20.0

for a reduced EITC amount and not the maximum benefit of $1200. The final table slice in

this series is identical to the Table 1U, which is a rollup of the 3 levels of EITC benefit

amounts.

Table 5U: Selected Quantities for Individuals by Earned Income Tax Credit level

and Age

 Earned Income Tax Credit level = 0 EITC

 Age

+------------------------------------+--------+--------+--------+--------+

|Quantity | Min-20 | 21-64 | 65-Max | All |

+------------------------------------+--------+--------+--------+--------+

|Earned Income Tax Credit amount (M) | 0.0| 0.0| 0.0| 0.0|

|Received EITC Flag (Gainer) (000) | 0.0| 0.0| 0.0| 0.0|

|Unaffected by EITC Flag (000) | 8146.0| 17946.5| 4184.0| 30276.6|

+------------------------------------+--------+--------+--------+--------+

Table 5U (cont.): Selected Quantities for Individuals by Earned Income Tax

Credit level and Age

 Earned Income Tax Credit level = Reduced EITC

 Age

+------------------------------------+--------+--------+--------+--------+

|Quantity | Min-20 | 21-64 | 65-Max | All |

+------------------------------------+--------+--------+--------+--------+

|Earned Income Tax Credit amount (M) | 0.0| 608.7| 2.7| 611.4|

|Received EITC Flag (Gainer) (000) | 0.0| 1063.8| 6.6| 1070.4|

|Unaffected by EITC Flag (000) | 0.0| 0.0| 0.0| 0.0|

+------------------------------------+--------+--------+--------+--------+

Table 5U (cont.): Selected Quantities for Individuals by Earned Income Tax

Credit level and Age

 Earned Income Tax Credit level = Full EITC

 Age

+------------------------------------+--------+--------+--------+--------+

|Quantity | Min-20 | 21-64 | 65-Max | All |

+------------------------------------+--------+--------+--------+--------+

|Earned Income Tax Credit amount (M) | 0.0| 195.4| 1.0| 196.4|

|Received EITC Flag (Gainer) (000) | 0.0| 162.8| 0.8| 163.7|

|Unaffected by EITC Flag (000) | 0.0| 0.0| 0.0| 0.0|

+------------------------------------+--------+--------+--------+--------+

Table 5U (cont.): Selected Quantities for Individuals by Earned Income Tax

Credit level and Age

 Earned Income Tax Credit level = All

 Age

+------------------------------------+--------+--------+--------+--------+

|Quantity | Min-20 | 21-64 | 65-Max | All |

+------------------------------------+--------+--------+--------+--------+

|Earned Income Tax Credit amount (M) | 0.0| 804.1| 3.7| 807.9|

|Received EITC Flag (Gainer) (000) | 0.0| 1226.7| 7.4| 1234.0|

|Unaffected by EITC Flag (000) | 8146.0| 17946.5| 4184.0| 30276.6|

Programmer’s Guide Page 70

SPSD/M Version 20.0

+------------------------------------+--------+--------+--------+--------+

Once the validation is complete, the user will proceed to the production of the desired tables

and other outputs.

SUMMARY/CONCLUSIONS

We summarize this chapter's key points by providing a checklist of the main items required

to add new user-defined variables to an SPSM model.

1. Plan the desired changes "on paper”. Choose the new variable names and lay out the

logic by which they will be derived. Ascertain which specific substantive source code

files will be affected (e.g. Agai.cpp, Amemo1.cpp). Choose a subdirectory for the

new model, creating it if necessary.

2. Copy over the relevant files to the subdirectory where the work will be done.

 The files SPSMGL.sln, SPSMGL.vcproj, Adrv.cpp, vsu.h, and

vsdu.cpp will always be needed, along with the relevant substantive files, e.g. the

Agai.cpp and Amemo1.cpp file of our example.

 The files mpu.h and Ampd.cpp may also be needed depending on whether

parameters are to be added at the same time.

3. Update project and change the name of the output file.

4. Update Adrv.cpp.

 Insert appropriate short descriptions for the two documentary string arguments

(ALTNAME and Tdrv).

 Change the function calls to refer to the alternate versions of the tax/transfer

calculation functions, e.g. Agai(hh) rather than gai(hh).

5. Update vsu.h. Inside the 'uv_' structure, indicate the types and names of the new

user-defined variables. Remember to use the 'uv' prefix, but to omit any leading

underscore.

6. Update vsdu.cpp.

 For each new variable, provide a vardef function call to define the nature of the

variable to the SPSM.

 Also for each new user-defined variable, invoke stradd to provide a variable

description (text string) for the variable.

 For each integer variable, analysis or classificatory, invoke stradd a second time

(using just the stem name) to provide a list of labels for the integer values of the

variable. Remember that for the analysis variables these only indicate the number of

categories (from 0 to n), while for integer classification user-defined variables, the

labels are text of the user's choosing.

Programmer’s Guide Page 71

SPSD/M Version 20.0

7. Make the necessary changes to the substantive tax/transfer routines. Consider using

intermediate variables to simplify things. Be careful to perform appropriate

initializations and to assign the derived values to an appropriate individual.

8. Compile the new model. Don't forget to validate it before using it for any serious

production work.

Changing Base and Variant Data Variables

This chapter describes how users can, when appropriate, change values in the SPSD/M

database for the analysis of policy options. Such changes stand in contrast to the changes in

model logic, parameters and dependent variables described in previous chapters. Here, we

are looking at changes to the data used as input by the tax/transfer algorithms rather than to

the logic of those algorithms. The kinds of changes discussed here are temporary. They

affect the values "seen" by the user's model in a particular run, but they do not affect the

values actually stored in the SPSD itself.

Typically, but not exclusively, the user's database changes will involve dollar-denominated

amounts -- income or deduction items. The user might wish to grow or shrink income from

a particular source, e.g. shrinking interest income to reflect an assumption about falling

interest rates. However, the user might also want to alter a non-income variable, e.g. the

school attendance variable for older children in selected families.

For SPSM models that simulate two (base and variant) tax/transfer systems, an important

distinction is whether the changes affect the values as "seen" by the user's entire model, or by

just one of the (base or variant) systems within the model. This distinction is so important

that we have organized the structure of this chapter around it. Note, however, that the

distinction is irrelevant for models that simulate only a single tax/transfer system. The

procedures recommended here encourage the user to apply the single system approach

whenever it is feasible.

The following section describes how to make alterations to the data right after the SPSM has

read it for a model run. The changes discussed there will naturally affect ALL of the

tax/transfer systems appearing in the model. The section describes two sub-cases -- In the

first sub-case, the user makes the data adjustments via the SPSM's built-in data-aging

facilities. In the second, more demanding, sub-case, the user crafts his/her own adjustment

logic. This second sub-case may involve the definition of new data-adjustment parameters

for the model. The first section indicates where and how to make "single system" changes,

and provides a detailed worked example.

The subsequent section, in contrast, describes changes that affect only a single system (base

or variant) within an SPSM run. It explains how the use of the SPSM's "results file" facility

can often turn this case into the simpler "single system" as described earlier on. However,

for instances in which the results file approach is impossible or inconvenient, this section

also includes a description of where and how to make the necessary changes. It concludes

with a worked example of how to implement system-specific database adjustments.

MAKING CHANGES THAT AFFECT ALL TAX/TRANSFER SYSTEMS IN A MODEL

Programmer’s Guide Page 72

SPSD/M Version 20.0

This section describes how to make data changes that affect all of the tax/transfer systems in

an SPSM model. It is appropriate both when the model has only a single tax/transfer system

and when the model has two systems, but the user wants the data changes to affect both of

them.

This section first examines the SPSM's built-in data-adjustment facilities. Under this

method, the user assigns values to existing adjustment parameters via API (Database

Adjustment Parameter Include) files.

This is followed by adding new data adjustment algorithms. For this type of adjustment, the

user will define the new logic in the adju.cpp file, and will probably define new

parameters via changes in the apu.h and apdu.cpp files. The user may also wish to

define new dependent variables to assist in model validation.

Lastly a detailed worked example for this second sub-case is presented followed by a

checklist for making this “global” data adjustment type of change.

Typical Income and Population Growth Changes Via API Files

The design of the SPSD/M already anticipates the user's typical data-aging needs. The

\SPSD subdirectory includes a number of files with names of the form BAxx_yy.APR that

instruct the SPSM to age the data, other than the underlying demographic structure, from

year XX to year YY. Thus, file BA09_10.APR contains the aging parameters to age the

SPSD's non-demographic variables from 2009 to 2010.

If the substance of the parameters in these files is acceptable to the user's needs, then the data

aging is straightforward. The user enters the name of the "most nearly correct" file as the

control parameter file's INPAPR parameter. Any necessary changes to these parameter

values are then implemented via an ".API" (Database Adjustment Parameter Include) file or

on the fly if using Visual SPSM .

The Parameter Guide provides the authoritative description of these parameters. However,

it is useful here to characterize broadly the extensive control they provide.

Some parameters specify how imputed/converted incomes are to be treated (i.e. ignored or

either of two synthesis methods adopted). A large block of parameters governs the

"removal" of commodity taxes from family expenditures.

Another parameter block provides the low-income cutoffs for families. It permits the user to

specify a set of "poverty thresholds" for economic families, with the particular thresholds

varying by family size and the size of place of residence. Probably of most value to a

typical user, though, is the large set of growth factors for the SPSD's dollar-denominated data

variables: incomes, deductions, and expenditures. Virtually every such variable has its own

growth factor.

The SPSD/M also provides for convenient demographic aging of its underlying population.

The SPSD directory's ".WGT" files provide the user with the capacity to adjust the

population base throughout the interval of the years modelled.

Programmer’s Guide Page 73

SPSD/M Version 20.0

Changes Involving New Logic For adju.cpp

The flexibility provided by the aging parameter (".APR" & ".API") and population aging

(".WGT") files will often be sufficient for the user's needs. However, in some

circumstances, the user will wish or need to exercise more direct control over the data to be

used for a simulation. A few examples will indicate the scope of what is possible. The

reader should appreciate that the focus of these examples lies more in quickly conveying that

scope than in maintaining a strict, policy-oriented realism.

1. The user could increase the average education level by adjusting the "idedlev" variable

for selected individuals, perhaps resulting in a distribution of educational attainments that

falls in line with some exogenous forecast.

2. The user might wish to grow some income or transfer amount by a factor that is a

function of the unit's characteristics. E.g., based on the assumption that investors'

portfolios differ as a function of investor age and income, a user might be unwilling to

model the effect of an increase in interest rates by growing everyone's interest income

using the same proportion. Instead, a smaller factor might be applied to those

individuals felt likely to be conservative and/or to have portfolios that turn over more

slowly. This type of assumption would treat such families as being unable to benefit as

quickly from the higher interest rates.

3. A user might wish to model greater labour force participation by changing the array of

labour force variables relevant for individuals in the SPSD (weeks worked,

paid-employment earnings, employment insurance variables, etc.). Changes in such a

wide variety of related variables would only be done after considerable, comprehensive

planning.

4. At the extreme, a highly experienced, knowledgeable SPSM user could even alter the

household/family structure of the SPSD, modeling a baby boom by adding "synthetic

children" to appropriate families in the database.

The adju.cpp function, found in the \SPSM\GLASS subdirectory, is the means by which

the user can add new data aging logic to SPSM models. That adju.cpp function is called

immediately after the SPSM has read in each household, and before any transfers or memo

variables have been computed. The user can insert the logic for his/her own changes

immediately after the "adj(hh)" invocation that the SPSM uses to carry out its own data

aging, i.e. its built-in application of the income growth parameters specified in the relevant

".APR" and ".API" files.

For the implementation of new data aging logic, users may need to define new intermediate

variables (including counters, pointer variables, etc.) and/or to define new, custom, data

adjustment parameters. The next subsection describes the general procedure for adding such

new data adjustment parameters, with the attendant specific changes developed in the worked

example that follows it.

Adding New Database Adjustment Parameters

Programmer’s Guide Page 74

SPSD/M Version 20.0

The addition of new user-defined database parameters closely parallels that of new model

parameters as described in previous chapters. However, some minor differences are

relevant.

(1) SPSM models have only a single database adjustment parameter file (extension ".APR");

they may have either one or two model parameter (extension ".MPR") files, depending on

whether they model one or two transfer systems. (2) Correspondingly, users supply the

values of user-defined adjustment parameters in ".API" (Database Adjustment Parameter

Include) files that amend standard ".APR" files, rather than via ".MPI" (Model Parameter

Include) files that amends standard ".MPR" files. (3) New adjustment parameters are

defined in the apu.h (header) file rather than the mpu.h header file used for model

parameters. (4) Similarly, the function calls that make the parameters available to the rest of

the model occur in apdu.cpp, rather than the ampd.cpp file used for model parameters.

However, the structures of the relevant pmaddent and stradd calls are exactly identical.

Note, though, that certain arguments to these functions differ between adjustment and model

parameters. The worked example highlights these differences. (5) Finally, the logic

changes proper are defined in adju.cpp, rather than (typically) the individual tax/transfer

functions, such as Atxcalc.cpp, that are relevant for changes to the tax/transfer

calculation logic of a model.

We note in passing that the SPSM's control parameters follow a similar parallel structure,

but, even in glass box applications, users do not need to DEFINE new control parameters.

Instead, they simply alter the values of existing control parameters.

A Worked Example

Our hypothetical user, seeking to reflect a response to some change in federal income tax

treatment, wants to grow RRSP contributions in a model. S/he wants the growth to apply

either for a single system to be analyzed, or for both the base and variant systems in a

comparative model. However, this user is not willing to assume that everyone's

contributions grow by the same rate, and wants to simulate disproportionate growth as a

function of income. The main focus of the model is assumed to lie elsewhere in the

tax/transfer system. That is, the user has no special interest in the impacts of the RRSP

increases themselves. Rather, the user just wants "better" representations of the deduction

amounts to be used in all of the calculations for the relevant transfer system(s).

To make the example more precise, assume that the user wishes to grow existing

contributions by x% for each (whole or partial) slice of $10,000 of paid employment earnings

and self employment earnings over an initial base amount of $20,000. Thus, an individual

with $45,000 in earnings would see his/her RRSP contribution grown by a factor of (1.0 +

3x), where x is a new user-defined parameter. This growth will be IN ADDITION TO,

AND COMPOUNDED WITH, any growth induced via the standard SPSM growth parameter

for RRSP contributions, GFRRSP.

In a possibility NOT developed here, the user might also have induced the presence of RRSP

contributions for individuals who reported zero such contributions. The example developed

later provides an illustration of this sort of synthesis of dollar-denominated amounts.

Programmer’s Guide Page 75

SPSD/M Version 20.0

In the remainder of this subsection, we track the individual steps involved in implementing

this conditional growth (beyond the growth implemented via the adjustment parameter

GFRRSP). We assume that the user has created the subdirectory GLASSEX4 for the

purpose, and "COPIED IN" all of the relevant files. (For example, SPSMGL.sln,

SPSMGL.vcproj, apu.h, apdu.cpp, and adju.cpp, plus the SPSM parameter files

relevant for running the new model.) In this directory the user will create an ".API" file to

provide a value for the new user-defined parameter.

Because the parameter addition process for adjustment parameters so closely parallels the

procedure described in previous chapters, and for model parameters, our commentary on

these changes is kept to a minimum. The user is assumed to have modified the project to

include all the relevant files and changed the output name of the compilation to
GLASSEX4.EXE

We include the adjustment documentation in the relevant string defined in adju.cpp as

described below.

(A) Changes to apu.h

We begin by defining a user-defined parameter for the user-defined RRSP contributions

growth factor, the "x" factor in the description above. As a mnemonic, UDGFRRSP

(User-Defined Growth Factor, RRSP contributions) seems appropriate.

The additions to apu.h indicate the kind of parameter being defined. They go just before

the function prototype specifications, replacing the dummy user adjustment parameter

UADUMMY in the apu.h code.

typedef struct UA_ {

int UADUMMY; /* dummy entry */

 }

 UA_;

In our example, we replace the single UADUMMY line with --

 NUMBER UDGFRRSP; /* User-defined growth factor for RRSP Contr. */

(B) Changes to apdu.cpp

In the apdu.cpp function we add invocations to the pmaddent and stradd functions to give

the broader SPSM access to the value of the new parameter. The details of these functions

appear in previous chapters. We make the additions at the end of the apdu.cpp function,

right before the statement --

 DEBUG_OFF("apdu");

Our two invocations look as follows:

pmaddent(pap, "UDGFRRSP", (char *)&AP.UA.UDGFRRSP, NULL, P_SCL, C_NUM, 0, 0,

NULL, 0);

and

stradd("UDGFRRSP", "User-defined growth factor for RRSP Contr.");

Programmer’s Guide Page 76

SPSD/M Version 20.0

The explanatory text at the beginning of apdu.cpp function describes the

AGING-ORIENTED arguments for pmaddent and stradd. It also provides the templates for

our utilization here (a scalar parameter).

There are two critical differences in the pmaddent utilization as compared with the definition

of new model parameters. (1) The first argument is pap rather than pcp. (2) The third

argument differs in that the new parameter resides in the UA (User Adjustment) structure

within the SPSM's AP (Adjustment Parameter) structure. This stands in contrast to the

"&MP.UM" reference used for user-defined model parameters (User Model within Model

Parameters).

(C) Changes to adju.cpp

The first change updates the documentary text string relating to data aging. The original

SPSM\GLASS function defines this string at about line 53 as

/*global*/ char AGENAME[IDSIZE+1] = "Unnamed";

We modify it here to read --

/*global*/ char AGENAME[IDSIZE+1] = "RRSP Contr(Earnings)";

With the parameter value available throughout the SPSM, we make the source code additions

to implement the RRSP contribution growth. The first thing we need is some local variables

to aid us in stepping through the individuals in the household being analyzed and possibly

assigning modified RRSP contributions. Thus, we add the following four declarations to the

adju.cpp function, inserting them just after the function's opening brace.

NUMBER earn; /* total paid and self-employment earnings */

int group; /* number of UDGFRRSP multiples to use */

register P_in in; /* pointer to data for current person */

int ini; /* persons processed */

For the adjustment assignments themselves, the relevant location is near the very end of the

adju.cpp function, inside the code segment --

 DEBUG_ON("adju");

 /* Just call the standard adjustment algorithm */

 adj(hh);

 DEBUG_OFF("adju");

Our addition goes between the adj(hh); and DEBUG_OFF("adju"); statements.

/* Grow RRSP contributions as a function of total earnings */

for (ini=0, in=&hh->in[0]; ini<hh->hhnin; in++, ini++) {

 if (in->id.idrrsp == (NUMBER)0.0) {

 continue;

 }

 earn = in->id.idiemp + in->id.idise;

 if (earn <= (NUMBER)20000.0) {

 continue;

 }

 group = (int)(ONE+(earn-(NUMBER)20000.0)/(NUMBER)10000.0);

 in->id.idrrsp*=(ONE+AP.UA.UDGFRRSP*(float)group);

}

The new code, headed by an explanatory comment, breaks out into components that are

Programmer’s Guide Page 77

SPSD/M Version 20.0

relatively straightforward.

(1) The control portion of the "for" statement has been copied, in its entirety, from the

memo1.cpp function (computing totals for individuals) in the SPSM\GLASS

subdirectory. It steps across the individuals in the household. The local variables

defined earlier are used in this stepping.

(2) Growing RRSP contributions multiplicatively is not meaningful if there are none to begin

with. Thus, the "if-continue" statement of the next three lines skips the remainder of the

four statements if the individual has no RRSP contributions. The typecast "NUMBER,"

here and later, indicates the user's intentions as regards variable types; it prevents

compiler warnings.

(3) If RRSP contributions are positive, the next line calculates the individual's earnings from

paid employment and from self-employment. If the total does not exceed $20,000, then

the remainder of the for statement is skipped; Another "if-continue" statement performs

this function.

(4) The assignment to the "group" variable computes the number of multiples of

UDGFRRSP relevant for the growth. The final statement in the body of the loop applies

the growth via a multiplicative assignment. These two statements will only be executed

if some growth is appropriate. The (int) and (NUMBER) casts they contain indicate the

user's explicit intentions as to variable type conversions; they serve to prevent

meaningless warnings during the compilation stage.

(D) Compiling the model enhancement

The model should be debugged before the compilation of GLASSEX4.EXE executable file.

Only then can the model be run for validation testing and production work.

(E) Providing a parameter value

For any particular run of the model, the user must provide a value for the new parameter, e.g.

a value of 0.01. Normally the user will do this "on the fly" during the run of the new model,

or via an ".API" (Database Adjustment Parameter Include) file that will modify the

contents of the APR file specified in the model's control file (".CPR"). In our example, the

".API" file would consist of the single line --

UDGFRRSP 0.01

if no existing adjustment parameters were to be modified.

(F) Validating the model

Before using the model at all seriously, the user would want to validate the model to be sure

it is performing as intended. Though we shall not carry out such a validation in detail here

for reasons of space, normally one would generate a few selected tables for different runs,

checking to ensure that the model produces the expected results. For example, inputting a

UDGFRRSP factor of zero should leave the total amount of the RRSP unchanged.

Programmer’s Guide Page 78

SPSD/M Version 20.0

Similarly, a small value, say 0.01, should have a small or zero effect on low-income units,

but should have a larger effect on higher income units. A table, defined at the level of the

individual, that showed the increase in the RRSP contributions variable as a function of

individual earnings would go a long way toward deciding whether the algorithm yields the

right amount of RRSP increase. It could be generated by using a results file based on the

unmodified database, and comparing numbers of individuals and amounts of RRSP

contributions to the counterparts of these variables after the new RRSP contribution aging.

An example of the results, using the adjustment parameter UDGFRRSP set to 0.01 would be

as follows:

 Before Growth After Growth Difference

RRSP Contributions (M$)

Federal Income Tax (M$)

Prov. Income Tax (M$)

11,134.3

41,173.3

24,190.6

11,329.2

41,118.0

24.160.5

194.9

55.3

30.1

Total RRSP contributions have risen by about 1.75%, and federal and provincial income

taxes have correspondingly dropped by somewhat less than the amount of new RRSP

contributions.

Checklist for Changing Database Variables "Globally"

(A) Check to see whether the SPSM's existing facilities are sufficient to implement the

desired data adjustment, so that no new logic is required.

Can the desired population aging be implemented via a selection among existing case weight

files? If so, then specify the relevant case weight file (".WGT" extension) via the INPWGT

(Input Weight) control parameter. Use a ".CPI" file to provide the desired INPWGT value,

or enter it on the fly.

Can the adjustment of the data values be accomplished via changes to the values of the

SPSM's data adjustment parameters, in conjunction with the SPSM's normal database

adjustment algorithm (adj(hh))? If so, then provide the relevant adjustment parameter

values to the SPSM via an ".API" file, or on the fly. Specify it to the SPSM either

interactively or via a batch file being used to coordinate execution of the model.

(B) If the desired adjustments to the data cannot be handled via the built-in data adjustment

procedures, then some new logic will be required. The steps for adding this new data

adjustment logic are as follows:

1. Copy all of the relevant files to a new directory established for the analysis. The files

\SPSM\GLASS\adju.cpp, SPSMGL.vcproj, SPSMGL.sln are always relevant.

The files \SPSM\GLASS apu.h and \SPSM\GLASS\apdu.cpp will be relevant

when new adjustment parameters are required.

2. Alter the project environment to include all the relevant files and change the name of the

compiled model. Alter apu.h if new database adjustment parameters are being

defined.

Programmer’s Guide Page 79

SPSD/M Version 20.0

3. Alter apdu.cpp if new database adjustment parameters are being defined. The

changes will consist of adding new pmaddent and stradd invocations so that the substance

of the new parameters is available throughout the SPSM. Debug the model.

4. Alter adju.cpp. First change the function's documentary text string,

AGENAME[IDSIZE+1]. Then implement the new database adjustment logic. This

step will often involve declaring useful local variables and stepping through individuals

or families in the household.

5. Compile and validate the model before using it for production runs. Parallel tabulations

of relevant individuals and amounts before and after the database adjustment alterations

are recommended.

6. Carry out production runs using the new, validated logic.

MAKING CHANGES THAT AFFECT ONLY THE BASE OR ONLY THE VARIANT

Building a model in which database adjustment differs between a base system and a variant

system is inherently more complicated than building one in which the two systems are treated

identically. When it is possible, the user should avoid such complication. The SPSM's

capacity for using "results files" (extension ".MRS") provides the major mechanism for

avoiding database adjustment that is system-conditioned.

The basic approach is to divide the problem into two parts, one for each system. Then,

within each such system, a single database adjustment algorithm applies, using the methods

described earlier in this chapter. The user first creates a results file for one of the two

systems, choosing the variables necessary for any system specific tabulations and for any

comparisons to be made. In creating this first system, the user applies the database

adjustment assumptions relevant to that system. Subsequently, the second system is

simulated, with the appropriate, alternative, database adjustments applied to it. The results

file is read-in, in parallel with the processing of the second system, so that the two systems,

with their different database adjustment assumptions, are available simultaneously for all

required comparisons. Introduction and Overview Guide provides an illustration of the use

of results files.

The remainder of this section is relevant when the results file approach is somehow judged

inappropriate or inadequate to the task at hand. A few examples will illustrate such

circumstances.

1. The user may place a high premium on having a model that is self-contained, and, once it

has been validated, relatively easy to use interactively.

2. The intended application of the model may involve sensitivity analysis that would require

several MRS files, with an inherent possibility that confusion might arise. It might

require, for example, investigation of the impact of altering the adjustment of one specific

variable, with a variety of other variables repeatedly changed in parallel between the base

and variant systems.

Programmer’s Guide Page 80

SPSD/M Version 20.0

3. The intended application might involve complicated comparisons requiring large .MRS

files.

We believe, however, that these kinds of situations, while occurring occasionally, will be the

exception rather than the rule. We encourage users to seek to avoid parallel system models

in which database adjustments differs across the two systems.

In broadest outline, the method for making system-specific data changes is similar to that

used to make changes to the TAX/TRANSFER LOGIC of a system. Any new

system-specific database adjustment parameters are added, via the mpu.h and mpdu.cpp

files, as MODEL parameters, and NOT as data adjustment parameters per se. As described

below, the user may wish to add new MODEL dependent variables to track the changes

being made. Although, if new parameters and dependent variables are not required, the

procedure applies equally to SPSM base and variant models, we shall explain the procedure

in terms of the more common situation of variant models.

The MODEL-oriented approach just summarized is mandated by the design of the SPSM.

Since there is only a single ".APR" file, its parameters inevitably affect the data adjustment

for all systems within a model. In contrast, changes made via ".MPI" files, and via the

system-specific Adrv.cpp and drv.cpp functions, apply only to a single designated

tax/transfer system. The user can take advantage of this system-specificity to implement

system-specific data adjustments.

The key to the system-specific data adjustment changes lies with alterations made to the

Acall.cpp file. In essence, the user "intercepts" a household's data record just before it is

used by the functions in that procedure, makes the desired changes, and later restores the data

record to its original state just before execution leaves that procedure. The next section

explores these Acall.cpp-oriented steps in greater depth.

Implementing Changes in Acall.cpp

The focus in this section rests almost exclusively with the details of changes made within

Acall.cpp. Because of the similarity of system-specific data adjustments to the kinds of

tax/transfer system revisions described earlier in this Programmer's Guide, certain topics are

not repeated here. Specifically, users are expected to add any new parameters, and any

necessary new dependent variables using the methods documented in previous sections. For

example, a user might wish to add a new model variable to indicate whether the original

database value for a variable has been changed by the system-specific adjustments.

We'll take up the required changes in the order in which a reader would encounter them when

reading Acall.cpp's source code. Later, a worked example provides a concrete

application of the changes.

 (A) Declare New Local (to Acall.cpp) Variables

Recall that the general procedure requires the user to save the values of the variables to be

adjusted. The storage permits the values to be restored again before leaving Acall.cpp.

Programmer’s Guide Page 81

SPSD/M Version 20.0

Thus, the user must include in Acall.cpp appropriate local declarations to provide the

needed storage. Typically, the variables to be adjusted will be defined at the level of the

individual. Thus, the new variables should typically be defined as vectors of length

MAXPERS. (MAXPERS is the maximum number of individuals in a household.) The

user may also wish to define other local, working, variables. Normally, the user will declare

these variables just before the opening brace for the function, at about line 90 of the

unmodified version of Acall.cpp.

(B) Save the Values to Be Changed

As the very first thing within the executable portion of Acall.cpp, the user should store

away the original values of the variables that will be changed. If this is done, none of the

other functions invoked inside Acall.cpp can alter the value first or use the unaltered

value. Typically, the storage is accomplished via a "for" statement that steps across the

individuals in a household and copies them, one at a time, into the elements of a vector

declared in step (A). One of the elements in the bestiary provides the relevant stepping

control. The user will do this at about line 90 of the unmodified code, just after the

statement -

 DEBUG_ON("Acall");

(C) Change the Database Values

Immediately after the values have been stored, and still before the household's pointer has

been passed to any of the tax/transfer or roll-up functions, the user should make the desired

changes to the values of the relevant variables. These changes will constitute the bulk of the

"real programming”, i.e. logic that cannot necessarily be conveniently adapted from

elsewhere in the SPSM.

(D) Use the Now Adjusted Values

This step is the easiest of all, since it requires no special effort on the part of the user. It

consists of RETAINING the calls to the several tax/transfer and memo functions. Since the

values of the relevant variables have already been adjusted at this point, all of those functions

will perform their calculations using the adjusted household.

(E) Replace the Original Values

The final step consists of restoring the original values to the variables that were adjusted. It

will typically be done at about line 99 of the unmodified version of Acall.cpp, just before

control passes out of the function, i.e. just before the statement --

 DEBUG_OFF("Acall");

Execution of the replacement is important from the perspective of the code's generality,

maintainability, and reusability. The user programs the changes without knowing whether

the system programmed will be a base or variant system. By putting things back the way

they were, the user can minimize the possibility of unwanted side effects elsewhere in the

model. Equally important, this procedure minimizes the potential for unwanted side effects

should the new adjustments be used again in another model.

Programmer’s Guide Page 82

SPSD/M Version 20.0

A Worked Example

(A) The Substance to be Modelled

We begin with a description of the substantive logic used in the example. It will be obvious

that the same data-adjustment goals could have been achieved using the "avoidance"

techniques described above; however, since our documentary objective here is the illustration

of system-specific data adjustment techniques, we arbitrarily deem those avoidance

techniques to be "inappropriate" for our immediate purposes.

Suppose that some exogenous analysis relating to new income tax reporting requirements

suggests that individuals will be reporting more self-employment income. More

specifically, suppose that 5% of those individuals (1) not reporting more than $100.00 of

self-employment income (farm and non-farm combined) and (2) who are aged both over 25

and under 60 and (3) who further have half a year or more without work and looking for

work, really have self-employment income that has not previously been reported, but now

will be reported. Moreover, suppose the amounts of "new" self-employment income for

these persons is believed to be distributed uniformly between zero and $4000 per year.

The user seeks to estimate the additional income taxes collectible from these persons and also

to assess the impact of this "discovered" income on reducing the poverty rate as measured

against the LICOs. To carry out this investigation the user plans, in the variant tax/transfer

system, to impute appropriate amounts of these new incomes to randomly selected persons

who satisfy the three conditions.

(B) Relevant New Parameters and Variables

Following recommended SPSM practices for avoiding hard-wired values in a model, the user

establishes the following new user-defined adjustment parameters:

Parameter Description: Value:

NSEFLAG

NSEAMT

NSEFRC

NSEWKS

NSEMINAGE

NSEMAXAGE

NSEMAXINC

"New Self-Employment Income Flag"

"New Self-Employment 'Trivial Amount'"

"New Self-Employment Fraction"

"New Self-Employment Weeks Requirement"

"New Self-Employment Minimum Age"

"New Self-Employment Maximum Age"

"New Self-Employment Maximum New Income"

1

100.0

0.05

26

25

60

4000.0

Similarly, the user defines new variables that will permit convenient counts of the numbers

of eligible persons and of the number for whom new incomes are synthesized. It will also

be useful to have an additional new variable for the amounts of synthesized income.

Variable: Description:

uvnseef "Eligible New Self-Empl"

uvnsesf "Received New Self-Empl"

uvnseamt "New Self-Empl Amount"

(C) Setting Up for the Analysis

Programmer’s Guide Page 83

SPSD/M Version 20.0

The user begins by creating a new subdirectory for the analysis, GLASSEX5. S/he copies in

the required template files: SPSMGL.vcproj, SPSMGL.sln (to control the compilation),

mpu.h and Ampd.cpp (to make the new parameters available), vsu.h and vsdu.cpp (to

make the new variables available), and Acall.cpp (to implement the new system-specific

database adjustments).

We look at the changes in the order in which the user would be encouraged to make them.

(D) Changes to project

All the relevant files should be included in the project and the name of the output model

changed to GLASSEX5.EXE.

 (E) Changes to mpu.h

The user provides declarations for all of the new parameters described above.

int NSEFLAG; /* New Self-Employment Income Flag */

NUMBER NSEAMT; /* New Self-Employment 'Trivial Amount' */

NUMBER NSEFRC; /* New Self-Employment Fraction */

NUMBER NSEWKS; /* New Self-Employment Weeks Requirement */

NUMBER NSEMINAGE; /* New Self-Employment Minimum Age */

NUMBER NSEMAXAGE; /* New Self-Employment Maximum Age */

NUMBER NSEMAXINC; /* New Self-Employment Maximum New Income */

(F) Changes to Ampd.cpp

The user alters the Ampd.cpp file by providing pmaddent and stradd invocations for all of

the new parameters. Appropriate new pmaddent calls would be as follows:

pmaddent(pcp, "NSEFLAG", (char *)&MP.UM.NSEFLAG, NULL, P_SCL, C_INT, E_FLAG, 0, NULL, 0);

pmaddent(pcp, "NSEAMT", (char *)&MP.UM.NSEAMT, NULL, P_SCL, C_NUM, 0, 0, NULL, 0);

pmaddent(pcp, "NSEFRC", (char *)&MP.UM.NSEFRC, NULL, P_SCL, C_NUM, E_FRCT, 0, NULL, 0);

pmaddent(pcp, "NSEWKS", (char *)&MP.UM.NSEWKS, NULL, P_SCL, C_NUM, 0, 0, NULL, 0);

pmaddent(pcp, "NSEMINAGE", (char *)&MP.UM.NSEMINAGE, NULL, P_SCL, C_NUM, 0, 0, NULL, 0);

pmaddent(pcp, "NSEMAXAGE", (char *)&MP.UM.NSEMAXAGE, NULL, P_SCL, C_NUM, 0, 0, NULL, 0);

pmaddent(pcp, "NSEMAXINC", (char *)&MP.UM.NSEMAXINC, NULL, P_SCL, C_NUM, 0, 0, NULL, 0);

The associated stradd invocations would appear as follows:

stradd("NSEFLAG", "New Self-Employment Income Flag");

stradd("NSEAMT", "New Self-Employment 'Trivial Amount'");

stradd("NSEFRC", "New Self-Employment Fraction");

stradd("NSEWKS", "New Self-Employment Weeks Requirement");

stradd("NSEMINAGE", "New Self-Employment Minimum Age");

stradd("NSEMAXAGE", "New Self-Employment Maximum Age");

stradd("NSEMAXINC", "New Self-Employment Maximum New Income");

(G) Changes to vsu.h

In this file the user declares the new variables that will contribute to more convenient

validation and tabulation of the individuals for whom new income is considered or actually

synthesized.

int uvnseef; /* Eligible for New Self-Empl Synthesis */

int uvnsesf; /* Received New Self-Empl Income */

NUMBER uvnseamt; /* New Self-Empl Amount */

Programmer’s Guide Page 84

SPSD/M Version 20.0

(H) Changes to vsdu.cpp

In vsdu.cpp the user invokes vardef and stradd to make the new variables available

throughout the new model. As indicated above, there are two classificatory variables to be

used for crosstabulation outputs, and a NUMBER float value for the amount of synthesized

self-employment income.

/* uvnseef: (Class) Flag: Individual eligible for NSE synthesis? */

vardef("_uvnseef", IN, im.uv.uvnseef, C_INT, V_CLAS);

stradd("uvnseef", "Eligibility for Synth Self-Empl");

stradd("nseef", "\tNot Eligible\tEligible");

/* uvnsesf: (Class) Flag: Individual Got Synth. NSE? */

vardef("_uvnsesf", IN, im.uv.uvnsesf, C_INT, V_CLAS);

stradd("uvnsesf", "Synth Self-Empl Receipt");

stradd("nsesf", "\tNo Receipt\tReceipt");

/* uvnseamt: (Analysis) NUMBER: Amount of synthesized NSE */

vardef("_uvnseamt", IN, im.uv.uvnseamt, C_NUM, V_ANAL);

stradd("uvnseamt", "Synth Self-Empl Amount");

(I) Changes to Acall.cpp

i) The changes begin with the declaration of new variables critical to the data adjustment

process. We use standard SPSM notation for the pointer to an individual, and for the

number of persons processed (for the stopping rule within households). In addition, there is

a vector declared to hold the original values of the individuals' self-employment income.

register P_in in; /* pointer to data for current person */

int ini; /* persons processed */

NUMBER orignfse[20]; /* original self-empl income */

ii) The changes continue with the code to store the existing self-employment income so that

it can later be restored to its original state. We use one of the standard elements of the

bestiary, stepping across individuals in the household, to implement this archival.

/* Archive original database values for self-employment */

for (ini=0, in=&hh->in[0]; ini<hh->hhnin; in++, ini++) {

 orignfse[ini]=in->id.idise;

}

A slightly more efficient version of this code would make the execution of the storage

instructions conditional upon the NSEFLAG parameter being set to a value of 1 to activate

the synthesis facility. The version here is simpler and slightly safer.

iii) Implement the conditionally augmented self-employment income

Users are encouraged to use the built-in random number generators in SPSM (idrand) to

ensure replicability of results. The use of C++ random numbers may generate different

results with each run.

/* Selectively synthesize self-employment income */

for (ini=0, in=&hh->in[0]; ini<hh->hhnin; in++, ini++) {

 in->im.uv.uvnseef=0; /* assign values to new vars */

 in->im.uv.uvnsesf=0;

 in->im.uv.uvnseamt=(NUMBER)0.0;

Programmer’s Guide Page 85

SPSD/M Version 20.0

 if (MP.UM.NSEFLAG==0) {

 continue; /* don't synthesize if facility is off */

 }

if ((in->id.idise>MP.UM.NSEAMT) ||

 (in->id.idnage<MP.UM.NSEMINAGE) ||

 (in->id.idnage>MP.UM.NSEMAXAGE) ||

 (in->id.idlyun<(int)MP.UM.NSEWKS)) {

 continue; /* ignore ineligible individuals */

 }

 in->im.uv.uvnseef=1; /* mark indiv. as potentially eligible */

if (in->id.idrand[2]>MP.UM.NSEFRC) {

 continue; /* individual was not selected to get income */

}

in->im.uv.uvnsesf=1; /* mark indiv. as recipient */

in->im.uv.uvnseamt=in->id.idrand[3]*MP.UM.NSEMAXINC; /*synthesize amt */

in->id.idise+=in->im.uv.uvnseamt; /* add syn amt to self-empl*/

}

The preceding code, though a bit lengthy, is straightforward. Inside the loop through

individuals, one performs the following actions:

Assign default values to the new user-defined variables.

Skip the rest of the loop if the facility was not activated.

Skip the rest of the loop if the individual doesn't meet the qualifying conditions for

synthesis of new self-employment income.

Mark the individual as potentially eligible for synthesis; then skip the rest of the loop

if the individual is not "chosen" to receive income.

If execution reaches this stage, mark the individual as a recipient of synthesized

income and impute the amount, adding the new amount to the person's

self-employment variable.

Once the loop has been executed, the synthesis of new self-employment income is complete

for all members of the household. At this point the "regular" statements of Adrv.cpp

follow, calculating the tax/transfer amounts and the several memo items.

iv) Finally, after the adjusted household has been processed through all of the tax/transfer

and memo functions, the new code restores the original self-employment income values.

 /* Restore original database values for self-employment */

 for (ini=0, in=&hh->in[0]; ini<hh->hhnin; in++, ini++) {

in->id.idise=orignfse[ini]; }

A slightly more efficient version of this code would make the execution of the restoration

instructions conditional upon the NSEFLAG parameter being set to the value of 1 that

activates the synthesis facility. The version here is simpler and slightly safer.

Programmer’s Guide Page 86

SPSD/M Version 20.0

(J) The new MPI and CPI files

It still remains to provide values to the several parameters so that the SPSM, during a

particular run, can implement the desired adjustments. A parameter "include file" (extension

".MPI") with the following entries performs this function. Alternatively, users can edit

parameters on the fly from the hierarchy if using Visual SPSM.

NSEFLAG 1

NSEAMT 100.0

NSEFRC 0.05

NSEWKS 26.0

NSEMINAGE 25.0

NSEMAXAGE 60.0

NSEMAXINC 4000.0

Similarly, it is necessary to make sure that the relevant independent streams of

pseudo-random variates are generated to serve as inputs to the "random" choices of synthetic

income recipients and the associated amounts of synthesized income.

 (K) Compiling and Validating the Model

With all of the source code changes complete, the user should first debug the model and then

compile the desired executable file, GLASSEX5. We conclude this worked example by

characterizing a very quick and dirty set of validation tables. For a serious application, the

user would normally undertake a much more rigorous validation of the changes. Recall too,

that this kind of system-specific data adjustment could more easily have been accomplished

using results files (".MRS"). Under that mechanism, an equivalent income assignment logic

would have been applied via the adju.cpp file, and the relevant parameters would have

been supplied via an API file or entered on the fly.

Assume, for purposes of this quick and dirty illustrative validation, that the user's exogenous

source has already indicated roughly how many individuals should display new

self-employment income, perhaps as a function of some relevant policy variable.

The user will first want to tabulate the numbers of individuals according to the values

of the two user-defined classificatory variables, uvnseef, and uvnsesf. Then the

entries in this table can be compared to the exogenous source to confirm (1) that the

numbers of eligible individuals agrees with those specified in the "exogenous source,"

(2) that an appropriate proportion of these individuals have had new self-employment

income imputed.

Next, the user would want to confirm that the average amount of new imputed

self-employment income is appropriate (i.e. half of the $4,000 NSEMAXINC

parameter value). It would also make sense to tabulate the total amount of new

income imputed, so that this amount can be compared to the increases in federal and

provincial income taxes. Thus the user can confirm whether an appropriate

proportion of the new income is flowing to the government sector as income taxes.

Even for the validation runs, it makes sense to look at the degree of change in the

Programmer’s Guide Page 87

SPSD/M Version 20.0

incidence of units below the relevant LICOs. Given the relatively tight conditions

for the eligibility to receive the synthesized income, and the relatively small portion

of the eligible population selected to receive new self-employment income, the user

should expect only a small change in that incidence.

Here we show the first part of this validation, verifying the amounts of new self-employment

income. The changes in "poverty rate," not shown here, would be derived using the SPSM's

"efpovthr" (poverty threshold) and "impovinc" (income for comparison against the relevant

poverty threshold) variables. The validation is most conveniently performed via

crosstabulations. The relevant control parameters, input via a ".CPI" file, are as follows:

XTFLAG 1

XTSPEC

 IN: { units }

* uvnseef

* uvnsesf;

 IN: { uvnseamt,

 uvnseamt/units }

 * uvnsesf;

 IN: { uvnseamt,

 imtxf-_imtxf,

 imtxp-_imtxp }

 * uvnsesf;

Note that the glass box results were produced using a previous version of the SPSM model.

The resulting tables then appear as –

Table 1U: Unit Count (000) for Individuals by Eligibility for Synth Self-Empl

and Synth Self-Empl Receipt

Synth Self-Empl Receipt

+--------------------------------+----------+----------+

|Eligibility for Synth Self-Empl |No Receipt| Receipt |

+--------------------------------+----------+----------+

|Not Eligible | 23351.7| 0.0|

|Eligible | 809.6| 47.2|

+--------------------------------+----------+----------+

Table 2U: Selected Quantities for Individuals by Synth Self-Empl Receipt

Synth Self-Empl Receipt

+---------------------------------------+----------+---------- +

|Quantity |No Receipt| Receipt |

+---------------------------------------+----------+---------- +

|Synth Self-Empl Amount (M) | 0.0| 92.5|

|uvnseamt/units | 0| 1962|

+---------------------------------------+----------+---------- +

Table 3U: Selected Quantities for Individuals by Synth Self-Empl Receipt

Synth Self-Empl Receipt

+---------------------------+----------+----------+

|Quantity |No Receipt| Receipt |

Programmer’s Guide Page 88

SPSD/M Version 20.0

+---------------------------+----------+----------+

|Synth Self-Empl Amount (M) | 0.0| 92.5|

|imtxf-_imtxf (M) | 1.0| 12.9|

|imtxp-_imtxp (M) | 0.5| 9.5|

+---------------------------+----------+----------+

As regards the substance of these tables, we'll assume that the 809.6 thousand persons in

table 1U agrees reasonably well with the hypothesized "exogenous data source." Since 47.2

thousand of these persons received some new self-employment income, the 5% objective has

been roughly met.

Table 2U confirms that our new algorithm assigns new self-employment income only to

those eligible to receive it. The total amount of new income, and the associated average

amount, confirms that the expected amounts of the new income are being synthesized

(roughly $2000 per selected individual).

Table 3U then indicates how much of the new income, a bit more than a quarter of it, is being

captured by the tax system. As expected, most of the capture is directly from the recipient

individuals. There is some from non-recipients - primarily because they can no longer claim

the spousal tax credit as their spouses receive the new income. Clearly, with income of less

than $100M being distributed across the whole personal sector, we do not expect any major

impacts on the proportion of the population below the LICOs.

Finally, once the user is satisfied as to the correctness of the adjustment procedures, s/he

would run the full SPSD through the model in one or more production runs. To meet the

illustrative goals described at the start of this section, outputs would have to include the

federal and provincial income tax totals, and the numbers of families above and below the

LICOs, with these outputs being produced both with and without the synthesis of new

self-employment income. Normally, the user would also include breakouts of these

variables by relevant classificatory variables such as family type.

Checklist for System-Specific Database Changes

(A) Create a new subdirectory for the analysis. Copy into it templates for all of the files that

will needed for the analysis. Items that are likely to be required include SPSMGL.sln,

SPSMGL.vcproj, mpu.h, Ampd.cpp, vsu.h, vsdu.cpp, Acall.cpp, and a

control (".CPR") file. The user will also create, in this same subdirectory, other files

required for the analysis for which there are no obvious templates, e.g. the ".MPI" file

that will provide values for the system-specific database adjustment parameters, or a

batch file to control the SPSM session.

(B) Change the project environment to include all the relevant files and change the name of

the executable output file.

(C) Change mpu.h and Ampd.cpp to declare any new system-specific data adjustment

parameters, and to make them available, via invocations of pmaddent and stradd, to the

Programmer’s Guide Page 89

SPSD/M Version 20.0

rest of the SPSM.

(D) Change vsu.h and vsdu.cpp as required to declare any new system-specific model

variables, and to make them available, via invocations of vardef and stradd, to the rest of

the SPSM.

(E) Change Acall.cpp to save the original values of the variables to be adjusted, to effect

the adjustments, and then, after the household has been processed, to restore the original

values before leaving the procedure. These steps will typically require the definition of

local VECTORS of values dimensioned for the numbers of possible individuals in a

household.

(F) Compile the new model and correct any problems identified by the compiler.

(G) Supply values for the new system-specific data adjustment parameters via an ".MPI"

file or enter on the fly. When the adjustment depends on the use of random variables,

provide a ".CPI" file (or edit the parameter on the fly if using Visual SPSM) with

appropriate changes to the SEED parameter. The model will gain access to these control

and model parameter values at model execution time either interactively or via an SPSM

batch file.

(H) Validate the model carefully, and then make production runs.

