
SPSD/M
Programmer’s Guide

This guide describes how to use the SPSM in glass box mode.
Glass box mode allows users to add new variables and
parameters to the SPSM as well as the ability to alter the SPSM
algorithms or implement new algorithms. The Microsoft C
compiler is required for using the glass box mode.

October 31, 1997

Table of Contents
Introduction 1

Purpose of the Glass box Mode 1
Hardware and Software Requirements for the Glass box Mode.............................. 3
Programming Knowledge Required................................ 4

Operating System Knowledge Required................................ 4
Fundamental Programming Concepts (Not Language Specific).................. 4
Knowledge of the C Programming Language................................ 5

Quick Start Example 6
Preliminaries................................ 6
Changing the project environment................................ 7
Changing the Alternative Driver Function (Adrv.c) 7
Changing the Alternative Family Allowances Function (Afa.c) 8
Testing the Resulting Alternative SPSM Model................................ 10
Summary................................ 14

SPSD/M and Glass Box Directory Structure 15
The SPSD Household/Individual Structure................................ 18

The SPSD/M's Data Structure 18
Common Macros: 19
The hh Structure: 20
The hd Structure: 21
The fx Structure: 22
The ct and ctbase Structures: 23
The ef Structure: 25
The cf Structure: 25
The nf Structure: 26
The in Structure: 27
The id Structure: 28
The ic Structure: 34
The im and imbase Structures:................................ 35
The ub1 and ub2 Structures:................................ 45
The uv Structure and the imfill Array:................................ 46
Sorting order and looping................................ 46

Summary................................ 47
Introduction to Pointers in the SPSD/M 47
The Bestiary 48

Examples of Looping:................................ 48
References With Respect to an Individual:................................ 51

Summary................................ 52
SPSM Function Calling Structure................................ 53
Glass Box Development: Adding Typical Scalar Parameters................................ 55

General Procedure for Making Glass box Changes: A Recapitulation.................... 55
Create Task Sub-directory................................ 55
Identify Files to be Changed................................ 55
Copy Relevant Files to Task Sub-directory................................ 56

Edit Those Relevant Files................................ 56
Compile the new version................................ 56
Test the New Version of the Model................................ 56
Carry Out the Intended Analysis................................ 57

Introduction to Parameter Addition................................ 57
Copy Files Adrv.c, Mpu.h, Ampd.c, Afa.c, SPSM.mak, and
SPSM.mdp 58
Update the project 59
Update the Algorithm Description in Adrv.c 59
Modify Mpu.h to Define the new Parameters................................ 59
Modify Amph.c to Make the Parameters Available to the SPSM........................ 60
Modify the Functions that Use the New Parameter(s)................................ 62
Validate and Make Black-Box Production Runs................................ 63
Summary/Conclusion................................ 64

Glass Box Development: Adding Less Typical Parameters................................ 66
The pmaddent Function and its Arguments................................ 66
Characterizing Scalar Parameters 70

REAL/float/NUMBER Parameters 70
INTERGER/int Parameters................................ 70
FLAG Parameters................................ 70
FRACTION Parameters................................ 71
OPTION Parameters 71
EDIT-FRACTION Parameters................................ 71
DUMMY Parameters................................ 71

Vectors of User-defined Parameters 72
Additions to Mpu.h, Cpu.h or Apu.h................................ 72
Additions to Ampd.c 73
User-Defined Parameter Vector References in the Source Code................. 74
Specification of Parameter Vector Values................................ 74
Summary................................ 75

User-defined Schedules for Lookups................................ 76
Schedule Types and Lookup Functions................................ 77
Appearance in SPSM Header Files................................ 77
Appearance in pmaddent Calls in Ampd.c 78
Employing Schedule References in User Code................................ 79
Appearance in Parameter Files................................ 80
Key Points for Adding Schedule Parameters................................ 80

Adding Matrices of Parameters 81
Appearance in Mpu.h 82
Appearance in Ampd.c 82
Referencing Matrix Elements in Source Code................................ 83
Appearance in Parameter Files................................ 83

Summary/Conclusion................................ 84
Glass Box Development: Adding New Variables................................ 86

Overview for Adding Variables................................ 86
Dependent Variable Types and Characteristics................................ 87

The vardef and stradd Functions and their Arguments................................ 87
Vardef "Name" Argument (and Definition of Variable "Stem" Name):...... 88
Vardef "Home Structure" Argument: 88
Vardef "Variable Location" Argument:................................ 88
Vardef "C-Type" Argument (C_NUM & C_INT):................................ 89
Vardef "Usage" (Type) Argument (V_ANAL & V_:................................ .. 89
Stradd Calls for Numeric Analysis Variables:................................ 90
Stradd Calls for Integer Analysis Variables:................................ 90
Stradd Calls for Integer Classification Variables:................................ 90

The Family Allowance Supplement Example Extended................................ 91
Changes to project files and Adrv.c................................ 92
Changes to vsu.h................................ 93
Changes to vsdu.c................................ 94
Changes to Afa.c (Or, more generally, any new substantive source code)........... 94

Identifying String................................ 95
Local Variables................................ 95
Calculate and Assign the New Model Variables................................ 95
Compilation................................ 98

Validation................................ 98
Summary/Conclusions................................ 101

Changing Base and Variant Data Variables................................ 103
Making Changes That Affect All Tax/Transfer Systems in a Model:...................... 103

Typical Income and Population Growth Changes Via APR/API Files........ 104
Changes Involving New Logic For adju.c 104
Adding New Database Adjustment Parameters................................ 105
A Worked Example................................ 106
Checklist for Changing Database Variables "Globally".............................. 110

Making Changes That Affect Only the Base or Only the Variant........................... 111
Implementing Changes in Adrv.c 112
A Worked Example................................ 114
Checklist for System-Specific Database Changes................................ 122

Programmer’s Guide Page 1
SPSD/M Version 6.0 11/19/97

Introduction

The Programmer's Guide describes how users can alter the SPSM in order to model
tax/transfer systems or policy options not directly addressable by the SPSD/M as distributed;
e.g. they might make an alteration to the logic of the tax/transfer system in order to assess the
static distributional impacts that would result from a policy proposal.

This chapter introduces a variety of preliminary topics critical for understanding the use of
the SPSM in its glass box mode. Specific chapter topics include:

(1) a description of the glass box mode, especially in contrast to the black box mode,
(2) the hardware and software requirements for using the glass box mode,
(3) the degree of programming knowledge required.

Subsequent sections in the guide then take up the details of actually developing glass box
applications. Thus, the following section describes a "Quick Start" procedure that tests the
success of the SPSM installation by effecting a simple glass box modification to the SPSM as
distributed. The Section entitled SPSD/M and Glass Box Directory Structure characterizes
the subdirectory structure relevant to the various aspects of glass box operations. The SPSD
Household/Individual Structure provides critical details on the key SPSD data structures used
by the SPSM. SPSM Calling Structure describes the calling structure of the SPSM modules
that make up a specific model. Glass Box Development: Adding Typical Scalar Parameters
addresses the mechanism for adding user-defined model parameters to an SPSM model,
treating the most common forms of scalar parameters. Glass Box Development: Adding Less
Typical Parameters then takes up the addition of less typical kinds of scalar parameters, as
well as the addition of vectors and matrices of new model parameters. Glass Box
Development: Adding New Variables describes the addition of new variables to a model.
Changing Base and Variant Data Variables provides the definitive statement on managing
standard and alternate algorithms within the context of glass box operations.

Purpose of the Glass box Mode

A simplified systems view of the process of simulating taxes and transfers may be as follows:

Page 2 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

BLACK BOX

Parameters

Microdata
Microdata

Reports

SPSM
INPUTS OUTPUTS

Family

Allowance

Algorithm

GLASS BOX
User

Changes

Old

Version

BLACK BOX

Parameters

Microdata
Microdata

Reports

New SPSM
INPUTS OUTPUTS

C++Compiler

TEXT EDITOR

A user specifies a series of inputs (parameters and data) which are then processed through a
system of algorithms (the Black Box) which in turn produces a system outputs (tables and
microdata). The user may create many different simulations by varying the inputs and then
analyzing the outputs. He may even deduce some of the contents of the black box through
repeated testing. However, the simulations possible are limited by the contents of the black
box. If, for example, the rules of the Manufacturer’s Sales Tax are not included in the system
of algorithms (with provisions for appropriate input data and parameters) then this program
can not be simulated without actually opening up and changing the black box. This ability to
look inside the black box and alter its contents is like turning the black box into a glass box.

Programmer’s Guide Page 3
SPSD/M Version 6.0 11/19/97

This guide explains how to use the SPSM in its glass box mode. Specifically, the term "glass
box mode" refers to a method of modifying versions of the executable SPSM program to
accomplish analyses that are not possible with the original, unmodified SPSM. Glass box
mode may be used to add or modify parameters, variables, and algorithms. Using the “glass
box” mode always entails altering the C++ Language source code and recompiling an
executable version of the program. The "black box mode" refers to the subsequent execution
of an executable version, either as shipped by Statistics Canada or as modified by user’s in
“glass box” mode. It is always through the black box mode that a user carries out a variety of
policy relevant simulations via parameter changes, user variables, and tabulation expressions.

Because of the extra steps involved, users should attempt to avoid the glass box mode
wherever possible. The SPSM provides a number of devices that enable analysts to achieve
many desired results without re-programming. The most common technique is to alter the
default sets of program parameters that drive the SPSM. The analyst could simulate the
impact of an increase or abolition of Family Allowances by changing the numeric values of
the relevant parameters. In a second example, the analyst can define their own variables in
the control parameter file, and can use the resulting variables in a whole range of SPSM
outputs. The Introductory Guide provides an extensive detailed example in which an analyst
uses the user-defined variables to simulate an earned income tax credit. Similarly, the
analyst can create variables “on-the-fly” as expressions and export or tabulate them just as if
they had been full-fledged variables, and can conveniently represent differences between a
given variable in the base and variant tax/transfer systems. The X-Tab User’s Guide
provides several examples of this type of on-the-fly definition.

The Glass box mode must be used under the following conditions:

(1) Adding any new parameters.
(2) Adding new variables that require reference to other specific family members.
(3) New proposals which are designed to interact with the tax/transfer system. For example,

a taxable newborn allowances.
(4) New proposals that alter the logic of existing programs in ways that have not yet been

parameterized.

When users need to make such changes in the SPSM to reflect alternative tax/transfers
systems, they need to be familiar with the techniques described in this guide.

Hardware and Software Requirements for the Glass box Mode

The SPSD/M Installation Guide provides the definitive statement on hardware and software
requirements. For most users, a printer is a practical necessity. The discussion here assumes
that one is present.

The key aspects of software requirements are as follows:

1. Use of the SPSD/M in the glass box mode requires the availability of Visual C++ that
serves to compile the user's C language source code statements into the machine language
format required by the SPSM.

Page 4 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

2. The SPSM itself requires an operating system compatible with the version of Visual C++.

3. The user must have an appropriate editor for entering or altering C language source code,
such editing being central to glass box usage

4. It is suggested to use an efficient text editor compatible with C++ code.

Users expecting to use the SPSM heavily in the glass box mode will probably also want the
added efficiency provided by "utility" software such as the MKS toolkit that makes many
Unix style features available within the operating system.

Programming Knowledge Required

Because use of the SPSM in the glass box mode requires the user to do some programming,
glass box user will have to be somewhat more knowledgeable than the typical black box user.
This section characterizes the kinds of things that a glass box user will either have to know or
be prepared to learn.

Operating System Knowledge Required

Using the SPSM in its glass box mode requires that the user be fairly comfortable with a
number of areas relating to the operating system. A user needs to know about disk drives,
files, and file naming conventions, and about directories and subdirectories.

The user should be familiar with the concept of the DOS environment and with environment
variables such as the PATH variable. Effective operation in the SPSM's glass box mode also
requires that users be proficient with a number of DOS commands. The DOS commands
most critical include:

DIR
TYPE

List directory contents
List file contents

MKDIR
CHDIR
RMDIR

Make new directory
Change current directory
Remove directory

COPY
XCOPY

Copy files
Copy files and/or directories

DEL Delete file
SET
PATH

Set/display environment variables
Display current path

Users who are not at ease with the concepts and commands described here will probably
avoid a great deal of frustration by spending some time with the DOS manual or develop
some ability to do it in Windows environment before tackling actual glass box applications.

Fundamental Programming Concepts (Not Language Specific)

The SPSM glass box is not the place to learn your first programming language. Users should
be familiar with at least one high-level computer language prior to using the Glass-Box (e.g.

Programmer’s Guide Page 5
SPSD/M Version 6.0 11/19/97

FORTRAN, BASIC, PASCAL, and SAS). Because glass box applications involve
programming in a compiled language, it is desirable that glass box users come to the task
already familiar with the key concepts. A user should be comfortable with the idea of using a
text editor to write or revise source code, and with the idea of using a compiler and linker to
produce the desired intermediate and executable files. The user will benefit from a
familiarity with the notions of libraries, macros and preprocessor statements, modular
programming and program validation.

More critically, a user's experience with these concepts should be applied. Preferably, before
tackling SPSM glass box applications, a user should already have written and debugged
several non-trivial computer programs, not necessarily using the C language. Although it
may be possible for a user to learn to program by using the SPSM, we recommend against
the attempt. For prospective SPSM users needing to build or reinforce basic programming
skills, a wide variety of programming texts is available.

Knowledge of the C Programming Language

Because SPSM glass box applications involve programming in the C language, a user must
also program in C. Although the structure of the SPSM means that certain things like
input/output are done for the user, the prospective user will be most efficient if the basics are
previously understood. Users have to understand the purpose of defining constants and
declaring variables, and must appreciate the scopes of these declarations. They must
understand variables and variable types, specifically including pointer variables and
structured variables, and how the C language uses them. They must understand the nature
and structure of functions and the variety of statements that comprise them. They must be
familiar with C's major flow of control statements (if-else, switch, while, for, do-while), as
well as C's stable of assignments and operators, including the increment operator. For users
who have worked in other programming languages and are capable of absorbing this
information in a concentrated form, Kernighan and Ritchie's book, "The C Programming
Language" is the standard reference. Similarly, the C language manual that comes as part of
the Microsoft C Optimizing Compiler is a very useful and authoritative source for
information about C and its implementation.

Finally, of course, SPSM users must understand the basics of the Microsoft C Compiler. It is
also necessary to understand the thrust of what is going on, and the various error messages
that the compiler may give in response to the user's code. The authority on these topics is, of
course, Microsoft's set of manuals for the C compiler.

Page 6 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

Quick Start Example

As its title suggests, this chapter provides the user with a quick start at using the SPSM in its
glass box mode. The chapter serves three main functions. First, it allows the user to check
the installation of the compiler and SPSD/M. If the user can carry out the chapter's simple
example successfully, then all of the major portions of the installations were performed
properly. Second, the example introduces key glass box concepts and terminology. Third,
the example illustrates, in an integrated manner, the general flow of glass box applications.

The chapter's approach is primarily narrative. Taking the reader through all the steps of a
simplified glass box application, it concentrates on the general approach. It describes the key
details of the exercise, but does not attempt to be exhaustive. The particular illustration used
here was selected for its simplicity; it addresses the most critical aspects of glass box
applications, but doesn't get bogged down in the additional requirements associated with
more ambitious applications.

Substantively, the example models a relatively simple change to a single transfer program,
Family Allowances, in the tax/transfer system. Our hypothetical analyst, intrigued by the
practice of Prince Edward Island in the 1970's, seeks to ascertain the aggregate and
distributional impacts that would be associated with giving additional Family Allowance
benefits to larger families. More specifically, in the variant system, the analyst wants to
increase the amount of the federal Family Allowance by $10 per month per child for selected
children in selected families. When a family has three or more children currently aged 0
through 17 years of age, then it receives, over the year, an additional amount equal to $120
times the number of these "excess" children, i.e. $120 for a three child family, $240 for a four
child family, etc. We assume that this additional Family Allowance benefit would be paid by
the federal government to the usual recipient and that the benefit would be treated just like
the regular federal Family Allowance benefit.

As regards the narrative, readers should not worry about the "whys" of the implementation.
Subsequent sections in this Programmer's Guide will address all of them more fully.
However, it is highly desirable that the user work through the example to the point of
actually carrying out all of the tasks described. Only in this way can the first purpose,
confirmation of the installation processes, be realized.

Preliminaries

The user should begin by selecting a subdirectory in which to work. This is the hard disk
subdirectory in which the user will edit copies of the relevant C++ language source code files
and describe the nature of the alternative system. We strongly recommend that the user
employ a directory other than those that the SPSD/M installation establishes for the
SPSD/M itself. The user can make a new subdirectory if necessary. For purposes of this
narrative, we'll assume that a subdirectory named GLASSEX1 is available as the working
subdirectory.

The user begins the process by copying, from the SPSD/M's GLASS subdirectory, to the

Programmer’s Guide Page 7
SPSD/M Version 6.0 11/19/97

GLASSEX1 work subdirectory, all of the relevant template files. Template files are files that
already contain most of the necessary information for a glass box application, and which the
user will modify to create the final versions necessary for the application. For this example,
the relevant template files are as follows:

1. Adrv.c, the alternate "driver" template that invokes all of the SPSM's tax/transfer
functions in the correct order. This template, distributed as part of the SPSM, is
effectively a duplicate of the base driver function (the user should copy it in its
working subdirectory).

2. Afa.c, the alternate Family Allowances template that effects the computation of the
Family Allowance benefit. This template, distributed as part of the SPSM, is effectively
a duplicate of the base system's fa.c function that computes Family Allowance benefits.
(the user should copy it in its working subdirectory).

3. SPSM.mdp, SPSM.mak carry out the compilation and linking of the user's new model (the
user should copy those files in its working subdirectory). It is possible that the file
conspsm.c may not work properly. If it is the case delete it from the project and use
instead the conspsm.obj file from \win32\winrel.

For other glass box applications the user may also need to copy other tax/transfer templates
and/or C language header files. In this example, however, the user does not need to alter any
of the header files because the new model creates no new variables and uses no new formal
parameters.

The general procedure for our illustrative glass box application is straightforward.

1. Working on COPIES of Adrv.c, Afa.c and SPSM.mdp, SPSM.mak, we make the small
number of changes as described below.

2. Then we invoke/execute the SPSM.mdp utility in C++ to generate a working space. To
work with the new model, the project should be recompile to produce a new executable
file (We assume the user know how to proceed).

Changing the project environment

Project environment should be modified if the user want to change the name of the compile
SPSM.exe associated with the project in Project:Setting:Link to GLASSEX1.EXE.

The new files Adrv.c and Afa.c must be included in the project (Project:Add to
project:Files).

The key subdirectory \SPSM\DEFS should all be added in Tools:Options:Drectory, since
definitions relevant to glass box applications reside there.

Changing the Alternative Driver Function (Adrv.c)

Page 8 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

Adrv.c contains two kinds of information that the glass box user will want to alter. The first
kind consists of labeling information that the SPSM uses in its reports and error messages.
When the user makes appropriate changes here, the resulting output becomes more
informative. The second kind consists of the function calls that effect the substance of the
model's tax/transfer calculations.

The user makes the labeling changes in the portion of the code, starting at about line 35, that
looks as follows:

==================== GLOBAL VARIABLE DEFINITIONS
============== */
/*global*/ char ALTNAME[IDSIZE+1] = "Unnamed";
/* Give global string describing version of this module */
/*global*/ char FAR Tdrv[] = "Untitled"

The ALTNAME[IDSIZE+1] string provides an identifying name for the alternative driver;
the user replaces the placeholder "Unnamed" with the more informative name "FA Quick
Start". The new name must not exceed 20 characters in length. This alternative name will
then appear in the greeting screen. The Tdrv[] string provides a title for the alternative
driver; the user replaces the placeholder "Untitled" with the more informative title "FA Quick
Start". The new title may not exceed 20 characters in length. TDrv's contents appear as
information in the control parameter file as an algorithm description. Upon completion of
these substitutions, the revised "labeling section" appears as follows:

/* ==================== GLOBAL VARIABLE DEFINITIONS
============== */
/*global*/ char ALTNAME[IDSIZE+1] = "FA Quick Start";
/* Give global string describing version of this module */
/*global*/ char FAR Tdrv[] = "FA Quick Start"

In the substantive portion of the code, the user needs to make only a single change to
indicate that the calculation of benefits for the variant system should use an alternate
Family Allowance calculation.

The relevant portion of the code, a single line appearing at about line 119, appears as follows:
fa(hh); /* compute family allowances */

Unmodified, it invokes the regular Family Allowance calculation. The user changes the line
to invoke, instead, the alternative Family Allowance calculation that we shall describe
shortly. The modification consists solely in the substitution of the new function name, and
the revised source code appears as follows:

Afa(hh); /* compute family allowances */

For this quick start example, these three simple changes constitute the entire set of
modifications for the Adrv.c function.

Changing the Alternative Family Allowances Function (Afa.c)

Programmer’s Guide Page 9
SPSD/M Version 6.0 11/19/97

The Afa.c function carries out the calculation of Family Allowances for the alternative
system. In a manner analogous to the Adrv.c changes, the user's changes fall into two
categories, labeling changes and substantive changes.

The labeling change is very straightforward. At about line 52, the function provides for a
title, Tfa[], for the module, with the title being used in the report in which the SPSM
indicates the functions used to calculate the taxes and transfers. As with the title for the
driver, this title appears as an algorithm description in the control parameter file. The
relevant portion of the code appears as follows:

=============== GLOBAL VARIABLE DEFINITIONS ==================
*/
/* Give global string describing version of this module */
/*global*/ char FAR Tfa[] = "Untitled"

The user changes the "Untitled" string to something rather more informative. The resulting
section then appears as follows:
=============== GLOBAL VARIABLE DEFINITIONS ==================
*/
/* Give global string describing version of this module */
/*global*/ char FAR Tfa[] = "FA Quick Start"

The substantive portion of the Afa.c changes is a bit more complicated, but not extremely
so. The option to be examined affects directly three of the calculated variables,

1. taxable Family Allowances (tfa),
2. federal Family Allowances, (ffa) and
3. Family Allowances, (fa).

(Of course other variables in the model, e.g. calculated taxes, are also affected indirectly.)
When the number of children in the census family (the variable "nch") is three or more, we
wish to increment each of the three Family Allowance variables by $120 times the number of
"excess" children. Everything else relating to the impacts of this policy change, e.g. the tax
impacts, will be taken care of automatically by other portions of the SPSM. In any event, the
variables in the routine are temporary, ceasing to exist once execution leaves the Afa
function; only items that have been saved into the relevant portions of the household
structure will be able to affect calculations elsewhere in the system.

With the nature of the desired change clear, the major remaining issue is where in the Afa.c
function to make the change. For purposes of logical correctness and clarity, the change
should be made after the three variables have already had assigned to them the "base system"
amounts of Family Allowances, but before any calculations such as assigning the amounts
into variables in the data structure for the household. In this example, the changes can all be
made, in parallel, at the same location.

The example in not valid anymore and will be revised

The critical portion of the source code, as it exists before the implementation of our changes,
appears as follows: (The DEBUG statements shown here are irrelevant to the normal

Page 10 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

calculation of Family Allowance benefits. Their presence permits detailed tracing to be
performed when needed, but is irrelevant here except as it identifies the portion of Afa.c,
about line 358, where the Family Allowance changes will go.)

else {
DEBUG1("%s standard FA calculation\n");
tfa = nch * MP.STDFA; /* taxable family

allowances */
ffa = tfa; /* federal part of family

allowances */
}

DEBUG3("%s tfa=%.2f, ffa=%.2f\n", tfa, ffa);

Substantively, we wish to add the expression "(nch-2) * 120.0" to each of the three key
variables, taxable Family Allowances (tfa), federal Family Allowances (ffa), and Family
Allowances (fa). Further, such increments are appropriate only when the number of children
aged 0 through 17 in the census family is at least three. C's "if" statement and its "+="
operator provide a very convenient way to do this.

else {
DEBUG1("%s standard FA calculation\n");
tfa = nch * MP.STDFA; /* taxable family
allowances */
ffa = tfa; /* federal part of family
allowances */
/* $120/yr bonus for 3rd and subsequent children <18 */
if (nch >= 3) {
tfa += (nch-2) * 120.0;
ffa += (nch-2) * 120.0;
}

DEBUG3("%s tfa=%.2f, ffa=%.2f\n", tfa,
ffa);

With the completion of the changes to Afa.c, the user's real work in implementing the
changes is now essentially done. All of the relevant substance and labeling changes are
complete and, assuming there have been no errors during their entry, all that remains is the
compilation of the new model and then its validation. Most important, though, it is the
resulting executable file from C++ compile, in this example GLASSEX1.EXE, that the user
runs to analyze the impacts of the change that was modeled.

Testing the Resulting Alternative SPSM Model

With all of the changes made, and the resulting files compiled and linked to create the new
executable file, we are ready to test the new model. The two related goals of this step are:

Programmer’s Guide Page 11
SPSD/M Version 6.0 11/19/97

1. to seek evidence about whether we have successfully made the desired change, and

2. to generate outputs that will help us diagnose errors should we have made any.

A very natural form of evidence takes the form of crosstabulations from a comparative run
that uses the unmodified tax/transfer system as its base system and the modified form as its
variant system. Later in this section we offer examples of two such crosstabulations.

In order to make the desired comparative run of the new model and get the output we need,
we must alter the control parameters for the model. The SPSM Parameter Guide provides
the authoritative description of SPSM control parameters; here we simply list the key
parameter values for our purposes: (The "glassx1a" portion of the two file names is an
acronym for "Glass box example 1, version a".)
OUTCPR glassx1a.cpr # Name of control parameter file
(out)
VARALG FA Quick Start # Name of variant algorithm
VARMETH 3 # Method of creating variant variables
BASMETH 2 # Method of creating base variables
OUTTBL glassx1a.tbl # Name of report file (out)

Two tables will suffice for validation in this example:

1. tabulate number of census families, variant federal Family Allowances, base federal
Family Allowances, and their difference, all by number of children aged 0-17 (to show
that we are giving the new Family Allowances to the right units in the right amounts) and

2. tabulate "delta Family Allowances" and "delta disposable income" by census family type
to show both that we are giving the new FA to only the right kinds of units and that a part
of it is being recovered via the tax system, with the recovery fraction higher for two-
parent families than for one-parent families.

The XTSPEC parameter to generate these tables will look as follows:

XTSPEC
CF: cfnkids+ *
 {units,

_imfa: L="Base Family Allowance (M)",
imffa: L=“New Family Allowance (M)”,
imffa-_imffa: L="Family Allowance Increase (M)”,
(imffa-_imffa)/units: L=“Average Family Allowance

Increase”};
CF: cftype+ *

{imffa-_imffa: L="Family Allowance Increase (M)",
immdisp-_immdisp: L="Disposable Income Increase (M)",
(immdisp-_immdisp)/units: L=“Mean Disposable Income

Increase”};

The highlights of this request are as follows:

Page 12 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

1. The first table uses "cfnkids" (number of children 0-17) as the row control variable. Note
that cfnkids is an SPSD classificatory variable, while the variable "nch" used above to
effect the changes inside Afa.c is a local variable that is defined as a "float" variable and
could not be used here for tabulation purposes, even if it were classificatory.

2. The tabulated variables used in the first table are precisely those described above,
numbers of families, new and old Family Allowance benefits and their difference.

3. The second table simply tabulates, for another existing classificatory variable, the
differences in Family Allowances and in disposable income, with the "underscored"
variables referring to the base system and the non-underscored variable names to the
variant system.

The tables that result when one executes the new GLASSEX1 model with \SPSM\ba88t.cpr
appear as follows:
Table 1U: Selected Quantities for Census Families by Number of
children in census family
+-------------------+------------+------------+-----------+---
----------+
|Number of children | Unit Count | New Family |Base Family|
Family |
| in census family | (000) | Allowance | Allowance |
Allowance |
| | | (M) | (M) |
Increase (M)|
+-------------------+------------+------------+-----------+---
----------+
|0 | 6401.6| 0.0| 0.0|
0.0|
|1 | 1454.2| 516.5| 516.5|
0.0|
|2 | 1430.7| 1061.7| 1061.7|
0.0|
|3 | 612.9| 850.0| 776.5|
73.5|
|4 | 111.9| 229.5| 202.6|
26.8|
|5 | 36.8| 83.7| 70.4|
13.3|
|6 | 5.3| 28.4| 25.8|
2.5|
|7 | 0.0| 0.0| 0.0|
0.0|
|8 | 0.0| 0.0| 0.0|
0.0|
|9 | 0.0| 0.0| 0.0|
0.0|

Programmer’s Guide Page 13
SPSD/M Version 6.0 11/19/97

+-------------------+------------+------------+-----------+---
----------+
|All | 10053.4| 2769.8| 2653.6|
116.2|
+-------------------+------------+------------+-----------+---
----------+

Table 2U: Selected Quantities for Census Families by Census
family type
+-----------------------+----------+----------+
Census family type	Family	Disposable
	Allowance	Income
	Increase	Increase
	(M)	(M)
+-----------------------+----------+----------+		
With Kids, 1 Adult	16.7	15.6
With Kids, 2+ Adult	99.4	72.3
With Elderly, 1 Adult	0.0	0.0
With Elderly, 2+ Adult	0.0	0.0
Other, 1 Adult	0.0	0.0
Other, 2+ Adult	0.0	0.0
+-----------------------+----------+----------+		
All	116.2	87.9
+-----------------------+----------+----------+

The values in Tables 1U and 2U result from running the new model on the 5% subset of the
SPSD in 1988 (ba88.cpr) and requesting the tables described above. The first table confirms
that we seem to be giving the additional Family Allowances to the right kinds of census
families. Increased benefits, some $116 million of them, appear only for census families
with more than two children aged 0-17, and the gross amounts are $120 times the number of
such "excess" children in those families.

The second table offers more evidence that the new benefits are being given only to the right
kind of census families and, further, that the new benefits are being partially taxed back.
Moreover, the degree of tax recovery is lower for one-parent families than for two-parent
families; this is to be expected since (1) those reporting Family Allowance benefits in two-
parent families tend to have higher incomes and to be subject to higher marginal tax rates,
and (2) the Income Tax Act requires that the higher net income spouse report the Family
Allowance benefits.

We conclude from the values appearing in these tables that the changes made above have
quite probably been successful in implementing our intentions.

The testing just described completes our quick start example. Because of the example's focus
we have perhaps not been quite as careful and methodical as would be warranted in the case
of a real application. Thus, we mention briefly here a number of things that we might have
chosen to do in implementing our hypothetical change.

Page 14 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

We might have added "revision history" comments to the files Adrv.c and Afa.c to
document the nature of the changes and our reasons for implementing them as we did. This
form of documentation is an element of sound professional practice for software
development and maintenance.

We might have created an intermediate (local) floating point variable in Afa.c to store the
increment in a family's Family Allowance benefit. This increment, once computed, could
then have been assigned directly to the tfa, ffa and fa variables so that we would not have
been computing the identical expression three times in parallel. Possible minor efficiency
gains aside, the resulting code would probably have been slightly easier to understand.

We might have made a parameter out of the $10 per month ($120 per year) value, in case we
wanted to repeat the analysis later for a different value of the supplementary Family
Allowance benefit. Similarly, we might have made a parameter out of the number of
children NOT eligible for the additional benefit; perhaps someone would want to know the
impacts of restricting the extra benefits to families with four or more children, or relaxing
them to admit families with only two children aged 0-17.

We might have chosen to create a new variable that would contain just the pre-tax increment
for the family, making this variable part of the structure for the household so that we could
more conveniently tabulate this "difference" variable in crosstabulations or export it for
subsequent analysis in SAS.

We might have chosen to conduct more ambitious tests to ensure that the desired changes
had been implemented. For example, we might have produced a table showing the relative
sizes of the changes in federal and provincial income taxes to ensure that the new benefits
were being appropriately considered at both the federal and provincial levels. We might
have tabulated the size of the change in the child tax credit to assess whether the new Family
Allowance benefits were being properly taken into account in that credit's definition of
income.

In general, the style of alteration and the degree of testing conducted here are appropriate for
the limited goals of this introductory example. However, for a more serious glass box
application the user will probably wish to be more methodical in making the necessary
changes, devoting more attention to issues of documentation, labeling, validation and
possibly to efficiency of computation.

Summary

This chapter has provided a first-pass description of glass box applications in the SPSM,
illustrating them with a specific example. Section topics included changing the substantive
calculations in a variant Family Allowance function, altering the SPSM driver function that
coordinates the calculation of taxes and transfers, and using the C++ compiler to create a new
version of the model. A short section on validation illustrated the generation of tables to
assess the success of the change.

Programmer’s Guide Page 15
SPSD/M Version 6.0 11/19/97

SPSD/M and Glass Box Directory Structure

This chapter provides for glass box users an explanation of the hard disk directory structure
within which the SPSM operates. The information it contains is relevant because it tells the
user where certain items are located, which ones must be left in place untouched, which ones
are designed to serve as templates for changes, which ones are to serve purely as examples
for code that the user will build, etc.

Consider the following representation of user's hard disk directory structure:
C: [Root directory]
|--- MSC [Microsoft C compiler, with its own subdirectories
]
|--- SPSD [Data for the SPSD/M, with no subdirectories]
|--- SPSM [SPSM proper, subdirectories as shown]
| |--- DEFS
| |--- EXAMPLE
| |--- GLASS
|| |--- MODEL

|--- MSDOS
| |--- WIN32
|--- GLASSEX1 [Glass box task subdirectory 1]
|--- GLASSEX2 [Glass box task subdirectory 2]
etc.

At the top of the figure we see the user's root directory, with two first-level subdirectories
MSC and SPSD. The MSC subdirectory contains the user's compiler, absolutely necessary for
the creation of glass box applications; MSC contains a number of lower level subdirectories
not shown here. The SPSD subdirectory contains all of the SPSD/M's raw data and a number
of default parameter files; it has no lower-level subdirectories.

Of more direct applicability to the glass box user is the SPSM subdirectory and its lower-level
subdirectories. These were created automatically for the user during the SPSM installation;
the names used here are the recommended defaults. We provide here brief descriptions of
each of these directories -- their major contents and relevance to glass box applications.

An initial, general-level comment is in order -- THE USER SHOULD NOT CHANGE
ANYTHING IN ANY OF THESE SPSM SUBDIRECTORIES. (1) Glass box
applications will always involve working with COPIES of some of the files in these
subdirectories. (2) All of the user's glass box work will be done in one of the SEPARATE
SUBDIRECTORIES that the user has created to contain the working files for glass box
applications. It might even be useful for the user to switch on the read-only attribute for all
of the files in these subdirectories.

DEFS This subdirectory contains a number of header files that define structures and
constants used throughout the SPSM. Of greatest interest to the glass box
user will be the vs.h file that defines the hierarchical data structure that
holds the SPSD/M's information about households and individuals. Recall,

Page 16 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

however, that the user will never have occasion to modify this structure. The
user's addition of user-defined variables is accomplished via a COPY of the
vsu.h file.

EXAMPLE This subdirectory contains various "INCLUDE" files that serve to specify
parameters for the sample runs described in the tutorial portion of the
Introduction and Overview Guide. Although they are potentially very useful
in testing for the successful installation of the SPSM and in learning how to
use models that have already been developed, these files are not directly
relevant to the development of glass box models, and can be ignored for
purposes of this glass box oriented discussion.

GLASS This subdirectory contains templates that the user will use as starting points
for the code that s/he writes to create variant tax/transfer systems and
models. (1) It contains the source code for all of the SPSM's tax and benefit
functions; the user will probably find it most efficient to create any new
functions by modifying COPIES of these elements. (2) It contains functions
that make the user defined parameters and variables accessible to the broader
SPSM, together with associated header files that define the relevant
structures to hold the user-defined variables and parameters.

MODEL This subdirectory contains examples of the definitions of model variables
and parameters. The elements in the subdirectory are intended ONLY to
serve as concrete examples for the user when s/he begins to define new
parameters and variables for glass box applications. The user will never
have occasion to modify the contents of these files, nor even to use or alter
copies of the files.

MSDOS This subdirectory contains a small number of DOS "controlling object files"
that govern the form of the overlay structure that the SPSM uses. At a very
general level, these items are similar to those in LIB in the sense that
SPSM.mak needs them and knows how to use them in the compilation of a
new version of the model. It also contains some executable files used in the
modification of SDSD in a project.

WIN32 This subdirectory contains a small number of WINDOWS 32 bits
"controlling object files" that govern the form of the overlay structure that
the SPSM uses. At a very general level, these items are similar to those in
LIB in the sense that SPSM.mak needs them and knows how to use them in
the compilation of a new version of the model. It also contains some
executable files used in the modification of SDSD in a project.

At the very bottom of the representation of the user's hard disk subdirectory structure is a
glass box application "task" subdirectory GLASSEX1 and two sub-subdirectory WINREL and
WINDEBUG. Users may have as many such task subdirectories as are required for the glass
box applications they build. This one corresponds to the Quick Start example described in
Chapter 2. It contains all of the files that the user creates in replicating that example. The
specific files are as follows:

ADRV.C
AFA.C
CONSPSM.OBJ
FAQSTST1.CPR

Programmer’s Guide Page 17
SPSD/M Version 6.0 11/19/97

FAQSTST1.TBL
SPSM.DSP
SPSM.DSW
SPSM.MDP
SPSM.MAK
SPSM.BAK
SPSM.CCB
SPSM.OPT
SPSM.PLG
GLASSEX1.EXE
GLASSEX1.PDB
WINREL
WINDEBUG

ADRV.C and AFA.C are the C source code files copied from the GLASS subdirectory and then
modified to reflect the desired new program logic; their OBJ counterparts are the object files
produced as outputs when the ".C" files are compiled in WINDEBUG and WINREL.
GLASSEX1.EXE and GLASSEX1.pdb were created by the compile command. Finally,
FAQSTST1.CPR is the control parameter file for runs of the FAQSTST1 program, and
FAQSTST1.TBL contains the crosstabulations that the associated run of SPSMFAQS produced.

The critical information in this chapter can then be summarized as follows:

1. No SPSM user should change ANYTHING in the SPSM subdirectory or in any of its
subdirectories created during the SPSM installation. (Note however that certain files that
may be definitely unnecessary can be deleted in their entirety.)

2. The glass box user will establish separate "task" subdirectories for glass box applications.
Preferably these will not be subdirectories under SPSM.

3. The glass box user will copy the relevant elements from the SPSM\GLASS directory, using
them as templates for the changes to be made. The changes themselves are then made to
these COPIES. Subsequent sections in this Programmer's Guide indicate in considerable
detail what the user must change and where the relevant templates are located.

4. The key subdirectories \SPSM\DEFS should all be added in Tools:Options:Directory,
since definitions relevant to glass box applications reside there.

Page 18 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

The SPSD Household/Individual Structure

This chapter has three major goals, each of them developed in a separate section, but all of
them relating to the general topic of the SPSD/M's data structures and their usage.

The following section describes the hierarchical data structure that the SPSD/M uses for
household and their subcomponents. Glass box users need to understand this structure so
that they can refer to the variables contain there. These references will let the user either gain
access to the variables' values for calculations, or assign new values to the variables. An
appreciation of the data structures is also relevant to users who want to read and understand
the algorithms used in the black box version of the SPSM.

The second section develops the use of pointer variables as a major tool by which the user
accesses individual elements of the data. It also describes the major naming conventions
relevant for glass box applications. These topics are relevant both for users building their
own glass box applications, and those seeking to understand the standard SPSM algorithms.
The underlying "philosophy" for this development is consistent with the rest of this guide --
in many respects it is considerably more important for the glass box user to know how,
mechanically, to do something in a standardized, robust fashion, than to understand all of the
design-oriented reasons behind the structures and techniques. In other words, the section's
focus is determinedly practical; it concentrates much more on the mechanics of "how-to"
than the niceties of "why”.

The third section provides a "bestiary" of code fragments for performing common glass box
tasks, particularly as regards data structures. The idea is not only that the user should be able
to copy an existing wheel rather than re-inventing it, but that the copied wheel should further
exist in a standardized format, and not require debugging. The section's code fragments
include (a) processing relevant individuals/families via "for" statements, (b) referring to other
family members, (c) accessing existing database and modeled variables, and (d) assigning
new values to variables.

The SPSD/M's Data Structure

This section begins with a "graphic" point-form overview of the hierarchical household data
structure used by the SPSD/M. Subsequent portions of the section then take up the
individual components in greater detail. In the initial overview, the different levels of the
hierarchy are reflected graphically via the indentation pattern and the associated item
"bullets”. The definitions that underlie this presentation appear in the file \SPSM\DEFS\VS.H.

The data structure information is relevant to the glass box user because an appreciation of the
nested structures is necessary in order to refer to the values of individual variables; such
reference is, of course, an integral part of writing the code for new or modified tax/transfer
programs. Later portions of this Programmers' Guide, especially Chapter 8 on defining new
user variables, assume familiarity with the overall data structure.

The general SPSD data structure is as follows:

Programmer’s Guide Page 19
SPSD/M Version 6.0 11/19/97

HHLD : (type : hh_) Global structure holding an SPSD/M household.

- hhnXX: Numbers of families and individuals in the household.
- hd: Household characteristics variables
- fx: Raw FAMEX-related variables for the household.

* the fxio array of household expenditures by SNA categories.
* other variables

- ct: Commodity tax results as calculated by ctcalc.
* the ctfct array of federal commodity tax by category.
* the ctpct array of provincial commodity tax by category.
* other variables for tax by type

- ctbase: (type ct_) Same as ct, but for an SPSD/M base system.
- ef : Information about economic families.
- cf : Information about census families.
- nf : Information about nuclear families.
- in : Information about individual persons.

id : SPSD variables
• Individual Characteristics
• uc1 data on individual's first UI claim
• uc2 data on the individual's second UI claim.

im : modeled variables
150 modeled items

• ub1 Modeled variables for first UI claim
• ub2 Modeled variables for second UI claim
• uv Glass-Box User-defined variables
• imfill A filler array

imbase: same as im, but for the base system.
IC: SPSM individual control variables

Common Macros:

Detailed descriptions of the substance of individual SPSD/M variables themselves appear in
the SPSD/M Variable Guide. Here the focus lies with the organization of the variables
collectively, including identification of which variable will be found where. Much of the
detail with respect to the content of the several structures is presented here via extracts from
vs.h. However, before beginning the discussion of that content, it is useful to note some of
the most important macros used in the vs.h definitions. The key items identified here have
been extracted from the \SPSM\DEFS\SPSM.H file; that file also contains many other macros
of lesser interest to the glass box user.

Some of the macros are useful for dimensioning arrays:
#define MAXPERS 9 /* maximum # of persons in a household
*/
#define MAXFAM 9 /* maximum # of families in a
household */

Page 20 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

#define NUMCOM 40 /* number of commodities (CTR arrays)
*/
#define NUMREG 10 /* number of regions (provinces) */
#define NUMURB 5 /* number of urban size classes */

Some of them allow the user to do things symbolically to make their meanings clearer:

#define LOGICAL int /* type used to store true or false
values */
#define TRUE 1 /* manifest constants to make code
more readable */
#define FALSE 0

Some are used for consistency, and to avoid "nuisance" warning messages relating to C-
language type conversions (since numerical constants are double precision by default):

#define NUMBER float
#define ZERO (float) 0.0
#define HALF (float) 0.5
#define ONE (float) 1.0
#define THOUSAND (float) 1000.0
#define MILLION (float) 1000000.0

In still another class of macros the individual elements act like functions, returning integer, or
NUMBER results. In the directory \SPSM\DEFS, the file SUB.H contains elements that will
be of considerable use to the glass box user seeking to read or write source code. Here we
summarize the identities of these macros and their basic functions, with the details of
implementation and structure found in the SUB.H file. Many of these macros are described
in the SPSD/M Algorithm Guide.

Iszero
Isnzero
Isneg
Isnneg
taxbak1
taxbak2
taxbak3
taxbak4
nneg
minn
maxn
round
mini
maxi

Is argument zero ?
Is argument non-zero ?
Is argument negative ?
Is argument non-negative ?
One level tax-back function
Two level tax-back function
Three level tax-back function
Four level tax-back function
Change negative numbers to zero
Find the minimum of two numbers
Find the maximum of two numbers
Round to nearest integer
Find the minimum of two quantities
Find the minimum of two quantities

The hh Structure:

The hh structure is a shell that holds a household's data. It contains four integer variables

Programmer’s Guide Page 21
SPSD/M Version 6.0 11/19/97

giving the number of persons and families of various types in the household; these variables
often serve as limits for loops in the SPSM source code. The bulk of the structure, however,
consists of other structures and arrays of structures that contain the data and modeled
variables for the household.

typedef struct hh_ {

int hhnef; /* Number of economic families in
household */
int hhncf; /* Number of census families in
household */
int hhnnf; /* Number of nuclear families in
household */
int hhnin; /* Number of individuals in household
*/
struct hd_ hd; /* Housing characteristics data
[struct] */
struct fx_ fx; /* FAMEX data [struct] */
struct ct_ ct; /* Commodity tax variables [struct]
*/
struct ct_ ctbase; /* Base commodity tax variables
[struct] */
struct ef_ ef[MAXFAM]; /* Economic family data [array] */
struct cf_ cf[MAXFAM]; /* Census family data [array] */
struct nf_ nf[MAXFAM]; /* Nuclear family data [array] */
struct in_ in[MAXPERS]; /* Individual data [array] */

} hh_;

The hd Structure:

The hd structure is one of the sub-structures within hh. It contains some 25 scalar variables
that apply to the household as a whole. Variables include the numbers of persons in various
age categories, information about the province and size of place of residence (relevant for
LICO analyses), information about the physical household itself (e.g. number of bedrooms),
plus data concerning the record matching used in the creation of the household in the SPSD.
As with most of the data structures used in the SPSD/M, the user can change the values of hd's
variables if appropriate, but cannot alter the structure itself.
typedef struct hd_ {

int hdnpers; /* Number of persons in household */
int hdnadult; /* Number of adults in household */
int hdneld; /* Number of elderly in household */
int hdnkids; /* Number of children in household
*/
int hdnearn; /* Number of earners in household */
int hdageeld; /* Age of eldest in household */

Page 22 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

int hdsexeld; /* Sex of eldest in household */
int hdspoflg; /* Household contains married couple
*/
int hdtype; /* Household type */
NUMBER hdseqhh; /* Household sequence number */
NUMBER hdwgthh; /* Household weight */
NUMBER hdwgthhs; /* Sub-sample adjusted household
weight */
NUMBER hdwgtfx; /* Sum of household weight for FAMEX
group */
int hdlastfx; /* Last household in FAMEX group
flag */
int hdprov; /* Province */
int hdurb; /* Size of urban area */
int hdclohh; /* Number of SCF clones */
int hdtenur; /* Tenure */
int hdroom; /* Number of rooms */
int hdbdrms; /* Number of bedrooms */
NUMBER hdunits; /* Unit count */
NUMBER hdnspsd; /* SPSD records */
NUMBER hdnscf; /* SCF records */
NUMBER hdnfxv; /* FAMEX records */
NUMBER hdtpval; /* Current value of adjustment (TP
facility) */

} hd_;

The fx Structure:

The fx structure is a substructure within hd; it contains one vector that provides family
expenditures by category, plus a number of scalar variables relating to savings, mortgages
and changes in assets. The user may sometimes wish to change the values of some of the
elements of fx, but cannot alter the fx structure itself.

typedef struct fx_ {

int fxseqhv; /* FAMEX record sequence number */
int fxclohhv; /* FAMEX cloning factor */
NUMBER fxio[NUMCOM]; /* I/O expenditure categories [array]
*/
NUMBER fxrecom; /* real estate commissions */
NUMBER fxintpl; /* Interest on personal loans */
NUMBER fxipac; /* life ins prems and annuity
contributions */
NUMBER fxgvpen; /* gvt pension plan contributions */
NUMBER fxpvpen; /* private pension plan
contributions */

Programmer’s Guide Page 23
SPSD/M Version 6.0 11/19/97

NUMBER fxcqp; /* cpp - qpp contributions */
NUMBER fxuic; /* UI contributions */
NUMBER fxintax; /* Income taxes */
NUMBER fxprtax; /* Property tax */
NUMBER fxtptax; /* Transfer of Property taxes */
NUMBER fxrfees; /* Registration and license fees */
NUMBER fxnes; /* Not elsewhere stated */
NUMBER fxncal; /* Net change in assets and
liabilities */
NUMBER fxrrspt; /* Total RRSP contributions (FAMEX)
*/
NUMBER fxfabd; /* Account balancing difference */
NUMBER fxfomr; /* Other money receipts */
NUMBER fxmorti; /* Mortgage interest paid */
NUMBER fxhmkt; /* Market value of home */
NUMBER fxhmort; /* Mortgage value outstanding */
NUMBER fxpsave; /* Positive savings
*/
NUMBER fxnsave; /* Negative savings
*/
NUMBER fxsaldur; /* Sale of durables
*/
} fx_;

The ct and ctbase Structures:

The ct and ctbase structures are parallel substructures within hh; ct applies to the variant
system and ctbase to the base system. The focus within these structures is the calculation of
commodity taxes for the two systems. Each of these structures consists of two arrays (one
federal and one provincial) giving the household's commodity taxes by category, plus a
number of scalar variables that provide various memo items for commodity taxes and that
pertain to the FAMEX data on which the commodity tax calculations are based. Glass box
users will normally not make any changes directly to the contents of these structures, all of
the assignments being made via the SPSM's commodity tax module. The ct and ctbase
structures themselves are, of course, not subject to alteration by the user.
typedef struct ct_ {

int ctseqhv; /* FAMEX record sequence number
*/
int ctprov; /* Province for COMTAX calculations
*/
NUMBER ctfcid; /* Federal custom import duties
*/
NUMBER ctfexd; /* Federal excise duties
*/

Page 24 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

NUMBER ctfmfg; /* Federal manufacturer's sales tax
*/
NUMBER ctfext; /* Federal excise taxes
*/
NUMBER ctfoen; /* Federal other energy taxes
*/
NUMBER ctfgst; /* Federal GST
*/
NUMBER cttxfc; /* Federal commodity taxes (total)
*/
NUMBER cttxfc_[NUMCOM]; /* Federal commodity taxes [array]
*/
NUMBER ctplgl; /* Provincial liquor gallonage taxes
*/
NUMBER ctpplq; /* Provincial profits on liquor
commissions */
NUMBER ctpgas; /* Provincial gasoline tax
*/
NUMBER ctpamu; /* Provincial amusement tax
*/
NUMBER ctptob; /* Provincial tobacco tax
*/
NUMBER ctprst; /* Provincial retail sales tax
*/
NUMBER cttxpc; /* Provincial commodity taxes
(total) */
NUMBER cttxpc_[NUMCOM]; /* Provincial commodity taxes
[array] */
NUMBER ctnexp; /* Household expenditure net of
taxes */
NUMBER ctnexp_[NUMCOM]; /* Household expenditure net of
taxes [array] */
NUMBER ctnes; /* Household expenditure not elsewhere
specified */
NUMBER ctlprop; /* Local property taxes on owned
dwellings */
NUMBER ctsave; /* Household savings
*/
NUMBER ctothmon; /* Household money from other
sources */
NUMBER ctishrh; /* Shared income concept (FAMEX)
*/
NUMBER ctdfexp; /* Deflated expenditure (tax
exclusive) */

} ct_;

Programmer’s Guide Page 25
SPSD/M Version 6.0 11/19/97

The ef Structure:

The household structure contains an array of structures, MAXFAM of them, to hold the
information about such economic families as may be in the household (but not the
information about the individuals in these economic families). Thus, an ef structure is small,
containing only 11 items. The items consist of a pointer to the first individual in the
economic family, plus scalars that give information about the number of persons in various
categories, characteristics of the oldest person in the family, and the family's low income
cutoff. As with the preceding structures, glass box users may be able to alter the values of
variables when a problem warrants it, but the ef structure itself is not subject to alteration.

typedef struct ef_ {

int efnpers; /* Number of persons in economic
family */
int efnadult; /* Number of adults in economic
family */
int efneld; /* Number of elderly in economic
family */
int efnkids; /* Number of children in economic
family */
int efnearn; /* Number of earners in economic
family */
int efageeld; /* Age of eldest in economic family
*/
int efsexeld; /* Sex of eldest in economic family
*/
int efspoflg; /* Economic family contains married
couple */
int eftype; /* Economic family type */
P_in efin; /* First person in economic family
[pointer] */
NUMBER efpovthr; /* Economic family poverty threshold
*/

} ef_;

The cf Structure:

The household structure also contains an array of structures, MAXFAM of them, to hold the
information about such CENSUS families as may be in the household (but not the
information about the individuals in these census families). Thus, a cf structure is small,
containing only 14 items. The items consist of pointers to the first individual in the census
family, and other key individuals (the first child, spouse, and oldest member), plus scalars
that give information about the number of persons in various categories, characteristics of the
oldest person in the family, and census family type. As with the preceding structures, glass
box users may be able to alter the values of variables in the cf structure when a problem

Page 26 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

warrants it, but the cf structure itself is not subject to alteration.

typedef struct cf_ {

int cfnpers; /* Number of persons in census
family */
int cfnadult; /* Number of adults in census family
*/
int cfneld; /* Number of elderly in census
family */
int cfnkids; /* Number of children in census
family */
int cfnearn; /* Number of earners in census
family */
int cfageeld; /* Age of eldest in census family */
int cfsexeld; /* Sex of eldest in census family */
int cfspoflg; /* Census family contains married
couple */
int cftype; /* Census family type */
int cfnchild; /* Number of children (including
18+) */
int cfcat; /* Census family category
*/
P_in cfin; /* First person in census family
[pointer] */
P_in cfineld; /* Eldest person in census family
[pointer] */
P_in cfinspo; /* Spouse of eldest [pointer]
*/
P_in cfinch; /* First child in census family
[pointer] */
*/
} cf_;

The nf Structure:

The household structure further contains an array of structures, MAXFAM of them, to hold
the information about such NUCLEAR families as may be in the household (but not the
information about the individuals in these census families). Thus, a cf structure is small,
containing only 13 items. The items consist of pointers to the first individual in the nuclear
family, and other key individuals (the first child, spouse, and oldest member), plus scalars
that give information about the number of persons in various categories, characteristics of the
oldest person in the family, and nuclear family type. As with the preceding structures, glass
box users may be able to alter the values of variables in the cf structure when a problem
warrants it, but the nf structure itself is not subject to alteration.

typedef struct nf_ {

Programmer’s Guide Page 27
SPSD/M Version 6.0 11/19/97

int nfnpers; /* Number of persons in nuclear
family */
int nfnadult; /* Number of adults in nuclear
family */
int nfneld; /* Number of elderly in nuclear
family */
int nfnkids; /* Number of children in nuclear
family */
int nfnearn; /* Number of earners in nuclear
family */
int nfageeld; /* Age of eldest in nuclear family
*/
int nfsexeld; /* Sex of eldest in nuclear family
*/
int nfspoflg; /* Nuclear family contains married
couple */
int nftype; /* Nuclear family type */
P_in nfin; /* First person in nuclear family
[pointer] */
P_in nfineld; /* Eldest person in nuclear family
[pointer] */
P_in nfinspo; /* Spouse of eldest [pointer] */
P_in nfinch; /* First child in nuclear family
[pointer] */

} nf_;

The in Structure:

The biggest portion of the household structure consists of information about the constituent
individuals. This information is contained in an array of in structures, MAXPERS of them.
In turn, each "in element" is essentially a framework within which several sub-structures hold
all of the relevant information. The user cannot modify the in structure itself, and the
structure does not contain any scalar or pointer variables for the user to alter. Instead, as
described in more detail below, the in structure contains only lower-level substructures (id,
im, and imbase) that the user can access plus an ic substructure that the user can ignore.
typedef struct in_ {

struct id_ id; /* Individual SPSD variables [struct] */
struct im_ im; /* Individual variant result variables
[struct] */
struct im_ imbase; /* Individual base result variables
[struct] */
struct ic_ ic; /* Individual model control variables
[struct] */
NUMBER uvbl[NUMUV]; /* Black-box user variables [array] */

Page 28 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

} in_;

The id Structure:

The id substructure contains the "raw data" for an individual. The structure itself cannot be
changed, though the user will sometimes wish to alter the values of individual variables; see
Chapter for a description of the relevant data-aging techniques. The id substructure is very
relevant to the glass box user because access to the values of its variables will normally be
critical to the kinds of glass box algorithms developed. The id structure has four major types
of elements. (1) Five pointer variables refer to key individuals and family structures. (2)
Over 30 "int" variables supply classificatory variable information and "conversion"
information about the individual. (3) Another 40 "float" variables provide key income and
tax-calculation related information, e.g. income from paid employment; this category also
includes a vector of pseudo-random variables that can be used for program take-up
calculations. (4) Finally, the id structure includes two substructures for raw data about the
individuals first and second UI claims during the year.

typedef struct id_ {
P_in idinspo; /* Person's spouse [pointer]
*/
P_hh idhh; /* Person's household [pointer]
*/
P_ef idef; /* Person's economic family [pointer]
*/
P_cf idcf; /* Person's census family [pointer]
*/
P_nf idnf; /* Person's nuclear family [pointer]
*/
int idspoflg; /* Person has spouse
*/
int iddisab; /* Disability status
*/
int idefseq; /* Economic family sub-sequence number
*/
int idcfseq; /* Census family sub-sequence number
*/
int idinseq; /* Individual sub-sequence number
*/
int idhhrh; /* Relationship to head of household
*/
int idefrh; /* Relationship to economic family
head */
int idcfrh; /* Relationship to census family head
*/
int idage; /* Age
*/

Programmer’s Guide Page 29
SPSD/M Version 6.0 11/19/97

int idcfpub; /* SCF CF publication flag
*/
int idcluflg; /* Common-Law union flag
*/
int idcintim; /* Converted interest income (imputed)
*/
int idcsa; /* Converted social assistance
*/
int idcuib; /* Converted UI benefit
*/
int idccqp; /* Converted CPP/CQP benefit
*/
int idedlev; /* Educational level
*/
int idefpub; /* SCF EF publication flag
*/
int idestat; /* Educational status
*/
int idieflag; /* Cloned institutionalized elderly
person */
int idimmi; /* Years since immigration
*/
int idind; /* Industry
*/
int idlfst; /* Labour force status
*/
int idlyfp; /* Last year full/Part time
*/
int idlystr; /* Last year stretches unemployed
*/
int idlyun; /* Weeks unemployed
*/
int idlyww; /* Weeks worked
*/
int idmarst; /* Marital status
*/
int idninco; /* No income flag (SPSD variables)
*/
int idnonlf; /* Major non-LF activity
*/
int idocc; /* Occupation
*/
int idscfflg; /* SCF high-income preservation flag
*/
int idschtp; /* School type
*/

Page 30 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

int idsex; /* Sex
*/
int idsynthi; /* Synthetic high income person
*/
NUMBER idnage; /* Age
*/
NUMBER idaddded; /* Additional deductions from net
income (256)*/
NUMBER idalexp; /* Other allowable employment expenses
(229) */
NUMBER idcapgex; /* Capital gains exemptions (254)
*/
NUMBER idcarry; /* Carrying charges (221)
*/
NUMBER idccet; /* Child care expenses associated with
child */
NUMBER idccett; /* Child care expenses (Limit A, Form
T778) */
NUMBER idcharit; /* Charitable donations (340)
*/
NUMBER idcloss; /* Allowable other years capital loss
(253) */
NUMBER idcount; /* Person count
*/
NUMBER iddalimo; /* Alimony paid (220)
*/
NUMBER iddisoth; /* Disability amount for dependants
(318) */
NUMBER iddisslf; /* Disability amount for self (316)
*/
NUMBER iddues; /* Union and professional dues (212)
*/
NUMBER ideducm; /* Eligible months of education
allowance */
NUMBER idemplo; /* Employee home relocation loan dedn
(248) */
NUMBER idexplor; /* Exploration and development
expenses (224) */
NUMBER idfdfatc; /* Forward averaging tax credit (478)
*/
NUMBER idfdsft; /* Foreign tax credit applied to
surtax (511) */
NUMBER idforavg; /* Forward averaging amount withdrawal
(237) */
NUMBER idforinc; /* Net foreign income (508)
*/

Programmer’s Guide Page 31
SPSD/M Version 6.0 11/19/97

NUMBER idfortx; /* Foreign tax paid (507)
*/
NUMBER idfsitc; /* Additional investment tax credit
(518) */
NUMBER idgifts; /* Gifts to Canada/provinces/culture
(342) */
NUMBER idhomstu; /* College res/resdnt homeowner assist
(558) */
NUMBER idhosslf; /* Hosp. contributions - self (598)
*/
NUMBER idhosspo; /* Hosp. contributions - spouse (599)
*/
NUMBER idicapg; /* Capital gains (actual) (127 /
CAPGIR) */
NUMBER idicqp; /* CPP/QPP income (114)
*/
NUMBER ididiv; /* Dividend income (actual) (120 /
FDGUR) */
NUMBER idiemp; /* Wages & salaries
*/
NUMBER idiint; /* Interest income (121)
*/
NUMBER idiloss; /* Business investment losses (217)
*/
NUMBER idinogv; /* Other government income (non-
taxable) */
NUMBER idinoth; /* Other money income (non-taxable)
*/
NUMBER idioinv; /* Other investment income with net
rental */
NUMBER idipens; /* Pension income (115)
*/
NUMBER idiroom; /* Net income from roomers and
boarders (126) */
NUMBER idisa; /* Social assistance income
*/
NUMBER idisefm; /* Self-employed income - farming
*/
NUMBER idisenf; /* Self-employed income - non-farming
*/
NUMBER iditc; /* Federal investment tax credits
(412) */
NUMBER iditogv; /* Other government income (taxable)
*/
NUMBER iditoth; /* Other non-government income
(taxable) */

Page 32 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

NUMBER idlabtxc; /* Labour funds tax credit (414)
*/
NUMBER idmedgro; /* Medical expenses, gross (330)
*/
NUMBER idmincar; /* Minimum tax carryover (504)
*/
NUMBER idmovexp; /* Imputed moving expenses (219)
*/
NUMBER idnclos; /* Allowable other years non-capital
loss (252) */
NUMBER idnorth; /* Northern deductions (255)
*/
NUMBER idothded; /* Other deductions from total income
(232) */
NUMBER idothpe; /* Other dependant exemptions (305)
*/
NUMBER idpartlo; /* Limited partnership losses (251)
*/
NUMBER idpolcon; /* Federal political contributions
(409) */
NUMBER idproptx; /* Net property taxes paid (556)
*/
NUMBER idprvftc; /* Provincial foreign tax credit (Form
T2036) */
NUMBER idprvpol; /* Provincial political contributions
(565) */
NUMBER idrentpd; /* Total rental payments (555)
*/
NUMBER idrklyun; /* Raking foundation: weeks unemployed
*/
NUMBER idrklyww; /* Raking foundation: weeks worked
*/
NUMBER idrpp; /* Registered pension plan
contributions (207) */
NUMBER idrrsp; /* RRSP calculated amount (208)
*/
NUMBER idscfctc; /* Child tax credit
*/
NUMBER idscffa; /* Family allowances
*/
NUMBER idscfftc; /* Federal tax credit
*/
NUMBER idscfoas; /* Old age security
*/
NUMBER idscfuib; /* Unemployment insurance benefits
*/

Programmer’s Guide Page 33
SPSD/M Version 6.0 11/19/97

NUMBER idsheltr; /* Manitoba shelter allowance (T1C-
Man) */
NUMBER idstkded; /* Stock option deduction (249)
*/
NUMBER idtuitn; /* Tuition fees (320)
*/
NUMBER idvencap; /* Venture capital tax credit (564)
*/
NUMBER idxii2; /* Part XII.2 tax credit (Trusts)
(456) */
NUMBER idext[NUMEXT]; /* Extra numbers [array]
*/
NUMBER idrand[NUMRAND]; /* Random numbers [array]
*/
struct uc_ uc1; /* UI claim #1 data [struct]
*/
struct uc_ uc2; /* UI claim #2 data [struct]
*/
*/ } id_;

The uc1 and uc2 substructures contain raw, as opposed to calculated, information about the
individual's first and second UI claims during the year. Obviously, this information will be
meaningful only to the extent that the individual actually has UI claims.
typedef struct uc_ {
int ucstat; /* Claim status flag
*/
int ucstart; /* Week claim established
*/
int ucrpeat; /* Repeat claim flag
*/
int ucbtyp; /* Claim type
*/
int uctpcng; /* Type change flag
*/
int ucweeks; /* Weeks of benefits
*/
int ucy1; /* Weeks on UI in first year before
claim */
int ucy2; /* Weeks on UI in second year prior
to claim */
int ucy3; /* Weeks on UI in third year prior
to claim */
int ucy4; /* Weeks on UI in fourth year prior
to claim */
int ucy5; /* Weeks on UI in fifth year prior
to claim */

Page 34 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

int ucwwork; /* Weeks of work prior to claim
*/
int ucquitp; /* Penalty for voluntary quit
*/
int ucuer; /* Local unemployment rate (x10)
*/
int ucexhas; /* Exhaustee flag
*/
int uctrnwk; /* Weeks of training benefits
*/
int ucgotpa; /* Received paternity benefits
*/
NUMBER ucwkhr; /* Weekly hours of work
*/
NUMBER uctrnbr; /* Training benefit weekly rate
*/
NUMBER ucern; /* Insurable weekly earnings
*/
NUMBER uceff; /* Effective weekly rate
*/
NUMBER uceff; /* Effective weekly rate
*/
} uc_;

The ic Structure:

This structure is included here strictly for reasons of completeness. Not even glass box users
will have reason to refer to the values of its variables, to say nothing of changing those
values. Instead, the structure's variables are useful only to the SPSM framework as it
processes the individual.

typedef struct ic_ {
int icselect; /* Individual selected flag

*/
NUMBER icmarinc; /* Income after adjustment

*/
NUMBER icmarold; /* Saved old SPSD income before

adjustment */
NUMBER icmaramt; /* Amount of SPSD income adjustment

*/
int icninco; /* Saved no income flag before

adjustment */
int icrolled; /* Individual already rolled up flag

*/
int icrefper; /* Reference person flag

*/

Programmer’s Guide Page 35
SPSD/M Version 6.0 11/19/97

int ictpflg; /* Selected for cloning (HHC
facility) */
} ic_;

The im and imbase Structures:

The im and imbase structures are two parallel substructures within the in structure. The
contain, for the variant and base systems, all of the "modeled" variables at the level of the
individual. The glass box user will regularly have occasion to refer to and change the values
of these variables. Indeed, it is via one of the substructures in im/imbase, i.e. the uv
substructure, that the user can add new user-defined variables to a version of the SPSM.

The major components of the im and imbase structures are as follows:

1. There is a total of over 150 "NUMBER" variables that correspond to calculated taxes and
benefits, or to significant intermediate variables involved in their calculation.

2. There are several "int" variables that provide modeled categorical variables.

3. There is a pair of substructures, ub1 and ub2, that provide the modeled variables for the
individual's first and second UI claims; these are companion structures to the uc1 and uc2
structures that provide the raw data for these same UI claims.

4. There is the user-defined uv structure that is the subject of Chapter 8's description of how
the user adds new user-defined variables to an SPSM model, and a filler array, imfill, that
pads any storage locations not used by the uv structure.

typedef struct im_ {
NUMBER imalexp; /* Allowable employment expenses
*/
NUMBER imamtdf; /* Difference due to minimum tax
*/
NUMBER imatxc; /* Age tax credit
*/
NUMBER imatxcrt; /* Total tax credits applied
*/
NUMBER imaxm; /* Age personal exemption
*/
NUMBER imbft; /* Basic federal tax
*/
NUMBER imbpt; /* Basic provincial tax
*/
NUMBER imbtc; /* Basic personal tax credit
*/
NUMBER imccea; /* Child care expenses allowed
*/
NUMBER imccec; /* Child care expenses claimed on
behalf of child */

Page 36 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

NUMBER imcceni; /* Consumable income with CCE not
zeroed */
NUMBER imccezi; /* Consumable income with CCE zeroed
*/
NUMBER imcchc; /* Child's non-refundable credit
*/
NUMBER imcdeds; /* Dependent children deductions
*/
NUMBER imcemc; /* Child's equivalent to married
credit */
NUMBER imchara; /* Allowable charitable donations and
gifts (calculated) */
NUMBER imchartc; /* Charitable donations tax credit
*/
NUMBER imchclm; /* Number of dependent children
claimed */
NUMBER imcppctc; /* CPP contributions tax credit
*/
NUMBER imcqppc; /* CPP/QPP contributions
*/
NUMBER imctcben; /* Federal child tax credit and child
benefits */
NUMBER imctc; /* Child tax credit
*/
NUMBER imctxcrt; /* Tax credits transferred from
children */
NUMBER imctxcs; /* Dependent children tax credits
*/
NUMBER imdedea; /* Employment allowance
*/
NUMBER imcapgex; /* Modeled capital gains deduction
(254) */
NUMBER imdedfn; /* All deductions from net income
*/
NUMBER imdedft; /* Deductions from total income
*/
NUMBER imdedt; /* Deductions transferred from spouse
*/
NUMBER impeding; /* Dependant's net income
*/
NUMBER imdisatc; /* Disability tax credit
*/
NUMBER imdisex; /* Disability exemption
*/
NUMBER imedrcv; /* Education and tuition transferred
from others*/

Programmer’s Guide Page 37
SPSD/M Version 6.0 11/19/97

NUMBER imedtrf; /* Education and tuition transferred
to others */
NUMBER imedtxc; /* Education allowance tax credit
*/
NUMBER imeduc; /* Education allowance for student
(322) */
NUMBER imexm; /* Personal exemptions (Basic+Age)
*/
NUMBER imfar; /* Family allowance recovery
*/
NUMBER imfcben; /* Total Federal Child Benefits
*/
NUMBER imfcbenb; /* Total Federal Child Benefits Base
*/
NUMBER imfcbene; /* Total Federal Child Benefits
Earning suppl */
NUMBER imfdtxc; /* Federal dividend tax credit
*/
NUMBER imfedbal; /* Federal taxes less transfers
*/
NUMBER imfedtax; /* Federal tax before tax credits
*/
NUMBER imffa; /* Federal portion of family
allowances */
NUMBER imfothtr; /* Federal other trans income and ref.
credits */
NUMBER imfoth; /* Federal other government income
*/
NUMBER imfptc; /* Federal Political Contribution Tax
Credit */
NUMBER imfsa; /* Federal social assistance
*/
NUMBER imfstc; /* Federal sales tax credit
*/
NUMBER imfsur; /* Federal surtax
*/
NUMBER imftax; /* Federal taxes
*/
NUMBER imftr; /* Federal tax reduction
*/
NUMBER imftrt; /* Federal tax reduction transferred
from spouse */
NUMBER imfortc; /* Federal other refundable tax
credits */
NUMBER imftran; /* Federal transfer income
*/

Page 38 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

NUMBER imgisinc; /* Individual's income for GIS/SPA
reduction */
NUMBER imgismax; /* Maximum amount of GIS
*/
NUMBER imiafetc; /* Alberta Family Employment Tax
Credit Benefits */
NUMBER imibcfb; /* BC Family Bonus
*/
NUMBER imicapgt; /* Capital gains (taxable)
*/
NUMBER imicqp; /* CPP/QPP payable
*/
NUMBER imidivt; /* Dividend income (taxable)
*/
NUMBER imiemp; /* Wages and salaries
*/
NUMBER imiself; /* Total self-employment income
*/
NUMBER imigis; /* GIS benefits
*/
NUMBER imigist; /* GIS provincial top-up
*/
NUMBER imigispa; /* GIS and spouse's allowance
*/
NUMBER imiasb; /* Alberta seniors benefit
*/
NUMBER iminet; /* Net income
*/
NUMBER imintdn; /* Interest income deduction allowed
*/
NUMBER imioas; /* OAS benefits
*/
NUMBER imiosa; /* Other SA or guarantees
*/
NUMBER imfnewpg; /* Federal new programs
*/
NUMBER imiotg; /* Other taxable demogrants
*/
NUMBER imisbspa; /* Federal Seniors Benefit SPA
*/
NUMBER imisenb; /* Federal Seniors Benefit
*/
NUMBER imishri; /* Shared income concept (FAMEX &
SPSD) */
NUMBER imisa; /* Social assistance (or replacement
program) */

Programmer’s Guide Page 39
SPSD/M Version 6.0 11/19/97

NUMBER imispa; /* Spouse's allowance
*/
NUMBER imitax; /* Taxable income
*/
NUMBER imitot; /* Total income
*/
NUMBER imiuib; /* Unemployment Insurance\Employment
Insurance benefits */
NUMBER immanltc; /* Manitoba learning tax credit
*/
NUMBER immaramt; /* Adjustment to income source
*/
NUMBER immarex; /* Married exemption claimed
*/
NUMBER immartax; /* Change in consumable income after
adjustment */
NUMBER immartxc; /* Married tax credit claimed
*/
NUMBER immdisp; /* Disposable income
*/
NUMBER immeda; /* Medical expenses allowed (computed)
*/
NUMBER immedatc; /* Medical expenses allowed tax credit
*/
NUMBER immemp; /* All employment income
*/
NUMBER immicons; /* Consumable income
*/
NUMBER imminv; /* Investment income
*/
NUMBER immmkt; /* Market income
*/
NUMBER immoth; /* Other income
*/
NUMBER immtax; /* All taxes
*/
NUMBER immtot; /* Total income
*/
NUMBER immtran; /* All transfer income
*/
NUMBER imnbcbb; /* NB child tax Benefits base amount
*/
NUMBER imnbwis; /* NB child tax Benefits WIS
*/
NUMBER imnbcben; /* Total NB child tax Benefits
*/

Page 40 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

NUMBER imnfach; /* Number of family allowance children
claimed */
NUMBER imnettr; /* Net transfers to person
*/
NUMBER imnptc; /* Non-refundable provincial tax
credits */
NUMBER imoasr; /* OAS recovery
*/
NUMBER imoasres; /* Partial OAS fraction
*/
NUMBER imoccec; /* Ont. Child Care Exp. credit allowed
(child) */
NUMBER imoccea; /* Ont. Child Care Exp. credit allowed
(Family)*/
NUMBER imonteht; /* Ontario Employers Heath Tax (Self-
employed) */
NUMBER imfortxc; /* Federal foreign tax credit (509)
*/
NUMBER imoftca; /* Other federal tax credits applied
(416) */
NUMBER imothrep; /* Other federal repayments
*/
NUMBER impeht; /* Provincial elderly health tax
*/
NUMBER impehtc; /* Provincial elderly health tax
credit */
NUMBER impendn; /* Pension income deduction allowed
*/
NUMBER impentxc; /* Pension income tax credit
*/
NUMBER impex; /* All personal exemptions and
deductions */
NUMBER impfa; /* Provincial family allowance
*/
NUMBER impfp; /* Provincial family programs
*/
NUMBER imphotc; /* Provincial HOSP tax credits
*/
NUMBER impnit; /* Provincial net income tax
*/
NUMBER impoth; /* Provincial other government income
*/
NUMBER impovinc; /* Income for low income measurement
*/
NUMBER impptc; /* Provincial Political Contrib Tax
Credit */

Programmer’s Guide Page 41
SPSD/M Version 6.0 11/19/97

NUMBER impptxtc; /* Provincial Property tax tax credit
*/
NUMBER impptg; /* Provincial property tax grant for
seniors */
NUMBER imprvbal; /* Provincial taxes less transfers
*/
NUMBER improptx; /* Imputed property tax paid
*/
NUMBER imptr; /* Provincial tax reduction
*/
NUMBER impsa; /* Provincial social assistance
*/
NUMBER impstg; /* Provincial sales tax grant for
seniors */
NUMBER impsur; /* Provincial surtax
*/
NUMBER imptax; /* Provincial taxes
*/
NUMBER impalltc; /* All refundable provincial tax
credits */
NUMBER importc; /* Other refundable provincial tax
credits */
NUMBER imptc; /* Refundable provincial tax credits
*/
NUMBER imptran; /* Provincial transfer income
*/
NUMBER imqaafa; /* Quebec Availability Allowance FA
Supplement */
NUMBER imqaarc; /* Quebec Availability Allowance Refunded
Tax Credit */
NUMBER imqnbfa; /* Quebec newborn Allowance
*/
NUMBER imqalexp; /* Quebec allowable employment
expenses */
NUMBER imqatc; /* Quebec age tax credit
*/
NUMBER imqaxm; /* Quebec age personal exemption
*/
NUMBER imqbtc; /* Quebec basic tax credit
*/
NUMBER imqcapgt; /* Quebec taxable capital gains
*/
NUMBER imqccea; /* Quebec child care expenses allowed
(dedn) */
NUMBER imqcceni; /* Quebec net income for refundable
cce credit calculation */

Page 42 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

NUMBER imqccetc; /* Quebec refundable child care
expenses Tax Credit */
NUMBER imqcdeds; /* Quebec dependent children deduction
*/
NUMBER imqchara; /* Quebec allowable charitable
donations(calc) */
NUMBER imqcpptc; /* Quebec CPP/QPP contributions tax
credit */
NUMBER imqdctc; /* Quebec dependent child tax credits
*/
NUMBER imqdedea; /* Quebec employment allowance
*/
NUMBER imqdedfn; /* Quebec all deductions from net
income */
NUMBER imqdedft; /* Quebec deductions from total income
*/
NUMBER imqdedt; /* Quebec deductions transferred from
spouse */
NUMBER imqdepni; /* Quebec dependant's net income
*/
NUMBER imqdisex; /* Quebec disability exemption
*/
NUMBER imqdistc; /* Quebec disability tax credit
*/
NUMBER imqdtxc; /* Quebec dividend tax credit
*/
NUMBER imqei; /* Quebec eligible income for tax
reduction */
NUMBER imqexm; /* Quebec personal exemptions
(Basic+Age) */
NUMBER imqftr; /* Quebec family tax reduction
*/
NUMBER imqhsfc; /* Quebec Health Services Fund
Contributions */
NUMBER imqhsftc; /* Quebec Health Services Fund
Cont.tax credit */
NUMBER imqidivt; /* Quebec taxable dividends
*/
NUMBER imqinet; /* Quebec net income
*/
NUMBER imqintdn; /* Quebec interest income deduction
allowed */
NUMBER imqitax; /* Quebec taxable income
*/
NUMBER imqitot; /* Quebec total income
*/

Programmer’s Guide Page 43
SPSD/M Version 6.0 11/19/97

NUMBER imqittr; /* Quebec income tested tax reduction
*/
NUMBER imqmarex; /* Quebec married exemption claimed
*/
NUMBER imqmeda; /* Quebec medical expenses allowed
*/
NUMBER imqmtc; /* Quebec married tax credit
*/
NUMBER imqpendn; /* Quebec pension income deduction
allowed */
NUMBER imqpex; /* Quebec personal exemptions and
deductions */
NUMBER imqptr; /* Quebec property tax refund
*/
NUMBER imqrepay; /* Quebec repayments
*/
NUMBER imqritc; /* Quebec retirement income tax credit
*/
NUMBER imqstddn; /* Quebec stand. /medical+charitable
allowed */
NUMBER imqstr; /* Quebec sales tax refund
*/
NUMBER imqta; /* Quebec tax abatement (total)
*/
NUMBER imqtaa; /* Quebec tax abatement (applied)
*/
NUMBER imqtar; /* Quebec tax abatement (refundable)
*/
NUMBER imqtca; /* Quebec tax credits applied
*/
NUMBER imqtct; /* Quebec tax credits transferable
*/
NUMBER imqtcts; /* Quebec tax credits transferred from
spouse */
NUMBER imqtfa; /* Quebec taxable family allowances
*/
NUMBER imqtottc; /* Quebec total tax credits
*/
NUMBER imquictc; /* Quebec UI contributions tax credit
*/
NUMBER imqlatc; /* Quebec living alone tax credit
*/
NUMBER imrentpd; /* Imputed rent paid
*/
NUMBER imrepay; /* Social Benefits Repayments
*/

Page 44 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

NUMBER imsbinc; /* Individual income reducing Seniors
Benefit */
NUMBER imsbmax; /* Federal Seniors Benefit maximum
benefit */
NUMBER imsbni; /* Consum inc with Seniors Benefit not
zeroed */
NUMBER imsboas; /* Federal Seniors Benefit OAS portion
*/
NUMBER imsbzi; /* Consum inc with Seniors benefit
zeroed */
NUMBER imspamax; /* Maximum amount of SPA
*/
NUMBER imstddn; /* Standard or medical+charitable
allowed */
NUMBER imstxcrt; /* Tax credits transferred from spouse
*/
NUMBER imtaxcr; /* Total tax credits
*/
NUMBER imtfa; /* Taxable family allowances
*/
NUMBER imtutxc; /* Tuition tax credit
*/
NUMBER imttxcrt; /* Total tax credits transferred
*/
NUMBER imtxf; /* Federal income tax payable
*/
NUMBER imtxfc; /* Federal commodity taxes
*/
NUMBER imtxp; /* Provincial income tax payable
*/
NUMBER imtxpc; /* Provincial commodity taxes
*/
NUMBER imuibr; /* UI benefit recovery
*/
NUMBER imuic; /* UIC contributions
*/
NUMBER imuicrf; /* UI EI contribution refund
*/
NUMBER imuictc; /* UIC contributions tax credit
*/
int imamtfg; /* Minimum tax flag
*/
int imccez; /* Is CCE zeroed?
*/
int imfiler; /* Taxable filer status
*/

Programmer’s Guide Page 45
SPSD/M Version 6.0 11/19/97

int imgistyp; /* Type of GIS entitlement
*/
int imninc; /* No income flag
*/
int imoaspar; /* Partial OAS residency flag
*/
int imoldtyp; /* Type of GIS/SPA nuclear family
*/
int imqfs; /* Quebec family situation (1-5)
*/
int imqndc; /* Quebec number of dependent children
*/
int imsbtyp; /* Type of Seniors Benefit entitlement
*/
int imsbz; /* Is Seniors Benefit Zeroed?
*/
int imspatyp; /* Type of SPA entitlement
*/
int imuidpfg; /* UI claimants has dependents flag
*/
struct ub_ ub1; /* UI claim #1 results [struct]
*/
struct ub_ ub2; /* UI claim #2 results [struct]
*/
struct uv_ uv; /* user variables [struct]
*/
char imfill[UVGLSIZE-sizeof(uv_)]; /* filler array for im
[array] */
} im_;

The ub1 and ub2 Structures:

The ub1 and ub2 structures contain the modeled variables for the individual's first and second
UI claims. Although the structure of ub1 and ub2 is not under the glass box user's control,
glass box applications may well need to alter the values of these variables. Normally this is
done via the SPSM's UI function, though in principle the user could write a separate function
to calculate values for these variables. Note that "downstream" calculations such as income
tax use the modeled UI variables as inputs.

typedef struct ub_ {
int ubclmwk; /* Weeks on claim
*/
int ubcalwk; /* Weeks on claim in calendar year
*/
int ubeiwbp; /* Weeks of past EI benefits */
int ubp1; /* Week # of first payment
*/

Page 46 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

int ubp2; /* Week # of start of second phase
*/
int ubp3; /* Week # of start of third phase
*/
int ubp4; /* Week # of last payment
*/
int ubp5; /* Week # of last training payment
*/
int ubp1c; /* Week # of first payment
(windowed) */
int ubp2c; /* Week # of start of second phase
(windowed) */
int ubp3c; /* Week # of start of third phase
(windowed) */
int ubp4c; /* Week # of last payment (windowed)
*/
int ubp5c; /* Week # of last training payment
(windowed) */
NUMBER ubclmpd; /* Benefits paid on claim
*/
NUMBER ubcalpd; /* Benefits paid in calendar year
*/
NUMBER ubclmfs; /* Family supplement paid on claim
*/
NUMBER ubcalfs; /* Family supplement paid in
calendar year */
NUMBER ubern; /* Modeled insurable weekly earnings
*/
} ub_;

The uv Structure and the imfill Array:

The uv structure is one whose contents are defined by the user, in terms of both substance
and variable names. Chapter 8 describes how the user creates new variables, e.g. defining a
new tax or transfer program. The user controls the substance of "uv" via the vsu.h header
file, and the vsdu.c file, but can alter the values of the defined elements themselves
anywhere inside Adrv.c. These definitional and assignment capacities are the essence of
glass box applications when the user needs to add new variables. Of course the user must be
careful to give any new variable/tax to the right individual(s) so that roll-ups will work
properly throughout the remainder of the SPSM. Clearly it is not feasible to provide a listing
of the structure of uv here, since the user defines it. The array imfill can be ignored by the
glass box user; its existence and size are a technological device useful in the mechanics of the
SPSM's operation.

Sorting order and looping

Programmer’s Guide Page 47
SPSD/M Version 6.0 11/19/97

The SPSD is a file whose order is fixed. It cannot be sorted by the user. The sort order of
the database is critical to understand when attempting to loop through households. The
database is clustered into households that are randomly sorted in a stratified way. Each
individual household is then sorted as follows:

Household

Economic Families

Census Families

Nuclear Families

Head of Family

Spouse if present

Youngest Child to Oldest Child

Within a household, individuals are grouped into economic families. Within an economic
family, individuals are grouped into census families. Within the census family, individuals
are grouped into nuclear families. Within the nuclear family, the head is always first
followed by the spouse if present. Children then follow sorted according to their age.

An entire household is loaded into the data structure specified above. Loops may then be
established to process any of the units of analysis within a household.

Summary

This section has provided a snapshot overview of the SPSM’s framework for storing data
about the household, its families, and their component individuals. An appreciation of this
structure is crucial to the glass box user as he/she seeks to refer to or alter the values of
existing data variables and modeled variables, and to create such new variables as would be
necessary for a customized version of the SPSM. The remainder of this chapter takes up
additional topics critical for accessing and assigning these variables. It employs he
perspectives of both the C language’s use of pointers, and of a bestiary from which the user
can pirate elements for common SPSM tasks, e.g. stepping through the members of various
family types.

Introduction to Pointers in the SPSD/M

The C language makes heavy use of pointer variables, i.e. variables that point to a particular
area of memory, and especially to a specific data structure. Although the portions of the
SPSM's source code dealing with tax/transfer algorithms make less use of pointers and
pointer arithmetic than those portions closed to the user, the glass box user will still have to
employ pointers. Even though the usage of pointers is essential, the design of the SPSM has

Page 48 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

made it as simple as the designers could manage. A variety of macros and code fragments
are provided to make the pointer usage as simple and often as mechanical as was feasible.
This section briefly shows how these pointers are applied for typical glass box tasks such as
looping and referencing. Note, however, that this section is in no way intended to provide a
comprehensive course in pointer usage more generally outside the SPSM.

The Bestiary

A bestiary is a "collection of descriptions of real or imaginary animals”. The particular
"animals" collected and described here are real. They are fragments of C-language source
code likely to be useful to the glass box user as s/he reads and writes the code for tax/transfer
programs. The code fragments described here are all included in the file BESTIARY.C so that
the user can copy the segments without having to retype them.

The elements of the bestiary are provided in support of a philosophy emphasized throughout
this guide. More precisely, users should not have to reinvent the wheel, but should be given
every assistance in taking advantage of things that already exist within the SPSM. Being
able to copy existing code, perhaps modifying it in the process, provides four major
advantages.

1. The existing source code is known to be correct, and thus doesn't have to be debugged.

2. There will be greater consistency between the user's code and that of the distributed
SPSM.

3. Copying is much faster than re-entry.

4. The user can often get the needed job done, safely, without having to understand all of
the underlying detail. The general format used is that of a heading, followed by the code
itself, and, sometimes, a short comment or explanation.

Examples of Looping:

One of the most common tasks in reading, modifying or writing code is looping through the
relevant units in a household or one of its substructures. The following set of code segments
probably come close to being exhaustive as regards the looping required by the user. Note
that the source code segments include the relevant definitions required. E.g. in the first
example below, the user must declare the pointer 'in' of type 'P_in,' and the integer, 'ini' so
that they can be used in the operation of the loop. In practice, the definitions will appear in
the source code prior to the loop itself.
/** * PROCESS ALL INDIVIDUALS IN HOUSEHOLD hh **/

register P_in in;
int ini;

Programmer’s Guide Page 49
SPSD/M Version 6.0 11/19/97

for (ini=0, in=&hh->in[0]; ini<hh->hhnin; ini++, in++) {
DEBUG2("%s processing individual %d in household\n",

ini);
/* code here, using pointer 'in' */
}

In the preceding loop, and the others that follow, the C 'for' statement is used. Items before
the initial semicolon initialize variables for the looping. The condition between the two
semicolons specifies when the loop is to continue. The items still within the parentheses, but
after the second semicolon specify the incrementing necessary for the next iteration. Also
included in the code fragment is a 'code here' comment. It indicates where the SPSM's code,
or the user's code, should go to act on the unit through which the loop cycles. The 'code here'
comment also identifies that unit in terms of the pointer that the loop controls.
/*** PROCESS ALL INDIVIDUALS IN ECONOMIC FAMILY ef **/

register P_in in;
int ini; for (ini=0, in=ef->efin; ini<ef->efnpers;

ini++, in++) { DEBUG2("%s processing individual %d in
economic family\n", ini);

/* code here, using pointer 'in' */
}

/*** PROCESS ALL INDIVIDUALS IN CENSUS FAMILY cf **/

register P_in in;
int ini;
for (ini=0, in=cf->cfin; ini<cf->cfnpers; ini++, in++) {
DEBUG2("%s processing individual %d in census family\n",

ini);
/* code here, using pointer 'in' */
}

/*** PROCESS ALL CHILDREN (including 18+) IN CENSUS
FAMILY cf **/

register P_in in;
int ini;
for (ini=0, in=cf->cfinch; ini<cf->cfnchild; ini++, in++)

{
DEBUG2("%s processing child (including 18+) %d in census

family\n", ini);
/* code here, using pointer 'in' */
}

/*** PROCESS YOUNG CHILDREN IN CENSUS FAMILY cf **/

register P_in in;

Page 50 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

int ini;
for (ini=0, in=cf->cfinch; ini<cf->cfnkids; ini++, in++)

{
DEBUG2("%s processing child (<18) %d in census family\n",

ini);
/* code here, using pointer 'in' */
}

/*** PROCESS ALL INDIVIDUALS IN NUCLEAR FAMILY nf
**/

register P_in in;
int ini;
for (ini=0, in=nf->nfin; ini<nf->nfnpers; ini++, in++) {
DEBUG2("%s processing individual %d in nuclear family\n",

ini);
/* code here, using pointer 'in' */

}

/*** PROCESS CHILDREN IN NUCLEAR FAMILY nf **/

register P_in in;
int ini;
for (ini=0, in=nf->nfinch; ini<nf->nfnkids; ini++, in++)

{
DEBUG2("%s processing child %d in nuclear family\n",

ini);
/* code here, using pointer 'in' */

}

/*** PROCESS ALL ECONOMIC FAMILIES IN HOUSEHOLD hh
**/

P_ef ef;
int efi;
for (efi=0, ef=&hh->ef[0]; efi<hh->hhnef; efi++, ef++) {
DEBUG2("%s processing economic family %d\n", efi);
/* code here, using pointer 'ef' */

}

/*** PROCESS ALL CENSUS FAMILIES IN HOUSEHOLD hh **/

P_cf cf;

Programmer’s Guide Page 51
SPSD/M Version 6.0 11/19/97

int cfi;
for (cfi=0, cf=&hh->cf[0]; cfi<hh->hhncf; cfi++, cf++) {
DEBUG2("%s processing census family %d\n", cfi);
/* code here, using pointer 'cf' */

}

/*** PROCESS ALL NUCLEAR FAMILIES IN HOUSEHOLD hh
**/

P_nf nf;
int nfi;
for (nfi=0, nf=&hh->nf[0]; nfi<hh->hhnnf; nfi++, nf++) {
DEBUG2("%s processing nuclear family %d\n", nfi);
/* code here, using pointer 'nf' */

}

References With Respect to an Individual:

Another common glass box task involves referring to other individuals in a structure or
substructure, or to units of analysis "higher up" in the structure. It is via such references that
the user can refer to characteristics such as the providence of residence for an individual, the
income of the spouse of the eldest member of a census family (if that spouse exists), or the
age of the second oldest child living in any of the census families within a common economic
family.

/*** REFERENCE SPOUSE OF INDIVIDUAL in **/

if (in->id.idspoflg) {
P_in inspo;
inspo = in->id.idinspo;
/* code here, using pointer 'inspo' */
}

 Notice here that there will not always exist a spouse.

/*** REFERENCE HOUSEHOLD OF INDIVIDUAL in **/

P_hh hh;
hh = in->id.idhh;
/* code here, using pointer 'hh' */

With the pointer to the household retrieved, the user then has access to household
characteristics such as province of residence. In contrast to the situation with the spouse of
an individual, the household will always exist.

/*** REFERENCE ECONOMIC FAMILY OF INDIVIDUAL in **/

Page 52 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

P_ef ef;
ef = in->id.idef;
/* code here, using pointer 'ef' */

Similarly, the individual's economic family will always exist, and will be relevant for
ascertaining whether the individual lives in a below - LICO unit.

/*** REFERENCE CENSUS FAMILY OF INDIVIDUAL in **/
P_cf cf;
cf = in->id.idcf;
/* code here, using pointer 'cf' */
/*** REFERENCE NUCLEAR FAMILY OF INDIVIDUAL in **/
P_nf nf;
nf = in->id.idnf;
/* code here, using pointer 'nf' */

These key references, coupled with the looping fragments of the previous section, permit the
user to do, relatively conveniently, almost anything likely to be needed for tax/transfer
simulation.

Summary

The first part of this chapter described the detailed data structure used for SPSD/M
households, and all of its substructures. That part also identified the most important manifest
constants and function macros the user will encounter in the SPSM's source code. The later
portions described the role of pointer variables in the SPSM and characterized the major
pointer types used. They concluded with a bestiary of code fragments for common glass box
tasks, looping through individuals and family units, and referring to an individual's spouse or
to the units of analysis that contain him/her.

The next chapter builds on this foundation by describing how the SPSM processes
households in terms of calculating taxes and transfers. That description is in turn a
foundation for the later chapters that indicate how to add user-defined parameters and
variables in the course of modifying the logic of the tax/transfer system.

Programmer’s Guide Page 53
SPSD/M Version 6.0 11/19/97

SPSM Function Calling Structure

The calculation of taxes and cash transfers for a household is controlled by a function whose
only task is to call all other individual tax/transfer algorithm functions. The sequence of calls
is critical to the simulation due to the informational requirements of the tax/transfer
functions. For example, net income must be known before GIS can be calculated. The
following list gives the functions called by drv and adrv in the order in which they are
called.

Function Description
ui(hh)
fa(hh)
oas(hh)
dem(hh)
txinet(hh)
gis(hh)
senben(hh)
sa(hh)
txitax(hh)
txhstr(hh)
txcalc(hh)
txprov(hh)
gist(hh)
txctc(hh)
txfstc(hh)
gai(hh)
memo1(hh)
ctmod(hh)
memo2(hh)
cceopt(hh, drv)
classu(hh)

Compute Unemployment Insurance benefit
Compute family allowances
Compute old age security
Compute new demogrants
Compute net income
Compute guaranteed income supplement for elderly
Compute senior benefit
Compute social assistance
Compute taxable income
Compute child & spouse deductions
Compute federal tax
Compute provincial taxes and credits
Compute provincial elderly top-ups
Compute child tax credit
Compute federal sales tax credit
Compute new guarantees, refundable credits
Compute disposable income, etc.
Compute commodity taxes and allocate to persons
Compute consumable income, etc.
Zero CCE for young kids if optimal
Compute user-defined reporting variables (in \glassbox)

The calling order of the component functions of drv reflects the logical precedence between
them.

• The first functions, ui, fa and oas, simulate programs whose benefits are determined by
factors other than income and as such as called first.

• dem is a stub routine for glass box applications that require calculations to occur before
entering the tax system routines.

• txinet calculates net income prior to certain transfers.
• gis calculates transfers to the elderly.
• sa calculates social assistance or guaranteed income transfers.
• Federal and provincial taxes are calculated next in the next four functions with the tx

prefix (txitax, txhstr, txcalc, and txprov).
• gist, txctc, and txfstc calculate income tested transfer programs.

Page 54 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

• gai is another stub routine that is intended for use by glass box users who wish to
simulate options requiring information on all personal income taxes and cash transfers.
For example, users may use this function to simulate an income supplementation
program.

• The memo1 and memo2 functions create aggregate variables for reporting.
• In the ctmode function, sales and excise taxes are calculated by applying Input/Output

based effective sales tax rates to observed family expenditures.
• cceopt optimizes income by maximizing the childcare expense credit and the child tax

credit.
• classu is a stub routine that allows the glass box user to compute and assign values to new

or re-defined variables.

The functions called by drv call other functions and sub-functions in order to complete their
calculations. The following page contains a complete list of the names of functions and sub-
functions along with a short description in the order in which they are called by drv. Please
refer to the specific function in the SPSD/M Algorithm Guide for a more detailed description.
Sub-functions can be found listed under the function that calls them. Thus for a complete
understanding of the calculation of net income one would have to consult both the txinet and
txccea functions.

Function names are printed in lower case, bold, courier font (e.g. txinet, txcalc) and
correspond to a single C language source code file (e.g. tixnet.c, txcalc.c). Sub-
functions are defined within the function (file) that calls them and are shown in lower case,
courier font (e.g. uisqz, gissub). The following example is a call of a sub-function uiclm()
in ui.c where uiclm is defined in a section of ui.c.
valid_claim = uiclm(in, &in->id.uc1, in->id.uc1.ucy1, &in->im.ub1,

hh->hd.hdprov, hh->hd.hdurb, wctb);

Programmer’s Guide Page 55
SPSD/M Version 6.0 11/19/97

Glass Box Development: Adding Typical Scalar
Parameters

As its title suggests, this chapter explains to the glass box user the mechanics of the
programming tasks associated with adding typical scalar parameters during the development
of glass box applications. Structurally, the chapter communicates this information via a
detailed worked example. The first section reviews the general procedure for developing
glass box applications, describing the steps that are fundamental to any model alteration, be it
changing code, adding parameters or adding variables. The second section takes up several
preliminaries to parameter addition. It also describes the nature of the example to be used, an
extension of the Family Allowance supplement example used in this Guide's Quick Start
Chapter. The remaining sections then use the example to explain in detail the steps involved
in adding the most common kinds of scalar parameters to a model. Finally, the last section
summarizes the key points for regarding the addition to a model of these common forms of
parameters.

General Procedure for Making Glass box Changes: A
Recapitulation

Section 2 has already described the general procedure for developing glass box applications,
including the reasoning behind the steps. We summarize the key points here in capsule form.

• Create Task Sub-directory

• identify Files to be Changed

• Copy relevant Files to Task Sub-directory

• Edit Relevant Files

• Compile the new version

• Test the New Version of the Model

• Carry Out the Intended Analysis

Create Task Sub-directory

The user creates a new "task subdirectory" to hold the files relevant for the new glass box
application. She/he will edit files in the task subdirectory, leaving all of the other SPSD/M
files alone.

Identify Files to be Changed

Page 56 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

The user identifies those files in c:\spsm\glass for which variants will have to be created.
For example, in the Quick Start example, we identified Afa.c, Adrv.c and SPSM.mak, and
SPSM.mdp. The example appearing in this chapter indicates how other files, e.g. Mpu.h and
Ampd.c, are relevant to adding new parameters to a glass box application. Section 8 will
explain how still other files, Vsu.h and Vsdu.c, are relevant when the user wishes to add
new variables to a model. Clearly, the tax/transfer function files that use the new parameters
must also be changed. At times, the user may find it more efficient to use files already
developed in a previous application as templates, rather than going all the way back to the
glass subdirectory's template files.

Copy Relevant Files to Task Sub-directory

The user copies all of the identified-relevant files across to the task subdirectory. The user
will work only with these copies, leaving the originals unchanged.

Edit Those Relevant Files

The user makes appropriate changes in each of the files identified as relevant. We
recommend that the changes be made in the following order:

1. Include all relevant files into the project and change the output file name in
Project:Setting:Link.

2. Edit the Adrv.c file, as necessary.

3. Edit the Mpu.h and Ampd.c files, when appropriate, to add any new parameters to the
model.

4. Edit the Vsu.h and Vsdu.c files, as appropriate, to add any new output variables to the
model.

5. Edit the source code files to add the desired new substantive logic to the tax/transfer
system.

We shall follow this prescribed order in the examples we present in this and subsequent
sections.

Compile the new version

The user should activate de Debugging setting in Build:Set Active Configuration and then
run a debug execution of the project. When the program changes are properly implemented
then the new model should be compiled.

Test the New Version of the Model

Programmer’s Guide Page 57
SPSD/M Version 6.0 11/19/97

The user tests the new version via a set of validation analyses designed to reveal any
problems with the logic that has been added or modified. This step may require going back
to some of the earlier ones to remedy any deficiencies that are discovered.

Carry Out the Intended Analysis

Finally, once the validation is complete, the user can proceed with "production runs" of the
new executable code to simulate the consequences of the change that was modeled.

Introduction to Parameter Addition

This section takes up a few critical preliminaries to the procedure for adding typical scalar
parameters. First, it illustrates why a user might wish to add one or more parameters to a
model. In addition, it describes the substance of the new parameters we use to illustrate the
addition of typical parameters.

As noted at the end of the Quick Start example, our hypothetical analyst there took a few
shortcuts that might be done differently in a real-world policy development exercise,
especially if the new model were intended to be used repeatedly or by multiple analysts. One
of these shortcuts was to "hardwire" the $120 per year Family Allowance increment right
into the Afa.c function. Although this might be acceptable if the user would never want to
try another value for the increment, it is not particularly efficient should there be any interest
in examining the impacts of other values. The user would need to re-edit the code and then
to recompile the model for each separate value to be examined; the user might, for example,
seek to confirm a belief that the impacts are generally proportional to the amount of the
increment, and wish to try multiple values by way of investigation. With appropriate
parameters added to the model, no additional editing is required, and the user can investigate
multiple values without re-compilation by simply supplying new parameter values to the
modified model.

Consequently, the several sections in this chapter describe the steps necessary to add new
parameters to the model, cleaning up the Quick Start example by way of a specific
illustration. This chapter restricts itself to the most commonly used forms of scalar
parameters. We believe that the kinds of additions described here will meet perhaps 80% of
the parameter addition needs of glass box users. We leave the definition of more esoteric
scalar parameters, and of vectors and matrices of parameters, to Section 7. Whatever the
type of new parameters, once added to a model, they are available to all functions called by
Adrv.c; they are not restricted to the function for any single transfer program.

Substantively, we shall add three parameters to a variant of the Quick Start model. The three
additions correspond to the three most common forms of parameters that glass box users will
have occasion to use.

1. The first parameter, a scalar "float" or "real" value, will provide the value of the Family
Allowance increment given in respect of certain children; it will eliminate the hardwired
$120.00 value. We'll call this parameter fasuppc (Family Allowance Supplement Per

Page 58 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

Child).

2. The second parameter, a scalar integer value, will indicate the number of children at
which the supplement begins to be payable; it will eliminate the hardwired value of "3"
used in the Quick Start example. We'll call this parameter fasupfec (Family Allowance
Supplement's First Eligible Child).

3. The third parameter, a "flag" variable that is effectively a boolean switch, will indicate
whether any attention is to be paid to the first two parameters. In this, its function
parallels that of the many "flag" variables used throughout the SPSM. When turned "on"
it will enable the computation of the supplement; when turned "off" the model will
calculate Family Allowances with no provision for the supplement. We'll call this
parameter fasupflg (Family Allowance Supplement Flag).

Our description assumes that the user has chosen to use \glassex2 as the task directory,
creating it if necessary.

Copy Files Adrv.c, Mpu.h, Ampd.c, Afa.c, SPSM.mak, and
SPSM.mdp

The user copies to the new task subdirectory all of the files for which changes are required..
Similarly, the user will wish to modify Adrv.c to update the description used for the
substantive files (here only Afa.c) being changed. Thus, Adrv.c need to be copied.

Two other files, Mpu.h and Ampd.c, are always relevant when the user wishes to add a new
model parameter. Mpu.h (Model Parameters, User) is a C language header file that defines
the nature of the new parameter. Ampd.c (Alternate Model Parameter Definitions) contains
the function invocations that make the user's parameters known throughout the rest of the
SPSM, e.g. so that they can be referenced by name for purposes of changing values "on the
fly" when the user executes an SPSM executable file.

The user must copy these Mpu.h and Ampd.c files across from the glass subdirectory or
some equivalent source. If, for example, the user has already, elsewhere, modified these files
to define other parameters, and wishes to retain those previous modifications, s/he can copy
templates for Mpu.h and Ampd.c from the subdirectory in which they exist. By the term
"templates" we refer to existing files, or pieces of text or code, that serve as a convenient
starting point for making any desired modifications. For example, it would make no sense at
all for the user to enter, from scratch, completely new versions of the relevant files. In this
example, we'll assume that these are the first parameters being added, and will copy the
templates from glass.

Finally of course, the user must copy the substantive tax/transfer function or functions that
will use the new parameter. For our purposes the only relevant substantive function is the
Afa.c function. Rather than copying it from glass and then having to start from scratch,
we'll copy it from glassex1 so that some of our work is already done, e.g. locating where the
assignment of the increment should be made.

Programmer’s Guide Page 59
SPSD/M Version 6.0 11/19/97

The user will have to copy SPSM.mak and SPSM.mdp that describe the project environment.

Update the project

All the required files should be included in the project and the name of the output executable
changed in Project:Setting:Link to glassex2.exe.

Update the Algorithm Description in Adrv.c

Recall from the Quick Start example that the altname[] and Tdrv[] global variables
received new values to reflect and document the nature of the changes to be made. Here,
with a new version of the model being created, a corresponding substitution is in order. The
two substitutions, consisting exclusively of the contents of the two strings, result in the
following code:

==================== GLOBAL VARIABLE DEFINITIONS
============== */
/*global*/ char ALTNAME[IDSIZE+1] = "Parameterized FA
Supplement";
/* Give global string describing version of this module */
/*global*/ char FAR Tdrv[] = "Parameterized FA Supplement"

At this point we can carry out a debugging compilation to check our modification. Such a
check helps a user to identify syntax errors while the nature of the modification is still fresh
in the memory. To do so, select Win32Debug project in Project:Set Active Project and then
do Build:Start Debug. If compilation and links are required, C++ will let you know.

Modify Mpu.h to Define the new Parameters

The user next needs to change the file Mpu.h to define the type of the new parameters.
When the change is made in the glass version of Mpu.h, the line containing the string
"UMDUMMY" is replaced with definitions of the new parameter(s). The name
"UMDUMMY" refers to "User Model Dummy parameter." We're calling the first new
parameter FASUPPC to indicate that it is the amount of the FA supplement per relevant
child. Before the change the indicated line (about line 62) reads:

int UMDUMMY; /* dummy entry
*/

Because, as the label indicates, this entry is only a placeholder, dummy, entry so that the
SPSM will have something to work with if the user has not yet defined any user parameters,
we delete this line completely. We replace it with the lines:

NUMBER FASUPPC; /* Family Allowance Supplement per Child
*/
int FASUPFEC; /* FA Supplement, First Eligible Child
*/

Page 60 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

int FASUPFLAG; /* FA Supplement, Activation Flag
*/

In the first line, "NUMBER" is a macro used by the SPSM to ensure portability across
machines; it corresponds to the type "float". FASUPPC is the name of the new parameter.
The SPSM convention is that such parameter names are capitalized. The other two
parameters are naturally integers. For readability, we have also added comments on the right
to indicate the nature of the parameter values.

These simple additions complete our changes to Mpu.h. Typically, if we were adding new
parameters to a non-empty set of user parameters already in place, we would simply add the
new definitions to the bottom of the existing list in Mpu.h, just as the FASUPFEC and
FASUPFLAG parameters here follow the FASUPPC parameter.

The SPSM allocates space for up to 500 such new parameters, easily enough for typical glass
box user applications. Even more parameter additions are possible when some of them are of
the smaller "int" type. Any attempt to exceed this limit will result in a compile-time
error message that will make the problem apparent.

Modify Amph.c to Make the Parameters Available to the SPSM

The user also needs to change the Ampd.c file to make the new parameter "visible"
throughout the portions of the SPSM that may need to reference it. The SPSM provides a
function "pmaddent" (Parameter Module, Add Entry) to carry out this task. The user calls
the function once for each new parameter, just before the "DEBUG_OFF (Ampd)" statement
near the end of Ampd.c, at about line 138.

If the user is working on a copy of Ampd.c that already contains invocations of pmaddent for
other parameters, those other calls can be used as templates. In our example though, since
there are, as yet, no other parameters added, we copy a pmaddent template from the file
C:\SPSM\MODEL\Mpd1.c (Model Parameter Definition File 1). For our first parameter,
FASUPPC, we recognize that this NUMBER type parameter should be very similar to the
STDFA parameter appearing at about line 252. We simply copy that pmaddent invocation
and make appropriate substitutions. This, practice, copying something generally similar that
already exists and works, and then modifying it, is standard practice in glass box
development. The invocation, as copied, looks like:
pmaddent(pcp, "STDFA", (char *)&MP.STDFA, NULL, P_SCL, C_NUM, 0, 0, NULL, 0);

We modify it for our purposes by changing the two references to STDFA to correspond to
our new parameter. Replacing "STDFA" by "FASUP" and "(char *)&MP.STDFA" by "(char
*)&MP.UM.FASUPPC", because the new parameter is an element of the substructure UM (User
Model) that lies within the MP (Model Parameters) structure, we obtain the result:
pmaddent(pcp, "FASUPPC", (char *)&MP.UM.FASUPPC, NULL, P_SCL, C_NUM, 0, 0, NULL,
0);

For the moment we simply retain all of the other arguments to the function without having to
worry about what they represent. As long as we have chosen an appropriate template to steal
from, there is no problem. Later, in Section 7, we'll look at the meaning of each of the

Programmer’s Guide Page 61
SPSD/M Version 6.0 11/19/97

arguments to pmaddent so as to facilitate more informed judgements about appropriate
sources for pmaddent templates, and more effective recovery from any incorrect choices.

We choose UIWAITWKS (the integer number of weeks in the Unemployment Insurance
waiting period) as our template for our integer parameter specifying the "position" of the first
child in the family to be granted the supplement. Similarly, we choose an existing flag
parameter to serve as the template for our new FA supplement flag; FAFLAG, which
controls whether Family Allowances are computed at all, seems a good choice. Before our
modifications, these two invocations appear as follows:
pmaddent(pcp, "UIWAITWKS", (char *)&MP.UIWAITWKS, NULL, P_SCL, C_INT, 0, 0, NULL,
0);
pmaddent(pcp, "FAFLAG", (char *)&MP.FAFLAG, NULL, P_SCL, C_INT, E_FLAG, 0, NULL, 0);

As with the FASPPC parameter above, we modify each of these templates in two places,
substituting the name of the parameter and its relation to the MP structure. The modified
pmaddent invocations appear as follows:
pmaddent(pcp, "FASUPFEC", (char *)&MP.UM.FASUPFEC, NULL, P_SCL, C_INT, 0, 0,
NULL, 0);
pmaddent(pcp, "FASUPFLAG", (char *)&MP.UM.FASUPFLAG, NULL, P_SCL, C_INT, E_FLAG, 0,
NULL, 0);

These simple additions complete the modification of Ampd.c as regards making the
VALUES of the new parameters available throughout the SPSM, at least once we have
somehow assigned those values. Later in this section we address some of the mechanisms by
which the user can make the assignments. However, we still need to provide clear labels for
the parameters so that the SPSM can use them to give meaningful documentation of the
model parameters as appropriate.

Once again, the design of the SPSM renders our job easy. There is a ready-made function.
stradd, to implement the labeling. Just after the pmaddent statements we insert three lines
to invoke this function, stradd --

stradd("FASUPPC", "Family Allowance Supplement per Child");
stradd("FASUPFEC", "FA Supplement, First Child Payable");
stradd("FASUPFLAG","FA Supplement, Activation Flag");

The stradd (String Add) function, when executed, "attaches" the descriptor string to the
parameter so that the descriptor will automatically appear in all relevant SPSM
documentation and labeling. With the (stradd) function's arguments this simple, i.e. one
string identifying the name of a new parameter, with a second string providing the associated
description, we do not even need to resort to a template.

The final item within this step, partial compilation of the Ampd.c function, is optional, but
we recommend it as conducive to the orderly development of glass box applications. This
type of partial compilation enables the user to have the compiler check for syntax errors
while the nature of the modifications is still fresh in one's mind. It does not ensure that the
modified source code meshes with the rest of the SPSM. Note that one has to have modified
any relevant header files, here the Mpu.h header file, first in order for the Debug compilation
to work.

Page 62 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

Modify the Functions that Use the New Parameter(s)

To complete the programming changes involved in adding the parameter, we next need to
alter the Afa.c function so that it makes use of the new symbolic parameters rather than the
"hardwired" values that appeared in the Quick Start example. We begin by adjusting the
label defined for the function; more specifically we modify the code defining the label so that
it reads --

/*global*/ char FAR Tfa[] = "Afa.c Parameterized"

With this label supplied, the SPSM can use it whenever it has occasion to use the function's
description in its documentation.

The substantive changes to the Afa.c function are simple to implement.

Where the Quick Start example used "120.0", we substitute the symbolic representation
"MP.UM.FASUPPC". This naming convention, exactly identical to the one used in the
"pmaddent" function invocation in the Ampd.c change above, reflects FASUP's location
within the UM (User Model) substructure of the MP (Model Parameter) structure that the
SPSM uses to store all of the model parameters.

Where the Quick Start example used 3 to represent the number of children required in the
family for the supplement to be paid, we substitute MP.UM.FASUPFEC. All relevant
formulae are adjusted accordingly.

We make the calculation of the supplementation, and its addition to the fa, tfa, and ffa
variables conditional on the value of the new flag variable, fasupflag.

Thus, the key Quick Start example source code that appeared as:
/* $120/yr bonus for 3rd and subsequent children <18 */
if (nch >= 3) {
tfa += (nch-2) * 120.0;
ffa += (nch-2) * 120.0;
}

becomes, in its glassex2 incarnation:

/* Conditionally add a Family Allowance bonus for the
"FASUPFECth" and subsequent children <18 in the unit */
if ((MP.UM.FASUPFLAG == 1) & (nch >= MP.UM.FASUPFEC)) {
tfa += (nch-MP.UM.FASUPFEC+1) * MP.UM.FASUPPC;
ffa += (nch-MP.UM.FASUPFEC+1) * MP.UM.FASUPPC;
}

Programmer’s Guide Page 63
SPSD/M Version 6.0 11/19/97

The underlying logic remains unchanged, but now it is specified parametrically. In addition
we have modified the comment to reflect the generalization to symbolic parameters. In
writing the source code in this fashion, we have trusted that users of the model will supply
only reasonable values of the parameters. For example, we trust here that no user will
inadvertently supply a value of zero (0) for MP.UM.FASUPFEC and unintentionally create a
Family Allowance supplement for those families with zero children aged 0 through 17.
Later, in Section 7, we'll show how the user can use the SPSM's edit-check facilities to
guarantee that the parameters values are reasonable.

Once again we perform a Debug compilation to catch any syntactic errors before compiling
the new model.

Validate and Make Black-Box Production Runs

As with the Quick Start example, we still need to test the new variant of the model to ensure
that it gives reasonable results. With SPSM runs being essentially free, and not terribly time
consuming, two particular validation runs immediately suggest themselves.

1. The first is a run with the FASUPPC parameter set to zero, using the same tables generated
in the Quick Start example. For this run we set the FASUPFEC parameter to 3, and the
FASUPFLAG parameter to 1. We expect that there will turn out to be no differences
between the base and variant systems because the zero value for the parameter renders
the change nil.

2. We modify the first test to supply a value of 120.0 for the FASUPPC parameter, leaving the
FASUPFEC and FASUPFLAG parameters at 3 and 1. Again we request the Quick Start
tables as output, expecting to observe the same results we obtained from the original
Quick Start example with its hardwired 120.0 value.

3. We modify the FASUPFEC to take on a value of 2, expecting that this will considerably
increase the cost of the hypothetical option, since there are relatively many two-child
families. The specific tables allow us to ascertain easily, at least for the gross amount of
the supplement, whether the right amounts of supplement have been calculated for each
of the family types by number of children.

4. Finally, we add a fourth test to turn the supplement off via the FASUPFLAG parameter. In
making this validation test, we leave the FASUPPC and FASUPFEC parameters at 120.0
and 2 so that we can be sure that any effect is caused by resetting the flag parameter to
zero. As with the first validation run described above, we expect that there will be no
differences between the base and option Family Allowances, the computation of the
supplement having been suppressed.

For carrying out the validation tests, it remains only to assign the desired values to the new
parameters. The design of the SPSM makes this easy. If we simply run the new model
without having bothered to specify a needed parameter value, the SPSM notes the omission,
allowing us to provide the value via the "on-the-fly" parameter editing facility. Or, to be

Page 64 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

functionally equivalent, we could have placed an appropriate entry in the MPR (Model
Parameter) file, since such files hold model parameters generally, whether the parameters are
defined by the user or are built into the SPSM as distributed. Similarly, the new parameter
file could have been specified in an MPI (Model Parameter Include) file. Authoritative
descriptions of these latter two methods may be found in Section 2 of the SPSM User's
Guide.

Upon making the tests described above, we are encouraged that our change, the addition of
the three new parameters, has been properly implemented because all of the sets of outputs
appear as anticipated. The results of the third test, where we shift the FASUPFEC (first
eligible child) parameter, are especially important. There we can check to see if appropriate
amounts of supplement benefits are added to families classed by number of children aged 0
to 17. Now, with the model changes validated, we are ready to make the relevant set of
production runs. For example, a client might ask us to use a FASUPPC parameter value of
60.0 to confirm our his expectation that the same number of families would be affected as
with a value of 120.0, and that the costs, in aggregate and as an average per affected family,
would be only half as great as for that 120.0 value. Similarly, we might substitute a much
larger value, say 5000.0, to confirm our expectation that, with such a large transfer, the
proportion of the supplement recovered through the tax system would rise somewhat as some
families move into higher tax brackets.

Summary/Conclusion

It is useful to conclude by highlighting, but without any redevelopment, the key points
relevant for adding typical scalar parameters to a model. In noting these points, it is taken as
given that the analyst is working with COPIES of the relevant files, and is performing all of
the modifications in a task subdirectory dedicated to the analysis at hand. We also assume
that the user has updated the project to include all of the relevant source code files. In terms
of technique, we assume that the user will most often be grabbing a chunk of similar existing
code as a template, and then modifying it as required.

1. Modify the Mpu.h header file, adding one statement for each new parameter. The
statement indicates the name of the parameter and its type, with NUMBER used for float
values.

2. Modify Ampd.c source code file, adding two statements for each new parameter.

• Add one "pmaddent" invocation for each parameter so that the SPSM can make its
value available to all functions called by Adrv.c. Normal practice is to copy the
invocation from an existing invocation and then modify it in two places -- the name
of the parameter and its address.

• Add one stradd invocation for each parameter so that the SPSM attaches the
parameter's label to that new parameter.

Programmer’s Guide Page 65
SPSD/M Version 6.0 11/19/97

3. Modify the relevant substantive function(s) to make use of the new parameter(s),
changing the labeling as well as the internal logic of the function.

4. Debug and Compile the new model. Make the necessary "production runs" of the model
and then interpret the results.

Page 66 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

Glass Box Development: Adding Less Typical Parameters

This chapter describes in greater detail the arguments for the pmaddent function and that
function's use when the user adds scalar, vector and matrix parameters to glass box
applications. To do this, it builds on the foundation established in Section 6 (adding typical
scalar parameters), developing the new considerations for less typical scalar parameters, for
vectors and lookup schedules, and for matrices. Finally, the last section summarizes the key
points for regarding the addition, to a model, of these less common forms of parameters.

The first section of this chapter presents the set of arguments for the key pmaddent function,
describing the key features of each of them. The following section then presents a list of the
types of scalar parameters the user might wish to add. For each type, it indicates briefly the
purpose of that specific type, describes the key pmaddent arguments for the type, and
identifies an appropriate pmaddent template to use when creating a parameter of that type.
Also included is a section that takes up the special considerations involved in adding vectors
of parameters, following with schedule "lookup" parameters. Section 7.5 then develops the
corresponding elements for matrices of parameters.

The pmaddent Function and its Arguments

Recall from Section 6's description of adding typical parameters that the most complicated
aspect of making a new parameter available to a model lies with the changes to Ampd.c, the
changes to Mpu.h being very straightforward definitions of the parameters' types. Within the
Ampd.c changes, the only significant challenge, and not by any means a particularly onerous
one, comes from the invocation of the pmaddent function. We noted that the glass box user
can usually sidestep the complexities of that function simply by choosing an "appropriate"
template invocation, one copied from an "appropriately similar" parameter already defined.
In this section we explain more fully the sense of the various pmaddent arguments, so that
the glass box user will be able to use the pmaddent function confidently, even when there is
no obvious template to be copied and modified.

Our starting point for the description of the pmaddent arguments is the explanatory comment
that appears in Ampd.c itself (at about line 150 of the GLASS version). We'll take up each of
the ten arguments in sequence. We emphasize, however, that the user should have relatively
little occasion to require this information. Most of the time, the parameter to be added will
be well understood, and an appropriately similar template parameter readily identifiable. In
all those cases the user should simply modify the relevant templates (as described in Section
7.4) and get on with the modeling, leaving the intricacies of pmaddent to those doing non-
standard tasks.

Ampd.c's summary of the pmaddent arguments is as follows:
/**
* pmaddent(
* pcp, <= parameter chain being extended
(leave as is)

Programmer’s Guide Page 67
SPSD/M Version 6.0 11/19/97

* "XXXXX", <= name by which the parameter will
be known
* (char *)&MP.UM.XXXXX, <= address of the parameter
* Format, <= printing information for the
parameter
* Agg_Type, <= Aggregate type (scalar, vector,
etc.)
* C_Type, <= C-type (integer, number, string)
* Edit, <= Edits to be performed
* Row_max, <= Maximum number of rows, or
option edit limit. * Rows_addr, <= Address of
int holding current number of rows * Limit <= Number
of columns *);
**/

The first argument (pcp) is particularly straightforward; the user ALWAYS enters the
variable pcp. The argument identifies the specific parameter chain that the user is extending.
Although the SPSM employs other parameter chains in its operations, the user may add
parameters ONLY to the pcp chain.

The second argument, characterized by the "XXXXX" placeholder in the comment, is the
user’s name for the parameter. The name here will be the same one that the user employed in
the Mpu.h definition. Users should be careful to choose reasonable mnemonics for these
names, e.g. the FASUPFLAG name we used in Section 6. The SPSM convention is that
these names should start with an upper-case letter and should contain only upper-case letters
and digits.

The third argument, characterized by the (char *)&MP.UM.XXXXX placeholder, is the
address for the parameter. The initial (C language "cast") portion of the argument, '(char *)'
is invariant. Similarly, the 'MP.UM' portion is invariant because the user's parameters are
always added to the "Model Parameter, User Model" structure. The 'XXXXX' portion
represents the name of the user's parameter; it is set to the string used as the second
argument, but without the delimiting quotes. Finally, reflecting C's treatment of variable's
addresses, the ampersand (&) is present if the parameter is a scalar, and typically absent if it
is not (i.e. absent if the parameter is a vector, lookup parameter or a matrix). The common
C-language device of specifically referring to the first element of an array is taken up later as
a special topic. For the special case of a 'DUMMY' parameter, described below, this third
argument takes on the value of 'NULL'.

The fourth argument, characterized in the description above as 'Format', is a string. It
contains information about how the SPSM should display the value of the parameter when
documenting it. Typically, the user will use the predefined format 'NULL', indicating that
the SPSM is to print the parameter as it sees fit. Another predefined format, "F_FRACT",
contains the string "8.5" and is particularly suited for printing out the value of a fraction. The
user can also enter an explicit string for the argument; e.g. using "8.0" specifies that the value
should occupy 8 characters, and that it should not include a fractional part. An argument of
"7.2" would specify a string occupying 7 characters, with two digits beyond the decimal
point. When appropriate, e.g. for the lookup style parameters, the argument can include

Page 68 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

multiple format indicators, e.g. "8.0 8.2 8.2". The predefined format F_LKTUR, used for
P_LKPXY type parameters provides a concrete example of this usage.

The fifth argument, characterized in the description above by 'Agg_Type', indicates the type
of the parameter. This argument reflects a forced choice among the six integer values 0
through 5. Each of the six values has a mnemonic counterpart that the user can employ, for
clarity, in place of the numeric value itself. The six values, their mnemonic counterparts, and
their interpretations are as follows:

The value 0, represented mnemonically by P_SCL, is the most common value. It is used for
a parameter that is a scalar value (integer, float, fraction, etc.).

The value 1, represented mnemonically by P_VCT, is used when the parameter is a vector.
Other key information about the vector, e.g. the number of elements it contains, is given by
other pmaddent arguments.

The values 2 and 3, represented by the mnemonics P_LKPXY and P_LKPSL, are used
within the SPSM for two special kinds of schedules in which lookups are performed, one
with an X-Y format and the other with a range-slope format. In the event that the user
wishes to create parameters of these types, the GISST and FTX parameters provide
operational examples. These two parameter types define schedules that correspond to
functions LKUP1 and LKUP2 respectively; the LKUP1 and LKUP2 functions themselves
are documented in the SPSD/M Algorithm Guide (Section 6). The use of schedules in the
SPSM is documented more fully in Section 7.5 of this chapter. The value 4, represented by
the mnemonic P_TBL, is used when the parameter is a two dimensional matrix (table).
Other key information about the matrix, e.g. the numbers of rows and columns, is given by
other pmaddent arguments. The commodity tax matrix CTTXRM provides a good example.

The value 5, represented by the mnemonic P_DUMMY, will not generally be used by glass
box users. This parameter type corresponds to a dummy entry used to hold the name of a
header string for documentation purposes.

The sixth argument, characterized in the description above by 'C_Type', indicates the type of
the parameter. There are three possible entries for this argument. The value C_INT is
appropriate when the parameter value is inherently an integer, i.e. consists of a number with
no fractional part, and has a value within the C language's bounds for integer values. The
user will employ a value of C_INT for this argument when the Mpu.h entry for the parameter
used an 'int' declaration. Parameters that are "flags" or "options" will naturally be integers.

The value C_NUM is appropriate when the parameter value may have a fractional part, or
when it is too large to be stored as an integer. The user will employ a value of C_NUM for
this argument when the Mpu.h entry for the parameter used a 'NUMBER' declaration.

The value C_STR is used when the parameter value is a dummy entry used for a header
string. Glass box users will not generally have occasion to use C_STR.

The seventh argument, characterized in the description above by 'Edit', indicates the edit
checks to be imposed on the value of the parameter. The activation of these edit checks will

Programmer’s Guide Page 69
SPSD/M Version 6.0 11/19/97

force the value of the parameter to obey various constraints that may be appropriate. In
addition, they may constrain a user's ability to modify the parameters' values at execution
time via the SPSM's parameter editing facilities. The pmaddent argument governing such
edit checks is an integer value. Typically, the user will choose a value by entering an
element from a set of predefined mnemonic values (described below).

The codes and their interpretations are as follows:

E_NONE (value 0) indicates that no edit checks are to be performed on this parameter.

E_FIXL (value 1) applies only when the parameter is a vector, lookup table or array (and
thus has a known maximum number of rows). This edit code prevents the user from
attempting to change the actual number of rows from the maximum value. The mnemonic
here indicates that the row limit is regarded as fixed.

E_FLAG (value 2) indicates that the parameter is a flag. Under SPSM conventions, this
means that the parameter is treated as a binary variable (defined as an integer) that must take
on either the value 0 (zero) or the value 1 (one).

E_FRCT (value 4) indicates that the parameter is a fractional value that must fall in the
domain 0.0 and 1.0, inclusive.

E_NOCH (value 8) indicates that the user is not allowed to make any changes to the value of
the parameter via the SPSM's built-in parameter editor. This edit check can apply to any of
the types of parameters, C_INT, C_NUM or C_STR.

E_OPT (value 16) indicates that the parameter is of a special "option" type, corresponding to
a forced (integer) choice of values from 1 to the maximum option number permitted. The
maximum number itself is provided, for option parameters, by the eighth pmaddent
argument.

Should multiple codes be relevant, the user can simply add the relevant component values
together. E.g. a value of 12 indicates a parameter that must be a fraction, and that the user is
not permitted to edit dynamically at run time.

The eighth argument, characterized in the description above by 'Row_max', indicates the
maximum number of rows for certain types of parameters (P_VEC, P_LKPXY, P_LKPSL,
or P_TBL). (Note however, the SPSM's flexibility, in that the actual number of rows used in
a specific application may be less than this maximum.) For the other parameter types (P_SCL
and P_DUMMY) this argument should take on a value of 0 (zero), except for OPTION
parameters, where it indicates the number of legitimate option values. (A value of N for an
OPTION parameter indicates that the legitimate values range from 1 to N inclusive.) Since
scalar parameters (P_SCL) are the norm, this argument will most often take on the value 0.

The ninth argument, characterized in the description above by 'Rows_addr', contains the
address of the integer variable corresponding to the current (actual) number of rows for
certain kinds of parameters, P_VEC, P_LKPXY, P_LKPSL, and P_TBL. When the number
of rows is irrelevant, e.g. for a scalar or DUMMY parameter, the user enters a value of

Page 70 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

'NULL' for this argument; thus, this argument will typically take on the 'NULL' value.

The tenth and last pmaddent argument, characterized in the description above by 'Limit',
indicates, for parameters of type P_TBL, the number of columns in the table. In contrast to
the flexibility provided for rows, where the actual number of rows may be smaller than the
maximum number, the SPSM requires that the actual number of columns be fixed
beforehand. For all other parameter types, this argument takes on the value of 0 (zero).

Characterizing Scalar Parameters

With the description of pmaddent's arguments complete, we turn first to the kinds of scalar
parameters that the user may wish to add. (Sections 7.4 through 7.6 take up the addition of
parameters that are not scalars.) The discussion here treats them in roughly descending order
as regards expected frequency of use. For each of the types the description indicates (1) the
general nature of the parameter, (2) the key pmaddent arguments, and (3) an appropriate
pmaddent template. Even though this chapter deals primarily with more specialized types of
parameters, we have, for completeness, included in this scalar parameters section instances of
the more common parameter types already described in Section 6 of this Programmer's
Guide.

REAL/float/NUMBER Parameters

The analyst uses this type of parameter when needing to supply a real value, e.g. some
program guarantee expressed in dollars and cents. The Mpu.h definition will use the
NUMBER specification. In the pmaddent call, the key argument is the C_NUM entry for
C_Type. An appropriate template is --
pmaddent(pcp, "STDFA", (char *)&MP.STDFA, NULL, P_SCL, C_NUM, 0, 0, NULL, 0);

INTERGER/int Parameters

The analyst uses this type of parameter when needing to supply a value that is inherently an
integer, e.g. the typical number of weeks in the waiting period for unemployment insurance.
The Mpu.h definition will use the int specification. In the pmaddent call, the key argument is
the C_INT entry for C_Type. An appropriate template is --
pmaddent(pcp, "UIWAITWKS", (char *)&MP.UIWAITWKS, NULL, P_SCL, C_INT, 0, 0, NULL, 0);

FLAG Parameters

The analyst uses this type of parameter when wishing to supply a "switch" value, e.g. an
indicator that will specify whether certain other calculations are to be performed or not. The
Mpu.h definition will use the int specification for such a parameter. In the pmaddent call, the
key arguments are the C_INT entry for C_Type and the E_FLAG entry for Edit. An
appropriate template is --
pmaddent(pcp, "FAFLAG", (char *)&MP.FAFLAG, NULL, P_SCL, C_INT, E_FLAG, 0, NULL, 0);

Programmer’s Guide Page 71
SPSD/M Version 6.0 11/19/97

FRACTION Parameters

The analyst uses this type of parameter when wishing to supply a value that is inherently a
fraction, and thus more constrained in value than a float. Tax rates and contribution rates are
good examples of this type of parameter. The Mpu.h definition will use the NUMBER
specification for such a parameter. In the pmaddent call, the key arguments are the C_NUM
entry for C_Type and the F_FRACT entry for Format. In the template call we suggest for
this type of parameter, the user has chosen NOT to require an Edit check that will constrain
the value between zero and unity; the template itself is --
pmaddent(pcp, "UIBASRATE", (char *)&MP.UIBASRATE, F_FRACT,P_SCL, C_NUM, 0, 0, NULL, 0);

OPTION Parameters

The analyst uses this type of parameter when the parameter reflects a forced choice among a
small fixed number of alternatives; a numerical value is used to indicate a nominal or
qualitative selection. As an example of such a qualitative distinction, one might consider a
parameter that indicates whether CPP/QPP deductions are to be treated as (1) a deduction in
computing taxable income, or (2) a non-refundable credit in the calculation of taxes, or (3) a
tax credit refundable at the federal income tax level, but not at the provincial income tax
level. The Mpu.h definition for a FLAG parameter will use an int specification. In the
pmaddent call, the key arguments are the C_INT entry for C_TYPE, the E_OPT entry for
Edit, and the numeric entry giving the number of legitimate categories for the Row-max
argument. An appropriate template is --
pmaddent(pcp, "MDCROPT", (char *)&MP.MDCROPT, NULL, P_SCL, C_INT, E_OPT, 2, NULL, 0);

EDIT-FRACTION Parameters

The analyst uses this type of parameter when it is desirable to constrain any user-supplied
value to fall in the interval from zero to unity. For example, the parameter might represent a
taxback rate that would be considered unreasonable if it corresponded to a rate of less than
zero percent or greater than one hundred percent. The Mpu.h definition for an editable
fraction parameter will use a NUMBER specification. In the pmaddent call, the key
arguments are the C_NUM entry for C_Type and the E_FRCT entry for Edit. The user
might wish also to specify a Format specification of F_FRACT. An appropriate template is -
-
pmaddent(pcp, "CHATR1", (char *)&MP.CHATR1, NULL, P_SCL, C_NUM, E_FRCT, 0, NULL, 0);

DUMMY Parameters

The user will not typically specify DUMMY parameters, which are intended for conveying
labeling and sectioning information when parameter configurations are being documented.
An illustrative template is -
pmaddent(pcp, "2.3.1", NULL, NULL, P_DUMMY, C_STR, 0, 0, NULL, 0);

For all types of scalar parameters, the user has the same choice among mechanisms for
supplying values to them as described in Section 6:

Page 72 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

1. specification via inclusion of the parameter in a parameter file (MPR, CPR and APR
files),

2. specification via presence in a supplementary inclusion parameter file (MPI, CPI and
API), and

3. specification via the SPSM's dynamic parameter editing facility. (Note, however that the
ability to use the third option may be constrained by the parameter's pmaddent entry for
the Edit argument.) This approach is automatic if the user chooses not to specify a value;
the Edit argument permitting, the SPSM will prompt for a value.

Vectors of User-defined Parameters

The preceding portions of this chapter have focused primarily on scalar parameters, in part
because they are the most common types, and in part because they are easiest to describe.
However, the SPSM also offers the user the capacity to create vectors of parameters. Such
vectors will be most relevant when the user wants to create a set of related parameters with
the members of the set occurring in a natural "indexable" order along a single dimension.

As an example, consider the case of an analyst modeling some proposed housing supplement
program. For each family size up to ten this hypothetical program has an income limit
beyond which a family becomes categorically ineligible to receive benefits. Unfortunately,
these limits, though increasing with family size, are not related to that family size in any
smooth or readily calculated manner. Instead, the user wants to have ten different
parameters, corresponding to families of size one to ten-plus, to represent the benefit cutoff
levels. It makes much more sense to have a vector of parameters, indexed on family size,
than to develop code that treats each of the ten possibilities as a separate, independently
developed case.

In this section then, we characterize the key points the user must understand to define vectors
of user parameters for SPSM models. Our earlier comments about parameter addition in
general continue to hold (order of changes to files, use of mnemonic values, validation, etc.),
but we focus on those aspects specific to the effective use of vectors of user-defined
parameters.

Additions to Mpu.h, Cpu.h or Apu.h

Just as the user declares scalar parameters in Mpu.h (or Cpu.h or Apu.h), s/he must also
declare any user-defined parameter vectors in these files. The scalar and vector declarations
look very similar, except that the vector declaration indicates, via an expression in square
brackets, the length of the vector. The SPSM treats parameter vectors as column vectors;
thus the length of the vector is its number of rows.

For our housing program example, suppose that the user has declared a (manifest) constant
HHPYCOMR (Hypothetical Housing Program, Income Cutoff Maximum Rows). The user
has assigned it the value 10 because there will be a distinct cutoff for each family size up to

Programmer’s Guide Page 73
SPSD/M Version 6.0 11/19/97

ten-plus. The definition would be accomplished via a statement of the form --

#define HHPYCOMR 10 /* maximum # of number of rows in the
HHPYCO vector */

See the Mp.h file in the SPSM\DEFS subdirectory (starting at about line 40) for illustrations
using parameter vectors that are part of the black box SPSM, rather than being user-defined.

The vector itself is to be named HHPYCO, with the value of the i'th entry corresponding to
the cutoff for a family of size i+1. (Recall that the C language starts all vectors with the
zero'th entry.) The Mpu.h entry for the new vector will then look something like --
NUMBER HHPYCO[HHPYCOMR]; /* Hypothetical Housing Program
Income Cutoffs */

Although it is possible to "hardwire" the length directly into the declaration, e.g. using
something like HHPYCO[10], we strongly discourage it. We recommend instead the
manifest constant approach described above. The reason behind this recommendation stems
from the need, in the corresponding Ampd.c's pmaddent invocation, of an entry for the
maximum number of rows. Using a given manifest constant in both locations precludes the
possibility of a later revision leading to one value being used in Mpu.h while another is used
in Ampd.c. If the user should create a discrepancy between the Mpu.h (or Apu.h or Cpu.h)
and Ampd.c values, the errors that result could be infuriatingly difficult to track down.

Recall that the actual number of rows present in the (column) vector for a given SPSM
execution may be different from (less than) the maximum number possible for that
parameter. Thus, the user must also declare, in the same header file, a variable in which the
SPSM will store the actual number of rows being used (a value that may vary from run to run
of a given executable version of a glass box model). The user provides a variable for the
SPSM to store the actual number of rows via an additional declaration in the header file.
Following the SPSM convention that these length variables are named as the parameter name
with a suffix of "rows", the Mpu.h file should also contain a declaration of the form --

int HPPYCOrows; /* number of rows in HPPYCO */

The mp.h file in the SPSM\DEFS subdirectory provides many examples in its section on array
limits (about line 580). Later on, Ampd.c's pmaddent call for HPPYCO will refer to the
address of the HPPYCOrows variable.

Additions to Ampd.c

So that the SPSM can make the values in the new parameter vector available to the user's
substantive code, the user must set up the appropriate linkages via an invocation of
pmaddent, just as with scalar parameters. The invocation would look like one of the
following:
pmaddent(pcp, "HHPYCO", (char *)MP.UM.HHPYCO, NULL, P_VCT,
C_NUM, E_NONE, HHPYCOMR, &MP.UM.HHPYCOrows, 0);

or

Page 74 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

pmaddent(pcp, "HHPYCO", (char *)&MP.UM.HHPYCO[0], NULL,
P_VCT, C_NUM, E_NONE, HHPYCOMR, &MP.UM.HHPYCOrows, 0);

In the first illustrative invocation the third argument uses no ampersand because the reference
is to the new parameter vector; C treats such a reference as the address of the first element.
In the second illustrative invocation the use has elected to refer more explicitly to the address
of the first element by including the ampersand and the [0] index. The MpdX.c files in the
SPSM\MODEL subdirectory contain examples of both types of reference.

Three other pmaddent arguments deserve special comment for our description of the
highlights for user-defined parameter vectors. The Agg_Type argument (#5) necessarily
takes on the value P_VCT. The Row-max argument (#8) is the manifest constant created in
Mpu.h to specify the maximum number of rows; in our housing program example this
corresponds to the HHPYCOMR entry. Finally, the Rows-addr entry (#9) corresponds to the
name of the variable declared to store the actual number of rows, preceded by an ampersand;
in our housing program example this corresponds to the &MP.UM.HHPYCOrows entry.

Note that other capacities activated by pmaddent's arguments remain available to the user.
Thus, the user uses C_Type to indicate whether the variable is a float value or an integer.
The user uses the Format argument to specify, if desired, a format for each of the individual
values in the vector. And the user employs the Edit argument to impose any relevant edit
checks.

Just as with scalar parameters, the user will also wish to modify the Ampd.c file to add an
invocation of stradd for each new user-defined parameter vector. This addition will ensure
that when the SPSM documents the new user-defined parameter, the user's textual
description of the parameter will form part of that documentation.

User-Defined Parameter Vector References in the Source Code

Once the user has completed the header file and Ampd.c changes necessary to make the
parameter vector available to the substantive functions, it remains to refer to the relevant
parameter values in those substantive functions. To continue with the hypothetical housing
program example, suppose that the user has available an integer variable, HHPFS,
(Hypothetical Housing Program Family Size) that gives the family size as defined by the
anticipated regulations governing the program. Suppose too, that the user is absolutely
confident that HHPFS's value will lie in the domain 1 through 9 inclusive. To refer to the
relevant income cutoff for benefits from the hypothetical program, the user, recognizing that
the C language always numbers a vector's elements starting with 0, would employ an
expression of the following form:
MP.UM.HHPYCO[HHPFS-1]

Specification of Parameter Vector Values

In order for the user's new code to accomplish anything, the values of the vector's elements
must be made available to the SPSM so that it, in turn, can make them available to the user's

Programmer’s Guide Page 75
SPSD/M Version 6.0 11/19/97

code. Typically, the user will specify these values in an ".MPR" or ".MPI" file (or their
".CPR", ".CPI", ".APR" or ".API" counterparts). The UIREPUER vector, specifying key
regional unemployment as they apply to UI entry requirements for repeaters, provides a good
example.
UIREPUER 5 # Regional unemployment rate
 6.0
 7.0
 8.0
 9.0
 11.5

The format is clear. The first line contains the name of the parameter, followed by the
number of ACTUAL elements to be used; an optional documentary comment should be
added to make the nature of the parameter obvious to any reader of the file. Successive lines
specify, one value per line, the values for the vector. It is important that the number of
elements entry not exceed the maximum rows value specified in the pmaddent entry, and that
the number of additional lines in the parameter file be equal to the number on the parameters
first line; the SPSM will check to ensure that these requirements are met.

To continue with our hypothetical housing program example, the user might enter, in the
".MPR" or ".MPI" file, something like the following:
HHPYCO 10 # Income cutoffs for housing program, by
family size
 5000.0
 6120.0
 7250.0
 8400.0
 9500.0
 10600.0
 11600.0
 12500.0
 13300.0
 13900.0

Summary

The key factors in adding vectors of user parameters to an SPSM glass box model can be
summarized in the following checklist:

1. Make appropriate changes in the header file (e.g. Mpu.h).

• Use a manifest constant for the maximum length of the vector, e.g.
• #define HHPYCOMR 10 /* maximum # of rows for HHPYCO */
• Declare the vector itself,
• NUMBER HHPYCO[HHPYCOMR]; /* comment */
• Declare a variable to hold the actual length of the vector, e.g.
• int HPPYCOrows; /* actual number of rows in HPPYCO */

Page 76 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

2. Make appropriate changes in the Ampd.c file; remember the benefits of partial
compilation.

• Insert an appropriate pmaddent invocation, usually by modifying a copy of an
existing one.

• Enter an invocation of stradd so that the SPSM can label the new parameters
when appropriate.

3. Write the C-language source code that uses the parameters. Remember C's convention
that vectors begin with the zero elements. Debugging compilation is often useful here
too.

4. Supply values for the elements of the vector via a multi-line entry in an appropriate
parameter file.

5. Don't forget the need for validation and testing to make sure that the new code is doing
what is intended of it.

User-defined Schedules for Lookups

Parameters in the form of schedules are useful primarily when one needs to perform some
sort of a lookup, i.e. given a x-value, find the corresponding y-value. This section employs
as examples two schedules already present in the SPSM, and one hypothetical new user-
defined schedule to be added as a parameter. Together, the three examples cover the major
forms of schedule parameters that a glass box user might normally need.

The first of the existing schedule examples involves federal taxes -- given taxable income,
calculate the corresponding tax from the tax table/schedule.

The second existing schedule example addresses program take-up rates -- assuming that the
decision of whether to apply for benefits in a program is believed to depend on the benefit
that could be claimed (the higher the benefit that would be received, the more likely a unit is
to file to claim that benefit), given a unit's potential benefit, look up its probability of
applying for (taking up) those benefits.

The third, new parameter, example involves a totally hypothetical earnings supplement based
very loosely on the U.S. Earned Income Tax Credit, but applied to individual earnings. In it,
a hypothetical earnings supplementation program subsidizes initial earnings, up to $10,000
annually, at a rate of 15%, does not further subsidize any earnings from $10,000 to $15,000,
and then, beyond $15,000, reduces the subsidy previously given at the rate of 10% of
earnings above $15,000, so that there is no subsidy payable to individuals earning $30,000 or
more. The new parameter will describe the subsidy payable as a function of the individual's
earnings. The relevant coordinate pairs are thus (0, 0), (10000, 1500), (15000, 1500), and
(30000, 0).

In terms of their specification as SPSM parameters, schedules are very similar to vectors.
The main exception is that schedules have a fixed number of columns, three, rather than the

Programmer’s Guide Page 77
SPSD/M Version 6.0 11/19/97

single column for a vector. (In use, the schedules employ the SPSM's lkup1 and lkup2
functions.) Thus, with the relatively minor exceptions highlighted in this section, one adds a
schedule to a glass box application very much as one would add a vector of parameters.
Consequently, the vector-oriented prescriptions about mnemonic names, stradd labeling,
partial compilation, validation etc. are not repeated here.

Schedule Types and Lookup Functions

An appreciation of two separate dichotomies is absolutely critical for the effective use of
schedules in the SPSM.

The first dichotomy involves the type of schedule. The user makes the choice as to type via
the fifth argument of the pmaddent call.

If the argument is P_LKPXY, then lookups in the schedule are done in X-Y format, using the
first (x-values) column of the schedule and the second (y-values) column; the slope values of
the third column (the slopes across the successive segments of the schedule) are present, but
ignored (that information being redundant because it could be calculated from the X-Y pairs).
If the fifth pmaddent argument is P_LKPSL, then lookups in the schedule are done in slope
format, using the information in the first (x-values) column and the third (slopes) column,
plus the first value in the second (y-values) column. The remaining values in the second
column are ignored in the sense that they are redundant because they could be calculated
using the rest of the information in the schedule.

The second dichotomy reflects whether or not the user wishes to apply interpolation in the
calculation when performing the associated lookup with the schedule. When interpolation is
desired (when the desired value might lie BETWEEN entries in the y-values column), the
user invokes the lkup1 function from the SPSM algorithm library. When no interpolation is
desired, the user invokes the lkup2 sister function. The SPSD/M Algorithm GuideAD_1
(Section 6) provides the authoritative description of these two algorithms.

Appearance in SPSM Header Files

Exactly as with vectors of parameters, user-defined parameters that are schedules require
certain entries in an appropriate header file (Mpu.h, Cpu.h, or Apu.h).

One of these is (usually) a manifest constant to define the maximum length of the schedule.
The federal tax schedule (FTX) uses the maximum length FTXMAX. The GIS single
pensioner take-up schedule (GISST) uses GISSTMAX. For our earnings supplement
schedule, ESS, we'll use ESSMAX. The corresponding definitions (in Mp.h for FTXMAX
and GISSTMAX, and in Mpu.h for ESSMAX) are as follows:
#define FTXMAX 15 /* maximum of number of rows in FTX
table */
#define GISSTMAX 8 /* maximum of number of elements in
GISST table */

Page 78 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

and

#define ESSMAX 5 /* maximum number of rows in ESS
schedule */

The second of these is a variable in which the SPSM stores the actual number of rows used
by the schedule in a given run; it must, of course, be less than or equal to the maximum
number. Following SPSM conventions, the Mp.h definitions for variables to contain the
actual numbers of elements are as follows:

int GISSTrows; /* number of rows in GISST table */
int FTXrows; /* number of rows in FTX */

In mpu.h, we'll follow this convention and define a variable ESSrows for the actual number
of rows in ESS --

int ESSrows; /* number of rows in ESS schedule */

Mp.h (for the FTX and GISST schedules) and Mpu.h (for the ESS schedule) also need to
contain the definitions for the schedules proper. Typically, these are carried out using the
manifest constants defined earlier. The SPSM provides a constant, LKP_COLS, that
indicates clearly its role as defining the number of columns for lo9okup schedules. The
definitions themselves are straightforward:

NUMBER FTX[FTXMAX][LKP_COLS]; /* Federal tax table [taxable
income,basic federal tax] */
NUMBER GISST[GISSTMAX][LKP_COLS]; /* GIS take-up rate: single
pensioner by benefit level [benefit,rate] */
NUMBER ESS[ESSMAX][LKP_COLS]; /* Earnings supplement schedule
[earnings, benefit level] */

Appearance in pmaddent Calls in Ampd.c

The user defining schedule parameters will need to modify the Ampd.c file, adding
invocations of pmaddent, to enable the SPSM to make the parameter available to the
substantive source code. We begin by looking at the relevant pmaddent entries for the
SPSM's existing FTX and GISST schedules.

The FTX example, drawn from the Mpd2.c file, appears as follows:

pmaddent(pcp, "FTX", (char *)&MP.FTX[0][0], NULL,
P_LKPSL, C_NUM, 0, FTXMAX, &MP.FTXrows, 0);

Note that the third argument indicates clearly that the schedule has both rows and columns,
and that the fifth argument denotes this as a slope-oriented schedule; the eighth and ninth
arguments make use of the manifest constant and actual-number-of-rows entries defined in
Mp.h.

The GISST example, drawn from the Mpd1.c file, appears as follows:

pmaddent(pcp, "GISST", (char *)&MP.GISST[0][0],F_LKTUR,
P_LKPXY,C_NUM, E_F

Programmer’s Guide Page 79
SPSD/M Version 6.0 11/19/97

Here the fifth argument indicates that this is an X-Y type schedule. Again, the eighth and
ninth arguments make use of the elements defined for the schedule in the mp.h file.

For the hypothetical earnings supplementation program, we would add to the Ampd.c file an
invocation of pmaddent (probably copied from an existing call and then modified as
appropriate) that appears as follows:

pmaddent(pcp, "ESS", (char *)&MP.UM.ESS[0][0], NULL, P_LKPXY,
C_NUM, 0, ESSMAX, &MP.UM.ESSrows, 0);

The strong parallels with the existing GISST schedule should be apparent. Note, however,
the key differences that mark a user-defined parameter schedule: the UM qualifier in the third
and ninth arguments, and the user-defined (maximum rows) constant and (actual rows)
variable address for the eighth and ninth pmaddent arguments.

Employing Schedule References in User Code

Glass box applications that use schedules will reference them almost exclusively via the
SPSM's two lookup functions, lkup1 and lkup2. This makes source code expressions using
the parameters very straightforward. Illustrations using our three examples indicate the
nature of these references.

The GLASS subdirectory's ATXCALC.C function serves to calculate federal income taxes.
This computation involves looking-up, for an individual, that individual's tax as a function of
his/her taxable income. The user chooses whether or not to apply interpolation (via the
choice between lkup1 and lkup2), supplies the schedule, the actual number of rows, and the
relevant x-value, and the lookup function does all the rest automatically. Here, the user does
want interpolation, applied in a schedule. The relevant source code appears as follows:
if (isnzero(in->im.imitax)) {
/* calculate federal tax */
in->im.imfedtax = (NUMBER) lkup1(MP.FTX, MP.FTXrows, in-
>im.imitax);
DEBUG2("%s fedtax =%.2f\n", in->im.imfedtax);
}

The GLASS subdirectory's AGIS.C function calculates GIS benefits. This computation
involves looking-up, as a function of the potential benefit that would be payable, the
probability that the unit will take-up (i.e. apply for) the benefit. Here the user chooses not to
invoke interpolation -- the desired takeup rate is the one in the last row in which the potential
benefit is at least as great as the row's x-value. The user provides the schedule, the actual
number of rows, and the potential GIS benefit, and the lookup function returns the takeup
probability. (Once again, the schedule itself appears in the next sub-section,) The expression
to ascertain the takeup probability appears as

lkup2(MP.GISST, MP.GISSTrows, (double) gis))

For the earnings supplement illustration, assume that the user has assigned the appropriate

Page 80 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

definition of earnings for an individual to a (double) variable named iearn. Then the
expression for looking up the individual's corresponding earnings supplement would be --

lkup1(MP.UM.ESS, MP.UM.ESSrows, iearn)

Note the necessity for the UM qualifier indicating that ESS is a user-defined schedule.

Appearance in Parameter Files

As with any other parameter, the user is responsible for defining schedule parameters in the
appropriate parameter file (.MPR/I, .CPR/I, or .APR/I). In parallel with the specification
of a parameter vector, the first line provides the parameter name and number of rows, along
with a comment identifying the parameter. The remaining rows for the schedule are the x-
value, y-value, slope triplets. Probably the only non-obvious characteristic is that the
redundant items (those that will not be used for the computations) are enclosed in
parentheses.

The slope-oriented FTX schedule describes tax payable (before tax reform) as a function of
taxable income --
FTX 10 # Federal tax table

0
1238
2476
4952
7428
12380
17332
22284
34664
59424

0
(74)
(272)
(693)
(1139)
(2080)
(3070)
(4209)
(7304)
(14732)

0.060
0.160
0.170
0.180
0.190
0.200
0.230
0.250
0.300
0.340

The X-Y type GISST schedule describes takeup probabilities as a function of amount of GIS
benefit available. The use of the lkup2 function with this schedule means that these takeup
rates are modeled as jumping sharply at the key benefit levels.
GISST 5 # GIS take-up rate: single pensioner by benefit level

0
169
419
919
3169

0.365
0.510
0.660
0.820
1.000

(0.0009)
(0.0006)
(0.0003)
(0.0001)
(0.0001)

The X-Y type ESS schedule describes the earnings supplement benefit as a function of an
individual's earnings; it is used with the lkup1 function because interpolation is desired.
ESS 4 # Hypothetical earnings supplement schedule

0 0 (0.15)
10000 1500 (0.00)
15000 1500 (-0.10)
30000 0 (0.00)

Key Points for Adding Schedule Parameters

Programmer’s Guide Page 81
SPSD/M Version 6.0 11/19/97

Most of the key points for schedule parameters are identical to those for vector parameters.

1. Modify the relevant header file to include a manifest constant for the maximum number
of rows, an integer variable to store the actual number of rows, and the definition for the
schedule itself.

2. Modify the Ampd.c file to include appropriate pmaddent and stradd invocations,
generally ones copied from elsewhere and then modified.

3. Provide the schedule via an appropriate parameter file or parameter inclusion file, and
don't forget to validate the addition.

Two other key points are specific to schedule parameters.

1. Be absolutely sure, in the parameter file, that the x-value column of the schedule contains
values that are in strictly ascending order.

2. Don't forget to "mark" the redundant values in the schedule by enclosing them in
parentheses.

Adding Matrices of Parameters

For some specialized purposes involving groups of parameters, even vectors or schedules of
parameters are not sufficiently convenient. For example, rather than managing several equal-
length vectors in parallel, it may be much more efficient to perform lookups in a matrix of
values. The design of the SPSM permits the definition and utilization of such matrices,
though it limits the number of dimensions to 2 (rows and columns). This section will
describe the use of matrices of parameters via two examples, one drawn from the black box
version of the SPSM, and a second involving the specification of a new user-defined matrix
of parameters. Given the close relationship between parameter vectors and parameter
matrices, the is no special highlights division for this section.

The black box illustration uses the CTPRST matrix specific to the commodity tax capacities
of the SPSM. This parameter provides a large (40 commodities (rows) by 10 provinces
(columns)) matrix of factors relevant for the calculation of the provincial sales tax.

The second example, in which the user adds a new matrix of parameters to the SPSM,
involves a matrix of income cutoffs levels for an (hypothetical) experimental poverty
measure. To facilitate the classification of families as in or out of poverty, the user wants to
have a matrix that provides the relevant cutoffs as a function of integer variables specifying
the families' structures (rows) and the sizes of place of residence (columns). Thus, the
matrix's (3,2) entry will contain the poverty line for a family whose structure index is 3 and
whose size of place of residence index is 2. The user has elected to name this matrix
EPMCO (experimental poverty measure cutoffs). For the sake of this example, we'll assume
that the user has chosen a measure defined in terms of 18 family structures (involving, say,
combinations of the numbers and ages of family members) and four categories of size of
place of residence.

Page 82 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

Appearance in Mpu.h

Taking the black box matrix example first, we are not surprised to find the relevant header
information for CTPRST in file Mp.h of the DEFS subdirectory. Thus, there is an integer
definition, to define the actual number of rows (commodities) CTNUMCOM, as follows:

int CTNUMCOM; /* number of rows for commodity dimension
parms */

In addition, there is a definition for the matrix itself --
NUMBER CTPRST[NUMCOM][NUMREG]; /* Provincial retail sales tax [com x prov] */

 However, Mp.h does not contain manifest constants for the dimensions of the matrix
(NUMCOM and NUMREG) since these are so closely related to the design of the
commodity tax facility in the SPSM that they have been defined elsewhere so that the
commodity tax module can more conveniently use the constants.

Turning to our experimental poverty measure cutoff matrix, we appreciate that we shall have
to provide the relevant "defining" information to the SPSM via entries in the Mpu.h file. The
specific needs are (1) manifest constants for the dimensions, (2) a variable for the actual
number of rows, and (3) the matrix itself. The Mpu.h lines for these items might appear as
follows:

#define EPMFAMMAX 18 /* maximum of number of family structures (rows) for EPMCO matrix */

#define EPMSIZE 4 /* number of size of place of residence categories for EPMCO matrix */

int EPMCOrows; /* number of rows for EPMCO matrix */

NUMBER EPMCO[EPMFAMMAX][EPMSIZMAX]; /* experimental poverty measure cutoffs [fam x size] */

Appearance in Ampd.c

In parallel with the requirements for vectors of parameters, the SPSM requires for each
parameter matrix a call to pmaddent so that the parameter values can be made available to the
user's source code.

For our black box example, this call, found in file Mpd4.c, appears as follows: (There is, of
course a corresponding stradd call.)
pmaddent(pcp, "CTPRST", (char *)MP.CTPRST, NULL, P_TBL, C_NUM, E_FIXL, NUMCOM,
&MP.CTNUMCOM, NUMREG);

 The only arguments of any special interest at this point are the P_TBL entry for the fifth
(Agg_Type) argument, and the NUMREG entry for the final (number of columns) argument.
The eighth and ninth entries (maximum and address of actual numbers of rows) are just as we
would expect them given the preceding descriptions for vectors and schedules.

Turning to our poverty measure glass box example, we recognize that it is necessary to add a
pmaddent call to the Ampd.c file to permit the SPSM to give the user's source code access to
the parameter matrix. That call might well appear as follows:

Programmer’s Guide Page 83
SPSD/M Version 6.0 11/19/97

pmaddent(pcp, "EPMCO", (char *)MP.UM.EPMCO, NULL, P_TBL, C_NUM, E_NONE, EPMFAMMAX, &MP.UM.EPMCOrows,
EPMSIZE);

Presumably, the user would also add to the Ampd.c file a call to stradd to permit the SPSM to
produce appropriate documentary information.

Referencing Matrix Elements in Source Code

Referencing the elements of a parameter matrix is easy. Assuming the variable i holds the
(integer) commodity category and variable j the (integer) province code, then the associated
removal factor for that combination is --

MP.CTPRST[i][j]

Similarly, if the integer variable fstruct holds the family structure code, and the integer
variable sizecode provides the category for the size of place of residence, then the
experimental poverty measure cutoff for that structure/size combination is given by --

MP.UM.EPMCO[fstruct][sizecode]

The primary factor to consider in such references is the C-language's convention that each
dimension begins with the zero element; e.g. our 18 by 4 array uses indices that run from 0
through 17, and 0 through 3, respectively. A user must make the decision about the
appropriate tradeoff between using "natural, positive" integers as indices into the matrices,
and economizing on the fixed block of memory available for user parameters (including any
necessary row address variables).

Appearance in Parameter Files

Just as with all other forms of parameters, the user must provide values for the parameters.
Normally this will occur via entries in the appropriate parameter or parameter inclusion files
(i.e. .MPR, .MP, .CPR, .CPI, .APR or .API). For parameter matrices a parameter file entry
consists of a first line that specifies the name of the parameter and the actual number of rows,
plus typically a documentary comment. The succeeding lines for the parameter then supply
the rows of the matrix. In our illustrations here, we provide only the first, identifying, line
and then the first of the lines of numeric values.

For the black box example –
CTPRST 40 # Provincial retail sales tax
 0.01326 0.01326 0.01326 0.01326 0.01316 0.01406 0.02242 0.00626 0.00010 0.00550
 0.15257 0.15257 0.15257 0.15257 0.13057 0.24354 0.15684 0.13914 0.00013 0.29100
 0.17538 0.17538 0.17538 0.17538 0.16338 0.22635 0.13837 0.08953 0.00010 0.00605
 0.08125 0.08125 0.08125 0.08125 0.08424 0.07750 0.06300 0.08521 0.00009 0.07406
 0.08029 0.08029 0.08029 0.08029 0.07239 0.06953 0.05715 0.07306 0.00010 0.06512
 0.08293 0.08293 0.08293 0.08293 0.06684 0.05282 0.05581 0.00305 0.00008 0.06866
 0.00296 0.00296 0.00296 0.00296 0.00359 0.00197 0.00130 0.00171 0.00001 0.00141
 0.00997 0.00997 0.00997 0.00997 0.00934 0.00753 0.01018 0.01073 0.00024 0.01057
 0.00886 0.00886 0.00886 0.00886 0.01140 0.01421 0.00969 0.00879 0.00022 0.01017
 0.08363 0.08363 0.08363 0.08363 0.06777 0.00206 0.02368 0.04331 0.00004 0.00662
 0.08283 0.08283 0.08283 0.08283 0.35376 0.00201 0.02646 0.00544 0.00004 0.02263
 0.09406 0.09406 0.09406 0.09406 0.06143 0.00733 0.01685 0.01645 0.00064 0.02582
 0.08515 0.08515 0.08515 0.08515 0.07698 0.09175 0.07097 0.06762 0.00011 0.08368
 0.08160 0.08160 0.08160 0.08160 0.09371 0.08702 0.06739 0.06646 0.00008 0.07739

Page 84 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

 0.08086 0.08086 0.08086 0.08086 0.08141 0.08654 0.06925 0.06538 0.00009 0.07740
 0.08238 0.08238 0.08238 0.08238 0.08320 0.08203 0.06751 0.05395 0.00011 0.07746
 0.08331 0.08331 0.08331 0.08331 0.09420 0.01711 0.07477 0.01461 0.00009 0.01935
 0.00067 0.00067 0.00067 0.00067 0.00054 0.00464 0.00740 0.00678 0.00006 0.00690
 0.05967 0.05967 0.05967 0.05967 0.05408 0.04822 0.02270 0.01925 0.00017 0.01865
 0.00821 0.00821 0.00821 0.00821 0.01031 0.00618 0.00623 0.00397 0.00011 0.00738
 0.00043 0.00043 0.00043 0.00043 0.00034 0.00124 0.00145 0.00173 0.00002 0.00059
 0.01581 0.01581 0.01581 0.01581 0.00875 0.10256 0.01323 0.00799 0.00025 0.01145
 0.02112 0.02112 0.02112 0.02112 0.02389 0.04246 0.03516 0.00786 0.00013 0.01465
 0.07207 0.07207 0.07207 0.07207 0.06970 0.08270 0.07019 0.04924 0.00005 0.10050
 0.07667 0.07667 0.07667 0.07667 0.07584 0.08081 0.06841 0.03319 0.00014 0.04053
 0.14145 0.14145 0.14145 0.14145 0.14506 0.01002 0.00841 0.00897 0.00012 0.01248
 0.04574 0.04574 0.04574 0.04574 0.04843 0.08112 0.03185 0.02851 0.00021 0.02790
 0.03739 0.03739 0.03739 0.03739 0.04921 0.01000 0.02035 0.01185 0.00019 0.01653
 0.08336 0.08336 0.08336 0.08336 0.08897 0.07353 0.06346 0.06354 0.00003 0.04449
 0.07581 0.07581 0.07581 0.07581 0.08182 0.07966 0.05424 0.06289 0.00007 0.07054
 0.07746 0.07746 0.07746 0.07746 0.08965 0.04561 0.05949 0.03563 0.00009 0.04247
 0.04765 0.04765 0.04765 0.04765 0.04967 0.02692 0.02058 0.02111 0.00016 0.01419
 0.00489 0.00489 0.00489 0.00489 0.00411 0.00745 0.00795 0.00733 0.00017 0.00929
 0.08402 0.08402 0.08402 0.08402 0.11465 0.08444 0.06428 0.06551 0.00008 0.07433
 0.07875 0.07875 0.07875 0.07875 0.07826 0.08018 0.07052 0.06623 0.00015 0.07777
 0.04826 0.04826 0.04826 0.04826 0.04245 0.00867 0.00918 0.00758 0.00008 0.01028
 0.06598 0.06598 0.06598 0.06598 0.07010 0.05898 0.07703 0.01556 0.00707 0.02343
 0.02430 0.02430 0.02430 0.02430 0.02547 0.02539 0.00705 0.00708 0.00018 0.01004
 0.01002 0.01002 0.01002 0.01002 0.01255 0.00805 0.00822 0.00735 0.00029 0.01300
 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

For our postulated poverty measure example --

EPMCO 18 # Experimental poverty measure cutoffs
5600.0
6210.0
6530.0
7050.0

Summary/Conclusion

It is useful to conclude by highlighting, but without redeveloping them in any detail, the
general level key points relevant for adding less typical scalar parameters and non-scalar
parameters to a model. In noting these points, we are assuming that the analyst is following
the general procedures outlined in Section 6 for scalar parameters. For example, it is taken as
given that the analyst is working with COPIES of all the relevant files, and is performing all
of the modifications in a task subdirectory dedicated to the analysis at hand. We also assume
that the user has updated the project environment, and is following the appropriate
"checklists" provided for the less typical parameters.

1. We recommend the "copycat" approach as general way to proceed. Throughout this
chapter we've provided concrete illustrations of the items a user might want to use as
templates. Users should rarely need to employ the detailed material on
Mpu.h/Cpu.h/Apu.h (definitions, manifest constants for max rows, and actual rows) and
Ampd.c (pmaddent and stradd).

2. Advanced users may want to be aware of the special "services" available via the
pmaddent arguments: the ability to specify printing formats, edit checks, and the
maximum number of allowable rows or options.

3. Vectors can sometimes be much more efficient than a number of individually named

Programmer’s Guide Page 85
SPSD/M Version 6.0 11/19/97

scalar parameters. The SPSM provides for this capacity, though the user must supply
additional information in the pmaddent call and be sure to provide another variable for
the number of relevant rows, as well as a constant for dimensioning. We've offered
several potential templates to facilitate the copycat approach.

4. In many respects, schedules are like a special case of vectors, applicable when one needs
to look up a y-value, as a function of a x-value, from a fixed relationship.

5. Matrices (2-dimensional) are also possible. Some additional information, the number of
columns, becomes necessary, but the matrix approach can be considerably more efficient
than juggling multiple parallel vectors. Once again, the copy and modify approach is
recommended.

Page 86 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

Glass Box Development: Adding New Variables

This chapter describes how to add new user-defined dependent variables to an SPSM glass
box application. Thus, it shows how to address challenges such as those raised in the Quick
Start example, where the user would like to have had a separate variable for the hypothetical
Family Allowance supplement. The availability of user-defined dependent variables is even
more important if the user is modeling some new program, e.g. an earnings supplement that
could not be conveniently combined into any existing model dependent variable.

Structurally, this chapter covers all of the major issues and steps involved in adding new
dependent variables to a model. Included in this chapter is an introductory overview of the
process, and also a section that characterizes the major types of variables that the user may
wish to add. An explanation follows of the critical vardef function that establishes the
linkages between the user's source code and the rest of the SPSM and also describes how to
use the stradd function to make the new variables' labeling available throughout the SPSM.
We then introduce an illustrative extension of the Family Allowance supplement example
used in previous examples, which defines new variables that will be available to the SPSM's
several output facilities. Following this are examples of the source code changes that the
user has to make, and the descriptions of the compilation and validation of the resulting
model.

Overview for Adding Variables

In broadest outline, the key steps involved in adding new variables can be characterized as
follows.

1. Decide what new dependent variables are needed, choose appropriate names and
descriptions for them, and copy all of the relevant header and source code files over to
the subdirectory in which the new model will be built.

2. Make the relevant changes to the project environment (identifying all of the appropriate
source code files associated with the new dependent variables), and update Adrv.c
(providing documentary text strings).

3. Make the necessary changes to vsu.h and vsdu.c to render the new dependent variables
accessible throughout the SPSM model that will be created.

4. Supply new source code (in new or existing modules) to calculate the values for the new
dependent variables.

5. Compile the new model and validate it for correctness.

The preceding points are, of course, only an overview. Section 2 and the recapitulation
section of Section 6 provide a much fuller description of the model creation process as a
whole. This chapter, however, concentrates on those details especially relevant for the
addition of new dependent variables.

Programmer’s Guide Page 87
SPSD/M Version 6.0 11/19/97

Dependent Variable Types and Characteristics

The SPSM provides users with the capacity to create three different types of user-defined
dependent variables. All three types are scalars. The SPSM does not provide for vectors or
matrices of dependent variables. The specific types are as follows:

1. Numeric analysis -- This is the most common type of user-defined dependent variable. It
consists of a numeric (float) value that will be used as an analysis variable, e.g. tabulated
as a cell entry in the control parameter XTSPEC. A good example of this type of
dependent variable is the value of some new income-tested benefit that will be payable to
a family.

2. Integer analysis -- Less frequently used, this type of dependent variable consists of an
integer (int) value that will be used as an analysis variable. The primary use of this type
of variable is export in SAS format, where an integer variable takes up fewer characters
than a numeric analysis variable. Examples of this type of variable might be the
minimum and maximum numbers of weeks that a family could be without earnings
income during the year (as deduced from the labour-force variables for the family
members, e.g. weeks without work and looking for work).

3. Integer class -- this type of dependent variable consists of an integer (int) value that will
be used as a classificatory variable, e.g. to define the categories for a classificatory
variable in the XTSPEC parameter. This type of variable is particularly relevant when its
values represent purely nominal categories, e.g. a classification of families by types.

A few other characteristics of user-defined dependent variables, individually and collectively,
will be of considerable importance to the glass box user --

First, all user-defined dependent variables are defined at the level of the individual. Thus, the
user must take care to assign values to "appropriate" individuals so that when the unit of
analysis is at a higher level, say the census family level, the SPSM's roll-up algorithms will
yield the desired results.

Second, the space allocated allocates for such variables can handle approximately 50
variables. Violation of this limit can result in obscure errors that are difficult to track down.

The vardef and stradd Functions and their Arguments

The vardef and stradd functions are absolutely critical to the capacity to create new user-
defined variables and have them used properly throughout the rest of the SPSM. It is only
via the information communicated via calls to these functions that the rest of the SPSM
learns about the nature of the new variables and the documentary text that goes with them.
This section documents first the vardef function, and then the stradd function.

Page 88 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

The vardef function plays the same general role for user-defined variables that pmaddent
does for user-defined parameters. There will be one vardef call for each variable that the
user defines. Vardef defines the characteristics of the new variable so that the SPSM can link
it into the same variables framework used by the SPSD/M's own database, analytic and
classificatory variables. The vardef calls are always made in the vsdu.c function. The
following short description of the function's arguments appears at about line 100 of that
function --

* vardef("_uvew", <= the name of the variable,
quoted, with '_'
* IN, <= home structure (leave at 'IN')
* im.uv.ew, <= variable location (always in
im.uv)
* C_INT, <= C-type (C_INT or C_NUM)
* V_CLAS <= type of variable (V_CLAS or
V_ANAL)
*);

We'll describe the nature of the vardef arguments one at a time, in order. Subsequent
sections in this chapter provide specific illustrations for the use of both the vardef and stradd
functions.

Vardef "Name" Argument (and Definition of Variable "Stem" Name):

The first argument gives the variable's name as a double-quoted text string. The user should
always include an underscore as the first character after the initial double quote, and then the
characters "uv" as the second and third characters to indicate the "user variable" status. The
remainder of the name, i.e. everything after the "_uv" prefix, is known as the variable's stem
name. Generally speaking, this stem portion should be as informative and mnemonic as is
feasible.

For variables that will not be exported outside the SPSM itself, there is no real limit on the
number of characters in the stem name. However, for variables that are to be exported to
other packages, certain limitations may apply. For example, if the created variable is to be
exported to SAS, then the stem must not exceed six characters. If it is to be exported to the
MAPSIT EXAMINE module, then the stem portion should not exceed ten characters.

Vardef "Home Structure" Argument:

The second argument indicates the structure in which the new variable resides. Because
user-defined variables are ALWAYS defined at the individual level, the user should always
enter this argument as an (unquoted) 'IN'.

Vardef "Variable Location" Argument:

The third argument indicates the location of the variable (as regards the SPSM's data

Programmer’s Guide Page 89
SPSD/M Version 6.0 11/19/97

structures). The location is specified via three components, two of which are invariant.
Specifically, the first portion of the location is ALWAYS equal to "im.uv" (but unquoted).
This information tells the SPSM that the new variable is inside the user variable (uv) portion
of the im structure (individual level model variables). The final portion of the location
specification is the new variable's stem name, as defined above for the first argument.

Vardef "C-Type" Argument (C_NUM & C_INT):

The fourth argument specifies the C language type of the variable. It will take on one of two
values. Numerical analysis variables will use the entry "C_NUM" (unquoted). Integer
analysis and integer classification variables will use the value "C_INT" (unquoted).

Vardef "Usage" (Type) Argument (V_ANAL & V_:

The fifth and last argument specifies whether the SPSM is to treat the variable as an analysis
variable (tabulatable) or a classificatory variable (categorical). It will take on one of two
values. Both numerical and integer analysis variables will use the entry "V_ANAL"
(unquoted). Integer classification variables will use the "V_CLAS" (unquoted) form.Clas)

The combination of the fourth and fifth entries tells the SPSM how many bytes of memory it
needs to allocate for the variables, an important consideration given the limit of 200 bytes for
all user-defined variables. As noted above, the requirements are six bytes for a numerical
analysis variable, three bytes for an integer analysis variable, and one byte for an integer
classification variable.

We have already seen simple applications of the stradd function when we discussed the
documentation of user parameters in Sections 6 and 7. The same function serves a similar
purpose here, but in a more sophisticated fashion, since it is used to define both a short
description of the user variables themselves, but also, in the special case of integer analysis
and integer classification variables, the range of values and the textual labels associated with
particular values of the variables. The vsdu.c file contains, at about line 110, capsule
documentation for both the variable description and value label uses.
* stradd("uvew", <= the name of the variable, quoted
* "Region" <= a printing label for the
variable
*);
** stradd("ew", <= the stem name of the variable,
quoted
* "\tEast\tWest" <= string containing a label for
each valid
*); level, preceded by a tab '\t'
character.

As with the vardef function above, we shall take up the arguments in sequence. A
complicating factor here is that the NUMBER OF stradd INVOCATIONS and structure of
the stradd arguments depends on the type of variable for which stradd is being used.

Page 90 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

However, the number of stradd arguments is always constant at two. Favoring clarity over
brevity, we shall describe each of the three types (numeric analysis, integer analysis, and
integer classification) individually.

Stradd Calls for Numeric Analysis Variables:

Numerical analysis variables require only a single invocation of the stradd function. The first
argument specifies the variable name. It is identical to that used for the first vardef
argument, EXCEPT THAT THE LEADING UNDERSCORE PRESENT THERE IS
OMITTED HERE.

The second argument for a numerical analysis variable is the (quoted) string that the SPSM
will use when it needs to print a description of the variable.

For example --

stradd("uvnewben", "New Hypothetical Benefit");

Stradd Calls for Integer Analysis Variables:

Integer analysis variable additions require two separate stradd invocations. The first
invocation defines the label for the variable as a whole. The second invocation defines, via a
set of labels for the individual integer values, the range of values for the variable.

In the first (variable label) invocation, the first argument specifies the variable name. It is
identical to that used for the first vardef argument, EXCEPT THAT THE LEADING
UNDERSCORE PRESENT THERE IS OMITTED HERE.

In the first (variable label) invocation, the second argument is the (quoted) string that the
SPSM will use when it requires a description of the variable as a whole, e.g. in documenting
a table.

In the second (value labels) invocation, the first argument is the STEM NAME for the
variable; neither the underscore nor the leading “uv” string should be present.

In the second (value labels) invocation, the second argument is a quoted string that tells the
SPSM how many categories are relevant. The string consists of the repeated pattern ‘tx’
where x always varies from zero to “one minus the total number of categories”. Thus, for a
variable having four categories, the second argument would take the form -- “t0\t1\t2\t3”.
The slash-t notation is the C language’s standard way of denoting a tab character.

For example --

stradd("uvnputpp", "Number persons unemployed 2+ periods");
stradd("nputpp", "\t0\t1\t2\t3\t4");

Stradd Calls for Integer Classification Variables:

Programmer’s Guide Page 91
SPSD/M Version 6.0 11/19/97

The stradd invocations for integer classification variables are identical to those for integer
analysis variables WITH ONE CRITICAL EXCEPTION. In the second (value labels)
invocation, the second argument is a quoted string that provides the textual labels for the
several categories of the variable. In essence, the several, user-supplied, labels correspond to
the integers 0 .. "categories minus 1" entries of the second stradd invocation for an integer
analysis variable. Thus, for example, the labels for ”region" documentation might look as
follows:

\tAtlantic\tQuebec\tOntario\tPrairies\tBritish Columbia

These labels, which may contain embedded blanks (since the tab characters serve as
delimiters) would appear as labels when the user employed the SPSM's crosstabulation
capacity or exported the new variable to a SAS file.

For example --

stradd("uvfamcat", "Nominal Family Income Category");
stradd("famcat", "\tVery Poor\tPoor\tNear Poor\tNon-
Poor\tRich");

Beyond the descriptive definitions of vardef and stradd arguments, appearing about lines
100-115 of the vsdu.c function, vsdu.c also contains template combinations of the vardef
and stradd calls for all three types of new variables. In typical SPSM fashion, users will
normally find it convenient to modify copies of these templates when defining new variables.
These templates appear at about lines 125-145 of vsdu.c.

* ------------------
* A numeric variable:
* ------------------
vardef("_xxxxxxxx", IN, im.uv.xxxxxxxx, C_NUM, V_ANAL);
stradd("xxxxxxxx", "Variable label");

* --
* An integer analysis variable, with values 0 through 4:
* --
vardef("_yyxxxxxx", IN, im.uv.yyxxxxxx, C_INT, V_ANAL);
stradd("yyxxxxxx", "Variable label");
stradd("xxxxxx", "\t0\t1\t2\t3\t4");
* ---
* An integer class variable, with values 0 through 4:
* ---
vardef("_yyxxxxxx", IN, im.uv.yyxxxxxx, C_INT, V_CLAS);
stradd("yyxxxxxx", "Variable label");
stradd("xxxxxx", "\tLABEL0\tLABEL1\tLABEL2\tLABEL3\tLABEL4");

The Family Allowance Supplement Example Extended

Although the preceding characterization of adding user-defined variables is complete from a
definitional perspective, it is useful to see how the several steps look in practice. In this

Page 92 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

section we summarize the concrete example that the remaining sections will flesh out. In
essence the example is a further extension of the Family Allowance exploration introduced in
Quick Start and subsequently enhanced with the addition of user-defined parameters.

Our explicit objective here is to provide a worked example that gives concrete illustrations of
all three types of user-defined variables, and to do so without burdening the reader with the
overhead that would inevitably be associated with a completely new example. In the service
of this objective we have not hesitated to sacrifice some realism (as to institutional
motivation and practice) in favor of a clean, specific example.

We extend the Family Allowance supplement example by adding the following three user-
defined variables:

1. A numeric analysis variable: the new variable is the gross amount of additional Family
Allowance benefit received; we'll name it "uvfasup" (user variable, Family Allowance
supplement). We shall assign this variable to the parent who reports the Family
Allowance benefit for tax purposes.

2. An integer analysis variable: the new variable is the number of children in respect of
whom the supplementary benefit is payable. We'll name the variable "uvncfasup" (user
variable, number of children for Family Allowance supplement). We shall also assign
this variable to the person reporting the FA for tax purposes. This type of variable finds a
major use when exported in the SAS format because it takes up less space than a numeric
analysis variable. The variable would also be useful as a tabulated variable to count the
numbers of these children.

3. An integer class variable: the new variable categorizes the family by the number of
children in respect of whom the supplement is payable; we'll name the variable
"uvfclfasup" (user variable, family classification for Family Allowance supplement). We
shall use it primarily as a categorical variable for tables designed to validate our
extensions to the FA supplement code. We shall assign this variable to the nominal head
of the family. Note that this class variable is very similar to the integer analysis variable,
but can be used directly as a row or column variable in a crosstabulation, whereas the
integer analysis variable could not.

As we proceed to the actual changes and coding needed to implement these new user-defined
variables, we assume that the relevant files (Adrv.c, vsu.h, vsdu.c, Afa.c, SPSM.mak,
SPSM.mdp, etc) have been COPIED over to an appropriate new subdirectory; here we'll
assume that it is named GLASSEX3, this being our third worked glass box example.

Changes to project files and Adrv.c

We begin by including all the relevant files into the project and by changing the name of the
executable file in Project:Setting:Links to glassex3.exe.

The changes to adrv.c are simple, consisting entirely of (a) updating the short textual

Programmer’s Guide Page 93
SPSD/M Version 6.0 11/19/97

descriptions for the model and (b) indicating that Afa (rather than fa) is to be used for Family
Allowance calculations.

Of the two descriptions, the SPSM displays the first on its opening screen, to tell the user
about the nature of the alternative system. The SPSM outputs the second description as part
of the '.CPR' (control parameter) documentation that it produces when it runs the model.
Recall that the positioning of this text (in the screen and in the output file) prevents the use of
descriptions longer than 20 characters. After adding the new descriptions, the relevant
portion of adrv.c (about line 35) appears as follows:

================ GLOBAL VARIABLE DEFINITIONS =================== */

/*global*/ char ALTNAME[IDSIZE+1] = "FA Suppl New Vars Ex";
/* Give global string describing version of this module */
/*global*/ char FAR Tdrv[] = "FA Suppl New Vars Ex"
#ifdef MSC
" [" __TIMESTAMP__ "]"
#endif
;

The altered line (about line 106) to indicate that the alternate driver uses Afa.c, rather than
fa.c, appears as --
Afa(hh); /* compute family allowances

Finally, compile a Debug version in Build:Start:Debug. The required links and compilations
will be identified.

Changes to vsu.h

The file vsu.h serves to define the C language structure that holds the user-defined variables.
The relevant portion of this file, copied from the SPSM\GLASS subdirectory, appears as
follows:

typedef struct uv_ {
 NUMBER uvdummy; /* dummy variable */
} uv_;

We replace the uvdummy line by three lines that define our new variables, uvifasup,
uvncfasup & uvfclfasup. These new lines indicate the types of the new variables. After the
changes, the new portion of vsu.h appears as follows:

typedef struct uv_ {
 NUMBER uvfasup; /* Family Allowance supplement
payable */
 int uvncfasup; /* Number Children for FA supplement
*/

Page 94 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

 int uvfclfasup; /* Family Class (Qualifying Children)
for FA suppl */
} uv_;

Note the naming conventions used here. The typedef statement requires that the variables be
prefaced with the uv prefix, but does NOT employ the leading underscore used in the vardef
statements that appear later in the changes to vsdu.c.

One need not always modify, as we have done here, the GLASS version of vsu.h. If an
already existing (user-defined) version of vsu.h contains user-defined variables that are to be
retained, simply make a copy of that existing file and modify it as appropriate. Recall,
however, that there is an overall limit of 200 bytes per individual for the user-defined
variables.

Changes to vsdu.c

The necessary changes to the copy of vsdu.c consist of the vardef and stradd invocations
that allow the SPSM to access the new variables and their documentation. Given the
simplicity of these invocations, we use the example templates from the beginning of the file.
We shall make these invocations as the end of the vsdu.c file, just before the final
'DEBUG_OFF("vsdu");' statement. The additions appear as follows:
/* uvfasup: (Analysis) Family Allowance supplement payable */
 vardef("_uvfasup", IN, im.uv.uvfasup, C_NUM, V_ANAL);
 stradd("uvfasup", "Family Allowance Supplement");
/* uvncfasup: (Analysis) number of children for whom supplement paid */
 vardef("_uvncfasup", IN, im.uv.uvncfasup, C_INT, V_ANAL);
 stradd("uvncfasup", "# Children for FA Supplement");
 stradd("ncfasup", "\t0\t1\t2\t3\t4\t5\t6\t7");
/* uvfclfasup: (Class) Family class by number of children for FA suppl. */
 vardef("_uvfclfasup", IN, im.uv.uvfclfasup, C_INT, V_CLAS);
 stradd("uvfclfasup", "Family Class for FA Supplement");
 stradd("fclfasup", "\t0 Ch\t1 Ch\t2 Ch\t3 Ch\t4 Ch \t5 Ch\t6 Ch\t7
Ch");

Notice the second stradd call for each of the two integer variables, and the omission of the uv
prefix in that (second) call that defines the number of cases (integer analysis variable) or the
category labels (integer classification variable).

Changes to Afa.c (Or, more generally, any new substantive source
code)

The preceding tasks have been preliminary to our central task, revision of Afa.c to reflect
the new calculation of Family Allowances, inclusive of the possible supplement to the
family. We are using Afa.c here, but, more generally, at this stage, the user is ready to
write/modify the source code necessary to make the desired changes to the calculation of
SPSM variables, whatever modules those changes may involve. We'll illustrate the changes
for our Family Allowances example one portion at a time, showing for each portion what the

Programmer’s Guide Page 95
SPSD/M Version 6.0 11/19/97

unmodified Afa.c file looks like, and then how we have changed it to add our desired
variables. References involving line numbers refer to the "original" version of Afa.c found in
the SPSM\GLASS subdirectory.

Identifying String

Documentation is important. As we proceed through the Afa.c file for our changes, we first
update the description. Where the GLASS version of Afa.c provides (at about line 39) the
placeholder description --

/*global*/ char FAR Tfa[] = "Untitled"

we substitute a more informative description:

/*global*/ char FAR Tfa[] = "New Vars Version"

Local Variables

Intermediate (local) variables can be very useful. Where the GLASS version of Afa.c
defines and initializes its local variables (about line 131), we add the new lines shown just
below. The initialization of NUMBER/float variables with ZERO provides insurance against
an obscure bug that shows up only on a few nonstandard machines.

/* user-defined intermediate (local) variables in support of
glass box example 3 (user-defined SPSM variables) [using the
"stem names" for two of the SPSM variables being created] */
 NUMBER fasup = ZERO; /* amount of new FA supplement */
 int ncfasup; /* number of children for whom
supplement payable */

Calculate and Assign the New Model Variables

We are now ready to calculate the new variables, and to assign them to the appropriate user-
defined SPSM variables. For our Afa.c example, we seek to calculate the amount of the
possible supplement. We do so immediately after taxable and federal Family Allowances
have been defined in the SPSM\GLASS version of Afa.c, but before those values have been
assigned as outputs from the Afa routine. This condition occurs at about line 358. The
relevant original source code appears as --

else {
DEBUG1("%s standard FA calculation\n");
tfa = nch * MP.STDFA; /* taxable family allowances */
ffa = tfa; /* federal part of family allowances*/

}

DEBUG3("%s tfa=%.2f, ffa=%.2f\n", tfa, ffa);

Page 96 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

In the new code that we add, we are careful to make sure that an appropriate value is
calculated for our intermediate variables, no matter what the nuclear family looks like, and
that the taxable and federal Family Allowance variables are updated if the supplement is
relevant. Notice that we are retaining the parametric structure developed in Section 6 of this
guide.

/* Conditionally apply the Family Allowance bonus
for the
* "FASUPFECth" and subsequent children <18 in the
unit,
* including any necessary updates to taxable and
federal FA */

 if ((MP.UM.FASUPFLAG == 1) && (nch >=
MP.UM.FASUPFEC)) {

 ncfasup = (nch-MP.UM.FASUPFEC+1);
 fasup = ncfasup * MP.UM.FASUPPC;
 tfa += fasup;
 ffa += fasup;
}
else {
 ncfasup = 0;
 fasup = ZERO;
}

In our FA supplement example it makes sense to assign the family classification value to the
nuclear family head. We do so where (about line 368) the SPSM\GLASS version of Afa.c
assigns other values to the eldest member. That original Afa.c code appears as --

/**
* Associate the taxable amount of family allowances, and the
number of
* family allowance children, with the eldest in the nuclear
family.
* The function txinet will reassign to the spouse if
necessary.
**/

 nf->nfineld->im.imtfa = tfa;
 nf->nfineld->im.imqtfa = qtfa;
 nf->nfineld->im.imnfach = (NUMBER) nch;

After our addition, the modified code reads --

/**
 * Associate the taxable amount of family allowances, and the
number of

Programmer’s Guide Page 97
SPSD/M Version 6.0 11/19/97

 * family allowance children, with the eldest in the nuclear
family.
 * The function txinet will reassign to the spouse if
necessary.
 **/
 nf->nfineld->im.imtfa = tfa;
 nf->nfineld->im.imqtfa = qtfa;
 nf->nfineld->im.imnfach = (NUMBER) nch;
 /* assign family classification by number of supplement
children to the
 nuclear family head */
 nf->nfin->im.uv.uvfclfasup = ncfasup;

Finally, of course, we need to make sure that the variables for the supplement and the number
of children supplemented are assigned to the mother if feasible (or in the absence of the
mother to the head of the nuclear family). The relevant original SPSM\GLASS Afa.c code
appears as follows --

/* assign FA to mother if present */
 if (nf->nfspoflg && (nf->nfinspo->id.idsex == FEMALE)) {
 DEBUG1("%s spouse is the mother\n");
 in = nf->nfinspo;
 }

 else {
 DEBUG1("%s head receives FA\n");
 in = nf->nfineld;
 }

Our changes to this are minimal. We add only two new lines to assign the amount of the
supplement and the number of supplemented children. Note that we are assigning the values
of the intermediate variables to the (fully qualified) user-defined variables that we defined
via vsu.h and vsdu.c above. The modified version of the source code reads as follows:

/* assign FA and the supplement, and # Fa supplement children
to the mother when she is present */
 if (nf->nfspoflg && (nf->nfinspo->id.idsex == FEMALE)) {
 DEBUG1("%s spouse is the mother\n");
 in = nf->nfinspo;
 }
 else {
 DEBUG1("%s head receives FA\n");
 in = nf->nfineld;
 }

 in->im.imffa = ffa;
 in->im.impfa = pfa;

Page 98 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

 in->im.imqaafa = qaafa; /* Quebec Availiability
Supplement */
 in->im.imqnbfa = qnbfa; /* Quebec Newborn Allowance */
 in->im.uv.uvfasup = fasup; /* assign new supplement
*/
 in->im.uv.uvncfasup = ncfasup; /* assign # of children */

Compilation

We should debug the model and test if it work properly and then compile the new model
GLASSEX3.EXE.

Validation

Once the compilation is complete and the GLASSEX3.EXE file exists, the user can validate it
to check whether the logic is performing as was intended. Since validation was illustrated in
some length in Section 6, we include here only one illustrative set of crosstabulation outputs.
In everyday operation, the user will want to ensure the correctness of the model before
proceeding on to make production runs of the desired tables.

The mini-validation here consists of one set of tables for a single parameter configuration. It
uses the 1986 version of the SPSM, and models the tax and transfer system existing in 1986.
The user sets up the control parameter file to use C:\SPSD\BA86.MPR as the base system
model file. The variant system, the one using the new logic for Family Allowances, is here
named GLASSX3A.MPR. It calls for a subsidy of $120 per year for the second and subsequent
children aged 0 to 17 in the nuclear family. The relevant XTSPEC appears as follows:
XTSPEC
 NF: uvfclfasup+ *
 {units,
 imffa: L="New Family Allowance",
 _imffa: L="Base Family Allowance",
 uvfasup: L="New FA Supplement"};
 NF: nfnkids+ *
 {units,
 imffa: L="New Family Allowance",
 _imffa: L="Base Family Allowance",
 imffa-_imffa: L="Family Allowance Increase"};
 NF: nftype+ *
 {uvfasup: L="New FA Supplement",
 immdisp-_immdisp: L="Disposable Income
Increase"}

The first table specification illustrates the use of user-defined variables as analysis and
classification variables. Note that the usage is just the same as if the variables had been part
of the original SPSM, even to the ability to use the "+" qualifier to indicate the aggregation
across a categorical variable's dimension.

Programmer’s Guide Page 99
SPSD/M Version 6.0 11/19/97

The similarity between the first two tables is intentional; it shows that one can use the created
variables to display information that is less conveniently available from SPSM variables.
First, for example, the user does not have to take a difference between two variables to see
the pre-tax impact of the FA supplement. Second, using the uvfaclfasup variable rather than
the nfnkids variable allows the user to collapse across all those nuclear family units that have
no children. The third table then confirms that the supplement is being taken into account by
the rest of the tax/transfer system, so that, in aggregate, the families' gains in income are less
than the gross amounts of supplement awarded. The tables that result, edited very slightly as
to

SPSD/M (Database 4.00)
Wed Sep 27 08:34:51 1989
Base Description: 1986 actual
[Driver: Version 4.00: 82-89, File: c:\spsd\ba86.mpr]
Variant Description: 1986 actual
[Driver: FA Suppl New Vars Ex, File: glassx3a.mpr]
Sample: 0.0495
AGENAME='Standard adjustment'

Table 1U: Selected Quantities for Nuclear Families by Family
Class for FA Supplement
+--------------------+-----------+-----------+-----------+----
--- ----+
|Family Class for FA |Unit Count |New Family |Base Family|
New FA |
|Supplement | (000) | Allowance | Allowance |
Supplement |
| | | (M) | (M) |
(M) |
+--------------------+-----------+-----------+-----------+----
--------+
|0 Ch | 10621.5| 564.1| 564.1|
0.0|
|1 Ch | 1196.5| 1020.3| 876.7|
143.6|
|2 Ch | 521.8| 758.2| 633.0|
125.2|
|3 Ch | 81.1| 160.3| 131.1|
29.2|
|4 Ch | 14.6| 34.6| 27.6|
7.0|
|5 Ch | 1.5| 4.3| 3.4|
0.9|
|6 Ch | 0.0| 0.0| 0.0|
0.0|
|7 Ch | 0.0| 0.0| 0.0|
0.0|

Page 100 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

+--------------------+-----------+-----------+-----------+----
--------+
|All | 12437.1| 2541.7| 2235.8|
305.9|
+--------------------+-----------+-----------+-----------+----
--------+

Table 2U: Selected Quantities for Nuclear Families by Number
of children in nuclear family

+-------------------+------------+------------+------------+--
--- -------+
|Number of children | Unit Count | New Family |Base Family |
Family |
|in nuclear family | (000) | Allowance | Allowance |
Allowance |
| | | (M) | (M)
|Increase (M)|
+-------------------+------------+------------+------------+--
----------+
|0 | 9042.2| 0.0| 0.0|
0.0|
|1 | 1579.4| 564.1| 564.1|
0.0|
|2 | 1196.5| 1020.3| 876.7|
143.6|
|3 | 521.8| 758.2| 633.0|
125.2|
|4 | 81.1| 160.3| 131.1|
29.2|
|5 | 14.6| 34.6| 27.6|
7.0|
|6 | 1.5| 4.3| 3.4|
0.9|
|7 | 0.0| 0.0| 0.0|
0.0|
|8 | 0.0| 0.0| 0.0|
0.0|
|9 | 0.0| 0.0| 0.0|
0.0|
+-------------------+------------+------------+------------+--
----------+

+-------------------+------------+------------+------------+--
----------+

Programmer’s Guide Page 101
SPSD/M Version 6.0 11/19/97

Table 3U: Selected Quantities for Nuclear Families by Nuclear
family type
+-----------------------+----------+----------+
Nuclear family type	New FA	Disposable
	Supplement	Income
	(M)	Increase
		(M)
+-----------------------+----------+----------+		
With Kids, 1 Adult	22.2	17.8
With Kids, 2+ Adult	283.7	179.3
With Elderly, 1 Adult	0.0	0.0
With Elderly, 2+ Adult	0.0	0.0
Other, 1 Adult	0.0	0.0
Other, 2+ Adult	0.0	0.0
+-----------------------+----------+----------+		
All	305.9	197.0
+-----------------------+----------+----------+

Note that the first and second tables are completely consistent, except that the first is slightly
more compact (with fewer lines), marginally better labeled, and a bit easier to specify in
XTSPEC. In terms of substance, however, the two are comparable; the rows from "1 Ch" to
"7 Ch" in the first table contain exactly the same information as the "2" to "8" rows of the
second table. This sameness of content is just what we would expect for an option that
subsidizes the second and subsequent children. The first and second rows of the second
table, tabulating families not eligible for any supplement, collapse into a single line in the
first table.

The third table shows that some of the Family Allowance is being recovered, since the
increment in disposable income is less than the full amount of the new supplement. Further,
the fraction "recovered" via the reactions of other programs in the tax/transfer system is, as
expected, greater for two-parent units than for single-parent units.

Once the validation is complete, the user will proceed to the production of the desired tables
and other outputs.

Summary/Conclusions

We summarize this chapter's key points by providing a checklist of the main items required
to add new user-defined variables to an SPSM model.

1. Plan the desired changes "on paper”. Choose the new variable names and lay out the
logic by which they will be derived. Ascertain which specific substantive source code
files will be affected (e.g. Afa.c). Choose a subdirectory for the new model, creating it if
necessary.

2. Copy over the relevant files to the subdirectory where the work will be done.

Page 102 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

• The files SPSM.mak, SPSM.mdp, Adrv.c, vsu.h, and vsdu.c will always be
needed, along with the relevant substantive files, e.g. the Afa.c file of our example.

• The files mpu.h and ampd.c may also be needed depending on whether parameters
are to be added at the same time.

3. Update project and change the name of the output file.

4. Update Adrv.c.

• Insert appropriate short descriptions for the two documentary string arguments
(ALTNAME and Tdrv).

• Change the function calls to refer to the alternate versions of the tax/transfer
calculation functions, e.g. Afa(hh) rather than fa(hh).

5. Update vsu.h. Inside the 'uv_' structure, indicate the types and names of the new user-
defined variables. Remember to use the 'uv' prefix, but to omit any leading underscore.

6. Update vsdu.c.

• For each new variable, provide a vardef function call to define the nature of the
variable to the SPSM.

• Also for each new user-defined variable, invoke stradd to provide a variable
description (text string) for the variable.

• For each integer variable, analysis or classificatory, invoke stradd a second time
(using just the stem name) to provide a list of labels for the integer values of the
variable. Remember that for the analysis variables these only indicate the number of
categories (from 0 to n), while for integer classification user-defined variables, the
labels are text of the user's choosing.

7. Make the necessary changes to the substantive tax/transfer routines. Consider using
intermediate variables to simplify things. Be careful to perform appropriate
initializations and to assign the derived values to an appropriate individual.

8. Compile the new model. Don't forget to validate it before using it for any serious
production work.

Programmer’s Guide Page 103
SPSD/M Version 6.0 11/19/97

Changing Base and Variant Data Variables

This chapter describes how users can, when appropriate, change values in the SPSD/M
database for the analysis of policy options. Such changes stand in contrast to the changes in
model logic, parameters and dependent variables described in chapters , and . Here, we are
looking at changes to the data used as input by the tax/transfer algorithms rather than to the
logic of those algorithms. The kinds of changes discussed here are temporary. They affect
the values "seen" by the user's model in a particular run, but they do not affect the values
actually stored in the SPSD itself.

Typically, but not exclusively, the user's database changes will involve dollar-denominated
amounts -- income or deduction items. The user might wish to grow or shrink income from a
particular source, e.g. shrinking interest income to reflect an assumption about falling interest
rates. However, the user might also want to alter a non-income variable, e.g. the school
attendance variable for older children in selected families.

For SPSM models that simulate two (base and variant) tax/transfer systems, an important
distinction is whether the changes affect the values as "seen" by the user's entire model, or by
just one of the (base or variant) systems within the model. This distinction is so important
that we have organized the structure of this chapter around it. Note, however, that the
distinction is irrelevant for models that simulate only a single tax/transfer system. The
procedures recommended here encourage the user to apply the single system approach
whenever it is feasible.

The following section describes how to make alterations to the data right after the SPSM has
read it for a model run. The changes discussed there will naturally affect ALL of the
tax/transfer systems appearing in the model. The section describes two subcases -- In the
first subcase, the user makes the data adjustments via the SPSM's built-in data-aging
facilities. In the second, more demanding, subcase, the user crafts his/her own aging logic.
This second subcase may involve the definition of new data-aging parameters for the model.
Section 1 indicates where and how to make "single system" changes, and provides a detailed
worked example.

The subsequent section, in contrast, describes changes that affect only a single system (base
or variant) within an SPSM run. It explains how the use of the SPSM's "results file" facility
can often turn this case into the simpler "single system" as described in earlier on. However,
for instances in which the results file approach is impossible or inconvenient, this section
also includes a description of where and how to make the necessary changes. It concludes
with a worked example of how to implement system-specific database adjustments.

Making Changes That Affect All Tax/Transfer Systems in a Model:

This section describes how to make data changes that affect all of the tax/transfer systems in
an SPSM model. It is appropriate both when the model has only a single tax/transfer system
and when the model has two systems, but the user wants the data changes to affect both of
them.

Page 104 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

This section first examines the SPSM's built-in data-aging facilities. Under this method, the
user assigns values to existing aging parameters via API (Aging Parameter Include) files.

This is followed by adding new data adjustment algorithms. For this type of aging, the user
will define the new aging logic in the adju.c file, and will probably define new parameters
via changes in the apu.h and apdu.c files. The user may also wish to define new dependent
variables to assist in model validation.

Lastly a detailed worked example for this second subcase is presented followed by a
checklist for making this “global” data aging type of change.

Typical Income and Population Growth Changes Via APR/API Files

The design of the SPSD/M already anticipates the user's typical data-aging needs. The \SPSD
subdirectory includes a number of files with names of the form BAxx_yy.APR that instruct the
SPSM to age the data, other than the underlying demographic structure, from year XX to
year YY. Thus, file BA86_88.APR contains the aging parameters to age the SPSD's non-
demographic variables from 1986 to 1988. The degree of detail for this aging is
considerable. Each of these files contains some 600 plus numeric parameters that are used by
the SPSM's built-in aging algorithms.

If the substance of the parameters in these files is acceptable to the user's needs, then the data
aging is straightforward. The user enters the name of the "most nearly correct" file as the
control parameter file's INPAPR parameter. Any necessary changes to these parameter
values are then implemented via an ".API" (Aging Parameter Include) file.

The SPSD/M Parameter Guide provides the authoritative description of these parameters.
However, it is useful here to characterize broadly the extensive control they provide.

Some parameters specify how imputed/converted incomes are to be treated (i.e. ignored or
either of two synthesis methods adopted). A large block of parameters governs the
"removal" of commodity taxes from family expenditures.

Another parameter block provides the low-income cutoffs for families. It permits the user to
specify a set of "poverty thresholds" for economic families, with the particular thresholds
varying by family size and the size of place of residence. Probably of most value to a typical
user, though, is the large set of growth factors for the SPSD's dollar-denominated data
variables: incomes, deductions, and expenditures. Virtually every such variable has its own
growth factor.

The SPSD/M also provides for convenient demographic aging of its underlying population.
The SPSD directory's ".WGT" files provide the user with the capacity to adjust the
population base throughout the interval 1984 to 1991.

Changes Involving New Logic For adju.c

Programmer’s Guide Page 105
SPSD/M Version 6.0 11/19/97

The flexibility provided by the aging parameter (".APR" & ".API") and population aging
(".WGT") files will often be sufficient for the user's needs. However, in some circumstances,
the user will wish or need to exercise more direct control over the data to be used for a
simulation. A few examples will indicate the scope of what is possible. The reader should
appreciate that the focus of these examples lies more in quickly conveying that scope than in
maintaining a strict, policy-oriented realism.

1. The user could increase the average education level by adjusting the "idedlev" variable
for selected individuals, perhaps resulting in a distribution of educational attainments that
falls in line with some exogenous forecast.

2. The user might wish to grow some income or transfer amount by a factor that is a
function of the unit's characteristics. E.g., based on the assumption that investors'
portfolios differ as a function of investor age and income, a user might be unwilling to
model the effect of an increase in interest rates by growing everyone's interest income
using the same proportion. Instead, a smaller factor might be applied to those individuals
felt likely to be conservative and/or to have portfolios that turn over more slowly. This
type of assumption would treat such families as being unable to benefit as quickly from
the higher interest rates.

3. A user might wish to model greater labour force participation by changing the array of
labour force variables relevant for individuals in the SPSD (weeks worked, paid-
employment earnings, unemployment insurance variables, etc.). Changes in such a wide
variety of related variables would only be done after considerable, comprehensive
planning.

4. At the extreme, a highly experienced, knowledgeable SPSM user could even alter the
household/family structure of the SPSD, modeling a baby boom by adding "synthetic
children" to appropriate families in the database.

The adju.c function, found in the \SPSM\GLASS subdirectory, is the means by which the user
can add new data aging logic to SPSM models. That adju.c function is called immediately
after the SPSM has read in each household, and before any transfers or memo variables have
been computed. The user can insert the logic for his/her own changes immediately after the
"adj(hh)" invocation that the SPSM uses to carry out its own data aging, i.e. its built-in
application of the income growth parameters specified in the relevant ".APR" and ".API"
files.

For the implementation of new data aging logic, users may need to define new intermediate
variables (including counters, pointer variables, etc.) and/or to define new, custom, data
aging parameters. The next subsection describes the general procedure for adding such new
data aging parameters, with the attendant specific changes developed in the worked example
that follows it.

Adding New Database Adjustment Parameters

Page 106 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

The addition of new user-defined database parameters closely parallels that of new model
parameters as described in Chapters 6 and 7. However, some minor differences are relevant.

(1) SPSM models have only a single aging parameter file (extension ".APR"); they may have
either one or two model parameter (extension ".MPR") files, depending on whether they
model one or two transfer systems. (2) Correspondingly, users supply the values of user-
defined aging parameters in ".API" (Aging Parameter Include) files that amend standard
".APR" files, rather than via ".MPI" (Model Parameter Include) files that amends standard
".MPR" files. (3) New aging parameters are defined in the apu.h (header) file rather than the
mpu.h header file used for model parameters. (4) Similarly, the function calls that make the
parameters available to the rest of the model occur in apdu.c, rather than the ampd.c file
used for model parameters. However, the structures of the relevant pmaddent and stradd
calls are exactly identical. Note, though, that certain arguments to these functions differ
between aging and model parameters. The worked example highlights these differences. (5)
Finally, the logic changes proper are defined in adju.c, rather than (typically) the individual
tax/transfer functions, such as Afa.c, that are relevant for changes to the transfer calculation
logic of a model.

We note in passing that the SPSM's control parameters follow a similar parallel structure,
but, even in glass box applications, users do not need to DEFINE new control parameters.
Instead, they simply alter the values of existing control parameters.

A Worked Example

Our hypothetical user, seeking to reflect a response to some change in federal income tax
treatment, wants to grow RRSP contributions in a model. S/he wants the growth to apply
either for a single system to be analyzed, or for both the base and variant systems in a
comparative model. However, this user is not willing to assume that everyone's contributions
grow by the same rate, and wants to simulate disproportionate growth as a function of
income. The main focus of the model is assumed to lie elsewhere in the tax/transfer system.
That is, the user has no special interest in the impacts of the RRSP increases themselves.
Rather, the user just wants "better" representations of the deduction amounts to be used in all
of the calculations for the relevant transfer system(s).

To make the example more precise, assume that the user wishes to grow existing
contributions by x% for each (whole or partial) slice of $10,000 of paid employment earnings
and self employment earnings over an initial base amount of $20,000. Thus, an individual
with $45,000 in earnings would see his/her RRSP contribution grown by a factor of (1.0 +
3x), where x is a new user-defined parameter. This growth will be IN ADDITION TO, AND
COMPOUNDED WITH, any growth induced via the standard SPSM growth parameter for
RRSP contributions, GFRRSP.

In a possibility NOT developed here, the user might also have induced the presence of RRSP
contributions for individuals who reported zero such contributions. The example developed
later in Section 9.2 provides an illustration of this sort of synthesis of dollar-denominated
amounts.

Programmer’s Guide Page 107
SPSD/M Version 6.0 11/19/97

In the remainder of this subsection, we track the individual steps involved in implementing
this conditional growth (beyond the growth implemented via the aging parameters GFRRSP).
We assume that the user has created the subdirectory GLASSEX4 for the purpose, and
"COPIED IN" all of the relevant files. (SPSM.mak,SPSM.mdp, apu.h, apdu.c, and
adju.c, plus the SPSM parameter files relevant for running the new model). In this
directory the user will create an ".API file to provide a value for the new user-defined
parameter.

Because the parameter addition process for aging parameters so closely parallels the
procedure described in chapters and for model parameters, our commentary on these
changes is kept to a minimum. The user is assumed to have modified the project to include
all the relevant files and changed the output name of the compilation to GLASSEX4.EXE

We include the aging documentation in the relevant string defined in adju.c as described
below.

(A) Changes to apu.h

We begin by defining a user-defined parameter for the user-defined RRSP contributions
growth factor, the "x" factor in the description above. As a mnemonic, UDGFRRSP (User-
Defined Growth Factor, RRSP contributions) seems appropriate. The SPSM provides for up
to 100 bytes worth of user-defined aging parameters, with this allocation independent of the
600 bytes allocated for any model parameters that the user may wish to define.

The additions to apu.h indicate the kind of parameter being defined. They go just before the
function prototype specifications, replacing the dummy user aging parameter UADUMMY in
the apu.h code.
typedef struct UA_ {
int UADUMMY; /* dummy entry */
 }
 UA_;

In our example, we replace the single UADUMMY line with --
NUMBER UDGFRRSP; /* User-defined growth factor for

RRSP Contr. */

(B) Changes to apdu.c

In the apdu.c function we add invocations to the pmaddent and stradd functions to give the
broader SPSM access to the value of the new parameter. The details of these functions
appear in chapters and . We make the additions at the end of the apdu.c function, right
before the statement --

DEBUG_OFF("apdu");

Our two invocations look as follows:
pmaddent(pap, "UDGFRRSP", (char *)&AP.UA.UDGFRRSP, NULL, P_SCL, C_NUM, 0, 0, NULL, 0);

and

Page 108 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

stradd("UDGFRRSP", "User-defined growth factor for RRSP
Contr.");

The explanatory text at the beginning of apdu.c function describes the AGING-ORIENTED
arguments for pmaddent and stradd. It also provides the templates for our utilization here (a
scalar parameter).

There are two critical differences in the pmaddent utilization as compared with the definition
of new model parameters. (1) The first argument is pap rather than pcp. (2) The third
argument

differs in that the new parameter resides in the UA (User Aging) structure within the SPSM's
AP (Aging Parameter) structure. This stands in contrast to the "&MP.UM" reference used
for user-defined model parameters (User Model within Model Parameters).

(C) Changes to adju.c

The first change updates the documentary text string relating to data aging. The original
SPSM\GLASS function defines this string at about line 43 as

/*global*/ char AGENAME[IDSIZE+1] = "Unnamed";

We modify it here to read --

/*global*/ char AGENAME[IDSIZE+1] = "RRSP Contr(Earnings)";

With the parameter value available throughout the SPSM, we make the source code additions
to implement the RRSP contribution growth. The first thing we need is some local variables
to aid us in stepping through the individuals in the household being analyzed and possibly
assigning modified RRSP contributions. Thus, we add the following four declarations to the
adju.c function, inserting them just after the function's opening brace.

NUMBER earn; /* total paid and self-employment earnings
*/
int group; /* number of UDGFRRSP multiples to use */
register P_in in; /* pointer to data for current person */
int ini; /* persons processed */

For the aging assignments themselves, the relevant location is near the very end of the
adju.c function, inside the code segment --

DEBUG_ON("adju");
/* Just call the standard adjustment algorithm */
adj(hh);
DEBUG_OFF("adju");

Our addition goes between the adj(hh); and DEBUG_OFF("adju"); statements.

/* Grow RRSP contributions as a function of total earnings */

for (ini=0, in=&hh->in[0]; ini<hh->hhnin; in++, ini++) {
if (in->id.idrrsp == (NUMBER)0.0) {

continue;

Programmer’s Guide Page 109
SPSD/M Version 6.0 11/19/97

}
earn = in->id.idiemp + in->id.idisefm + in->id.idisenf;
if (earn <= (NUMBER)20000.0) {

continue;
}
group = (int)(ONE+(earn-

(NUMBER)20000.0)/(NUMBER)10000.0);
in->id.idrrsp*=(ONE+AP.UA.UDGFRRSP*(float)group);

}

The new code, headed by an explanatory comment, breaks out into components that are
relatively straightforward.

(1) The control portion of the "for" statement has been copied, in its entirety, from the
memo1.c function (computing totals for individuals) in the SPSM\GLASS subdirectory. It
steps across the individuals in the household. The local variables defined earlier are used
in this stepping.

(2) Growing RRSP contributions multiplicatively is not meaningful if there are none to begin
with. Thus, the "if-continue" statement of the next three lines skips the remainder of the
four statements if the individual has no RRSP contributions. The typecast "NUMBER,"
here and later, indicates the user's

(3) intentions as regards variable types; it prevents compiler warnings.

(4) If RRSP contributions are positive, the next line calculates the individual's earnings from
paid employment and from farm or non-farm self-employment. If the total does not
exceed $20,000, then the remainder of the for statement is skipped; Another "if-continue"
statement performs this function.

(5) The assignment to the "group" variable computes the number of multiples of
UDGFRRSP relevant for the growth. The final statement in the body of the loop applies
the growth via a multiplicative assignment. These two statements will only be executed
if some growth is appropriate. The (int) and (NUMBER) casts they contain indicate the
user's explicit intentions as to variable type conversions; they serve to prevent
meaningless warnings during the compilation stage.

(D) Compiling the model enhancement

The model should be debugged before the compilation of GLASSEX4.EXE executable file.
Only then can the model be run for validation testing and production work.

(E) Providing a parameter value

For any particular run of the model, the user must provide a value for the new parameter, e.g.
a value of 0.01. Normally the user will do this "on the fly" during the run of the new model,
or via an ".API" (Aging Parameter Include) file that will modify the contents of the APR file
specified in the model's control file (".CPR"). In our example, the ".API" file would consist

Page 110 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

of the single line --

UDGFRRSP 0.01

if no existing aging parameters were to be modified.

(F) Validating the model

Before using the model at all seriously, the user would want to validate the model to be sure
it is performing as intended. Though we shall not carry out such a validation in detail here
for reasons of space, normally one would generate a few selected tables for different runs,
checking to ensure that the model produces the expected results. For example, inputting a
UDGFRRSP factor of zero should leave the total amount of the RRSP unchanged. Similarly,
a small value, say 0.01, should have a small or zero effect on low-income units, but should
have a larger effect on higher income units. A table, defined at the level of the individual,
that showed the increase in the RRSP contributions variable as a function of individual
earnings would go a long way toward deciding whether the algorithm yields the right amount
of RRSP increase. It could be generated by using a results file based on the unmodified
database, and comparing numbers of individuals and amounts of RRSP contributions to the
counterparts of these variables after the new RRSP contribution aging.

When one uses the 5% sample SPSD, together with the 1986 population, aging parameters,
and model parameters, one gets the following summary results for a UDGFRRSP factor of
0.01:

Before Growth After Growth Difference
RRSP Contributions (M$)
Federal Income Tax (M$)
Prov. Income Tax (M$)

11,134.3
41,173.3
24,190.6

11,329.2
41,118.0
24.160.5

194.9
55.3
30.1

Total RRSP contributions have risen by about 1.75%, and federal and provincial income
taxes have correspondingly dropped by somewhat less than the amount of new RRSP
contributions.

Checklist for Changing Database Variables "Globally"

(A) Check to see whether the SPSM's existing facilities are sufficient to implement the
desired data aging, so that no new logic is required.

Can the desired population aging be implemented via a selection among existing case weight
files? If so, then specify the relevant case weight file (".WGT" extension) via the INPWGT
(Input Weight) control parameter. Use a ".CPI" file to provide the desired INPWGT value,
or enter it on the fly in response to the model's prompts.

Can the adjustment of the data values be accomplished via changes to the values of the
SPSM's data aging parameters, in conjunction with the SPSM's normal data aging algorithm
(adj(hh))? If so, then provide the relevant aging parameter values to the SPSM via an ".API"
file. Specify it to the SPSM either interactively or via a batch file being used to coordinate
execution of the model.

Programmer’s Guide Page 111
SPSD/M Version 6.0 11/19/97

(B) If the desired adjustments to the data cannot be handled via the built-in data aging
procedures, then some new logic will be required. The steps for adding this new data aging
logic are as follows:

1. Copy all of the relevant files to a new directory established for the analysis. The files
\SPSM\GLASS\adju.c, SPSM.mak, and SPSM.mdp are always relevant. The files
\SPSM\GLASS apu.h and \SPSM\GLASS\apdu.c will be relevant when new aging
parameters are required.

2. Alter the project environment to include all the relevant files and change the name of the
compiled model. Alter apu.h if new data aging parameters are being defined.

3. Alter apdu.c if new data aging parameters are being defined. The changes will consist of
adding new pmaddent and stradd invocations so that the substance of the new parameters
is available throughout the SPSM. Debug the model.

4. Alter adju.c. First change the function's documentary text string, AGENAME[IDSIZE+1].
Then implement the new data aging logic. This step will often involve declaring useful
local variables and stepping through individuals or families in the household.

5. Compile and validate the model before using it for production runs. Parallel tabulations
of relevant individuals and amounts before and after the data aging alterations are
recommended.

6. Carry out production runs using the new, validated aging logic.

Making Changes That Affect Only the Base or Only the Variant

Building a model in which data aging differs between a base system and a variant system is
inherently more complicated than building one in which the two systems are treated
identically. When it is possible, the user should avoid such complication. The SPSM's
capacity for using "results files" (extension ".MRS") provides the major mechanism for
avoiding data aging that is system-conditioned.

The basic approach is to divide the problem into two parts, one for each system. Then,
within each such system, a single data aging algorithm applies, and the methods described
earlier in this chapter. The user first creates a results file for one of the two systems,
choosing the variables necessary for any system specific tabulations and for any comparisons
to be made. In creating this first system, the user applies the data aging assumptions relevant
to that system. Subsequently, the second system is simulated, with the appropriate,
alternative, data aging applied to it. The results file is read-in, in parallel with the processing
of the second system, so that the two systems, with their different data aging assumptions, are
available simultaneously for all required comparisons. Chapter 5 of the Introduction and
Overview Guide provides, in its first example, an illustrative application of results files.

The remainder of this section is relevant when the results file approach is somehow judged
inappropriate or inadequate to the task at hand. A few examples will illustrate such

Page 112 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

circumstances.

1. The user may place a high premium on having a model that is self-contained, and, once it
has been validated, relatively easy to use interactively.

2. The intended application of the model may involve sensitivity analysis that would require
several MRS files, with an inherent possibility that confusion might arise. It might
require, for example, investigation of the impact of altering the aging of one specific
variable, with a variety of other variables repeatedly changed in parallel between the base
and variant systems.

3. The intended application might involve complicated comparisons requiring large .MRS
files (or many of them simultaneously) when disk storage is at a premium.

We believe, however, that these kinds of situations, while occurring occasionally, will be the
exception rather than the rule. We encourage users to seek to avoid parallel system models
in which data aging differs across the two systems.

In broadest outline, the method for making system-specific data changes is similar to that
used to make changes to the TAX/TRANSFER LOGIC of a system. Any new system-
specific data aging parameters are added, via the mpu.h and mpdu.c files, as MODEL
parameters, and NOT as data adjustment parameters per se. As described below, the user
may wish to add new MODEL dependent variables to track the changes being made.
Although, if new parameters and dependent variables are not required, the procedure applies
equally to SPSM base and variant models, we shall explain the procedure in terms of the
more common situation of variant models.

The MODEL-oriented approach just summarized is mandated by the design of the SPSM.
Since there is only a single ".APR" file, its parameters inevitably affect the data aging for all
systems within a model. In contrast, changes made via ".MPI" files, and via the system-
specific Adrv.c and drv.c functions, apply only to a single designated tax/transfer system.
The user can take advantage of this system-specificity to implement system-specific data
adjustments.

The key to the system-specific data aging changes lies with alterations made to the Adrv.c (or
drv.c) file. In essence, the user "intercepts" a household's data record just before it is used by
the functions in that procedure, makes the desired changes, and later restores the data record
to its original state just before execution leaves that procedure. Section 9.2.2 explores these
Adrv.c-oriented steps in greater depth.

Implementing Changes in Adrv.c

The focus in this section rests almost exclusively with the details of changes made within
Adrv.c. Because of the similarity of system-specific data adjustments to the kinds of
tax/transfer system revisions described earlier in this Programmer's Guide, certain topics are
not repeated here. Specifically, users are expected to add any new parameters using the
methods documented in Sections 6 and 7; and they are expected to add any necessary new

Programmer’s Guide Page 113
SPSD/M Version 6.0 11/19/97

dependent variables using the procedures described in Section 8. For example, a user might
wish to add a new model variable to indicate whether the original database value for a
variable has been changed by the system-specific adjustments.

We'll take up the required changes in the order in which a reader would encounter them when
reading Adrv.c's source code. Later, in Section 9.2.3, a worked example provides a
concrete application of the changes.

 (A) Declare New Local (to Adrv.c) Variables

Recall that the general procedure requires the user to save the values of the variables to be
adjusted. The storage permits the values to be restored again before leaving Adrv.c. Thus,
the user must include in Adrv.c appropriate local declarations to provide the needed storage.
Typically, the variables to be adjusted will be defined at the level of the individual. Thus, the
new variables should typically be defined as vectors of length MAXIND. (MAXIND is the
maximum number of individuals in a family; version 4.0 of the SPSM sets it to 9.) The user
may also wish to define other local, working, variables. Normally, the user will declare these
variables just before the opening brace for the function, at about line 99 of the unmodified
version of Adrv.c

(B) Save the Values to Be Changed

As the very first thing within the executable portion of Adrv.c, the user should store away
the original values of the variables that will be changed. If this is done, none of the other
functions invoked inside Adrv.c can alter the value first or use the unaltered value.
Typically, the storage is accomplished via a "for" statement that steps across the individuals
in a household and copies them, one at a time, into the elements of a vector declared in step
(A). One of the elements in the bestiary provides the relevant stepping control. The user will
do this at about line 101 of the unmodified code, just after the statement -

DEBUG_ON("drv");

(C) Change the Database Values

Immediately after the values have been stored, and still before the household's pointer has
been passed to any of the tax/transfer or roll-up functions, the user should make the desired
changes to the values of the relevant variables. These changes will constitute the bulk of the
"real programming”, i.e. logic that cannot necessarily be conveniently adapted from
elsewhere in the SPSM.

(D) Use the Now Adjusted Values

This step is the easiest of all, since it requires no special effort on the part of the user. It
consists of RETAINING the calls to the several tax/transfer and memo functions. Since the
values of the relevant variables have already been adjusted at this point, all of those functions
will perform their calculations using the adjusted household.

(E) Replace the Original Values

Page 114 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

The final step consists of restoring the original values to the variables that were adjusted. It
will typically be done at about line 125 of the unmodified version of Adrv.c, just before
control passes out of the function, i.e. just before the statement --

DEBUG_OFF("drv");

Execution of the replacement is important from the perspective of the code's generality,
maintainability, and reusability. The user programs the changes without knowing whether
the system programmed will be a base or variant system. By putting things back the way
they were, the user can minimize the possibility of unwanted side effects elsewhere in the
model. Equally important, this procedure minimizes the potential for unwanted side effects
should the new adjustments be used again in another model.

A Worked Example

(A) The Substance to be Modeled

We begin with a description of the substantive logic used in the example. It will be obvious
that the same data-aging goals could have been achieved using the "avoidance" techniques
described above; however, since our documentary objective here is the illustration of system-
specific data aging techniques, we arbitrarily deem those avoidance techniques to be
"inappropriate" for our immediate purposes.

Suppose that some exogenous analysis relating to new income tax reporting requirements
suggests that individuals will be reporting more self-employment income. More specifically,
suppose that 5% of those individuals (1) not reporting more than $100.00 of self-employment
income (farm and non-farm combined) and (2) who are aged both over 25 and under 60 and
(3) who further have half a year or more without work and looking for work, really have non-
farm self-employment income that has not previously been reported, but now will be
reported. Moreover, suppose the amounts of "new" self-employment income for these
persons is believe to be distributed uniformly between zero and $4000 per year.

The user seeks to estimate the additional income taxes collectible from these persons and also
to assess the impact of this "discovered" income on reducing the poverty rate as measured
against the LICOs. To carry out this investigation the user plans, in the variant tax/transfer
system, to impute appropriate amounts of these new incomes to randomly selected persons
who satisfy the three conditions.

(B) Relevant New Parameters and Variables

Following recommended SPSM practices for avoiding hard-wired values in a model, the user
establishes the following new user-defined aging parameters:

Parameter Description: Value:
NSEFLAG
NSEAMT
NSEFRC
NSEWKS

"New Self-Employment Income Flag"
"New Self-Employment 'Trivial Amount'"
"New Self-Employment Fraction"
"New Self-Employment Weeks Requirement"

1
100.0
0.05
26

Programmer’s Guide Page 115
SPSD/M Version 6.0 11/19/97

NSEMINAGE
NSEMAXAGE
NSEMAXINC

"New Self-Employment Minimum Age"
"New Self-Employment Maximum Age"
"New Self-Employment Maximum New Income"

25
60
4000.0

Similarly, the user defines new variables that will permit convenient counts of the numbers
of eligible persons and of the number for whom new incomes are synthesized. It will also be
useful to have an additional new variable for the amounts of synthesized income.

Variable: Description:

uvnseef "Eligible New Self-Empl"
uvnsesf "Received New Self-Empl"
uvnseamt "New Self-Empl Amount"

(C) Setting Up for the Analysis

The user begins by creating a new subdirectory for the analysis, GLASSEX5. S/he copies in
the required template files: SPSM.mak, SPSM.mpd (to control the compilation), mpu.h and
Ampd.c (to make the new parameters available), vsu.h and vsdu.c (to make the new
variables available), and Adrv.c (to implement the new system-specific database
adjustments).

We look at the changes in the order in which the user would be encouraged to make them.

(D) Changes to project

All the relevant files should be include in the project and the name of the output model
changed to GLASSEX5.EXE.

 (E) Changes to mpu.h

The user provides declarations for all of the new parameters described above.

int NSEFLAG; /* New Self-Employment Income Flag */
NUMBER NSEAMT; /* New Self-Employment 'Trivial Amount' */
NUMBER NSEFRC; /* New Self-Employment Fraction */
NUMBER NSEWKS; /* New Self-Employment Weeks Requirement */
NUMBER NSEMINAGE; /* New Self-Employment Minimum Age */
NUMBER NSEMAXAGE; /* New Self-Employment Maximum Age */
NUMBER NSEMAXINC; /* New Self-Employment Maximum New Income
*/

(F) Changes to Ampd.c

The user alters the Ampd.c file by providing pmaddent and stradd invocations for all of the
new parameters. Appropriate new pmaddent calls would be as follows:
pmaddent(pcp, "NSEFLAG", (char *)&MP.UM.NSEFLAG, NULL, P_SCL, C_INT, E_FLAG, 0, NULL,
0);
pmaddent(pcp, "NSEAMT", (char *)&MP.UM.NSEAMT, NULL, P_SCL, C_NUM, 0, 0, NULL,
0);
pmaddent(pcp, "NSEFRC", (char *)&MP.UM.NSEFRC, NULL, P_SCL, C_NUM, E_FRCT, 0, NULL,
0);

Page 116 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

pmaddent(pcp, "NSEWKS", (char *)&MP.UM.NSEWKS, NULL, P_SCL, C_NUM, 0, 0, NULL,
0);
pmaddent(pcp, "NSEMINAGE", (char *)&MP.UM.NSEMINAGE, NULL, P_SCL, C_NUM, 0, 0, NULL,
0);
pmaddent(pcp, "NSEMAXAGE", (char *)&MP.UM.NSEMAXAGE, NULL, P_SCL, C_NUM, 0, 0, NULL,
0);
pmaddent(pcp, "NSEMAXINC", (char *)&MP.UM.NSEMAXINC, NULL, P_SCL, C_NUM, 0, 0, NULL,
0);

The associated stradd invocations would appear as follows:
stradd("NSEFLAG", "New Self-Employment Income Flag");
stradd("NSEAMT", "New Self-Employment 'Trivial Amount'");
stradd("NSEFRC", "New Self-Employment Fraction");
stradd("NSEWKS", "New Self-Employment Weeks Requirement");
stradd("NSEMINAGE", "New Self-Employment Minimum Age");
stradd("NSEMAXAGE", "New Self-Employment Maximum Age");
stradd("NSEMAXINC", "New Self-Employment Maximum New Income");

(G) Changes to vsu.h

In this file the user declares the new variables that will contribute to more convenient
validation and tabulation of the individuals for whom new income is considered or actually
synthesized.
int uvnseef; /* Eligible for New Self-Empl Synthesis */
int uvnsesf; /* Received New Self-Empl Income */
NUMBER uvnseamt; /* New Self-Empl Amount */

(H) Changes to vsdu.c

In vsdu.c the user invokes vardef and stradd to make the new variables available throughout
the new model. As indicated above, there are two classificatory variables to be used for
crosstabulation outputs, and a NUMBER float value for the amount of synthesized self-
employment income.
/* uvnseef: (Class) Flag: Individual eligible for NSE
synthesis? */
vardef("_uvnseef", IN, im.uv.uvnseef, C_INT, V_CLAS);
stradd("uvnseef", "Eligibility for Synth Self-Empl");
stradd("nseef", "\tNot Eligible\tEligible");

/* uvnsesf: (Class) Flag: Individual Got Synth. NSE? */
vardef("_uvnsesf", IN, im.uv.uvnsesf, C_INT, V_CLAS);
stradd("uvnsesf", "Synth Self-Empl Receipt");
stradd("nsesf", "\tNo Receipt\tReceipt");

/* uvnseamt: (Analysis) NUMBER: Amount of synthesized NSE */
vardef("_uvnseamt", IN, im.uv.uvnseamt, C_NUM, V_ANAL);
stradd("uvnseamt", "Synth Self-Empl Amount");

(I) Changes to Adrv.c

i) The changes begin with the declaration of new variables critical to the data adjustment

Programmer’s Guide Page 117
SPSD/M Version 6.0 11/19/97

process. We use standard SPSM notation for the pointer to an individual, and for the number
of persons processed (for the stopping rule within households). In addition, there is a vector
declared to hold the original values of the individuals' non-farm self-employment income.

register P_in in; /* pointer to data for current
person */
int ini; /* persons processed */
NUMBER orignfse[9]; /* original non-farm self-empl
income */

ii) The changes continue with the code to store the existing non-farm self-employment
income so that it can later be restored to its original state. We use one of the standard
elements of the bestiary, stepping across individuals in the household, to implement this
archival.
/* Archive original database values for non-farm self-
employment */

for (ini=0, in=&hh->in[0]; ini<hh->hhnin; in++, ini++) {
orignfse[ini]=in->id.idisenf;

}

A slightly more efficient version of this code would make the execution of the storage
instructions conditional upon the NSEFLAG parameter being set to a value of 1 to activate
the synthesis facility. The version here is simpler and slightly safer.

iii) Implement the conditionally augmented self-employment income

[Work in the use of existing pseudo-random variables for both the choice of new persons to
report self-employment earnings (non-farm) and the amount of it to report. Explain how this
is central to replicability given selection of subsets of the data.]

/* Selectively synthesize non-farm self-employment income
*/

for (ini=0, in=&hh->in[0]; ini<hh->hhnin; in++, ini++) {
in->im.uv.uvnseef=0; /* assign values to new vars */
in->im.uv.uvnsesf=0;
in->im.uv.uvnseamt=(NUMBER)0.0;
if (MP.UM.NSEFLAG==0) {

continue; /* don't synthesize if facility is off */
}

if (((in->id.idisefm+in->id.idisenf)>MP.UM.NSEAMT) ||
(in->id.idnage<MP.UM.NSEMINAGE) ||
(in->id.idnage>MP.UM.NSEMAXAGE) ||
(in->id.idlyun<(int)MP.UM.NSEWKS)) {

continue; /* ignore ineligible individuals
*/

}

Page 118 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

in->im.uv.uvnseef=1; /* mark indiv. as potentially
eligible */

if (in->id.idrand[2]>MP.UM.NSEFRC) {
continue; /* individual was not selected to get

income */
}

in->im.uv.uvnsesf=1; /* mark indiv. as recipient */ in-
>im.uv.uvnseamt=in->id.idrand[3]*MP.UM.NSEMAXINC; /*synthesize
amt */ in->id.idisenf+=in->im.uv.uvnseamt; /* add syn amt to
non-farm self-empl */
}

The preceding code, though a bit lengthy, is straightforward. Inside the loop through
individuals, one performs the following actions:

Assign default values to the new user-defined variables.

Skip the rest of the loop if the facility was not activated.

Skip the rest of the loop if the individual doesn't meet the qualifying conditions for
synthesis of new self-employment income.

Mark the individual as potentially eligible for synthesis; then skip the rest of the loop
if the individual is not "chosen" to receive income.

If execution reaches this stage, mark the individual as a recipient of synthesized
income and impute the amount, adding the new amount to the person's non-farm self-
employment variable.

Once the loop has been executed, the synthesis of new non-farm self-employment income is
complete for all members of the household. At this point the "regular" statements of Adrv.c
follow, calculating the tax/transfer amounts and the several memo items.

iv) Finally, after the adjusted household has been processed through all of the tax/transfer
and memo functions, the new code restores the original non-farm self-employment income
values.

 /* Restore original database values for non-farm self-
employment */

for (ini=0, in=&hh->in[0]; ini<hh->hhnin; in++, ini++) {

in->id.idisenf=orignfse[ini]; }

A slightly more efficient version of this code would make the execution of the restoration
instructions conditional upon the NSEFLAG parameter being set to the value of 1 that

Programmer’s Guide Page 119
SPSD/M Version 6.0 11/19/97

activates the synthesis facility. The version here is simpler and slightly safer.

(J) The new MPI and CPI files

It still remains to provide values to the several parameters so that the SPSM, during a
particular run, can implement the desired adjustments. An aging parameter "include file"
(extension ".API") with the following entries performs this function.

NSEFLAG 1
NSEAMT 100.0
NSEFRC 0.05
NSEWKS 26.0
NSEMINAGE 25.0
NSEMAXAGE 60.0
NSEMAXINC 4000.0

Similarly, it is necessary to make sure that the relevant independent streams of pseudo-
random variates are generated to serve as inputs to the "random" choices of synthetic income
recipients and the associated amounts of synthesized income. These control parameters
would be provided via a ".CPI" file containing the following statements --
SEED 4
0 1 2 3

The parameter above indicates that the user is requesting 4 independent streams. As noted
above, streams 0 and 1 are used for GIS calculations; the non-farm self-employment income
synthesis algorithm uses streams 2 and 3. See the "SEED: Random Number Generator Seed"
entry in the SPSD/M Parameter Guide for an explanation of this facility and its usage.

(K) Compiling and Validating the Model

With all of the source code changes complete, the user should first debug the model and then
compile the desired executable file, GLASSEX5. We conclude this worked example by
characterizing a very quick and dirty set of validation tables. For a serious application, the
user would normally undertake a much more rigorous validation of the changes. Recall too,
that this kind of system-specific data adjustment could more easily have been accomplished
using results files (".MRS"). Under that mechanism an equivalent income assignment logic
would have been applied via the adju.c file, and the relevant parameters would have been
supplied via an API file.

Assume, for purposes of this quick and dirty illustrative validation, that the user's exogenous
source has already indicated roughly how many individuals should display new self-
employment income, perhaps as a function of some relevant policy variable.

The user will first want to tabulate the numbers of individuals according to the values
of the two user-defined classificatory variables, uvnseef, and uvnsesf. Then the
entries in this table can be compared to the exogenous source to confirm (1) that the
numbers of eligible individuals agrees with those specified in the "exogenous source,"
(2) that an appropriate proportion of these individuals have had new self-employment
income imputed.

Page 120 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

Next, the user would want to confirm that the average amount of new imputed self-
employment income is appropriate (i.e. half of the $4,000 NSEMAXINC parameter
value). It would also make sense to tabulate the total amount of new income imputed,
so that this amount can be compared to the increases in federal and provincial income
taxes. Thus the user can confirm whether an appropriate proportion of the new
income is flowing to the government sector as income taxes.

Even for the validation runs, it makes sense to look at the degree of change in the
incidence of units below the relevant LICOs. Given the relatively tight conditions for
the eligibility to receive the synthesized income, and the relatively small portion of
the eligible population selected to receive new self-employment income, the user
should expect only a small change in that incidence.

Here we show the first part of this validation, verifying the amounts of new self-employment
income. We use the SPSD/M for 1986 with the 5% sample. The changes in "poverty rate,"
not shown here, would be derived using the SPSM's "efpovthr" (poverty threshold) and
"impovinc" (income for comparison against the relevant poverty threshold) variables. The
validation is most conveniently performed via crosstabulations. The relevant control
parameters, input via a ".CPI" file, are as follows:

XTFLAG 1
XTSPEC
 IN: { units }

* uvnseef
* uvnsesf;

 IN: { uvnseamt,
 uvnseamt/units }
 * uvnsesf;

 IN: { uvnseamt,
 imtxf-_imtxf,
 imtxp-_imtxp }
 * uvnsesf

The resulting tables then appear as --

Table 1U: Unit Count (000) for Individuals by Eligibility for
Synth Self-Empl and Synth Self-Empl Receipt

Synth Self-Empl Receipt
+--------------------------------+----------+----------+
|Eligibility for Synth Self-Empl |No Receipt| Receipt |
+--------------------------------+----------+----------+
|Not Eligible | 23351.7| 0.0|
|Eligible | 809.6| 47.2|
+--------------------------------+----------+----------+

Table 2U: Selected Quantities for Individuals by Synth Self-
Empl Receipt

Programmer’s Guide Page 121
SPSD/M Version 6.0 11/19/97

Synth Self-Empl Receipt
+---------------------------------------+----------+----------
+
|Quantity |No Receipt| Receipt
|
+---------------------------------------+----------+----------
+
|Synth Self-Empl Amount (M) | 0.0|
92.5|
|uvnseamt/units | 0|
1962|
+---------------------------------------+----------+----------
+

Table 3U: Selected Quantities for Individuals by Synth Self-
Empl Receipt

Synth Self-Empl Receipt
+---------------------------+----------+----------+
|Quantity |No Receipt| Receipt |
+---------------------------+----------+----------+
Synth Self-Empl Amount (M)	0.0	92.5
imtxf-_imtxf (M)	1.0	12.9
imtxp-_imtxp (M)	0.5	9.5
+---------------------------+----------+----------+

As regards the substance of these tables, we'll assume that the 809.6 thousand persons in
table 1U agrees reasonably well with the hypothesized "exogenous data source." Since 47.2
thousand of these persons received some new self-employment income. the 5% objective has
been roughly met; presumably the proportion would be closer to 5% were we to use the full
SPSD.

Table 2U confirms that our new algorithm assigns new self-employment income only to
those eligible to receive it. The total amount of new income, and the associated average
amount, confirm that the expected amounts of the new income are being synthesized
(roughly $2000 per selected individual).

Table 3U then indicates how much of the new income, a bit more than a quarter of it, is being
captured by the tax system. As expected, most of the capture is directly from the recipient
individuals, though there is some from non-recipients, primarily because some recipient
individuals become less valuable as personal exemptions due to their new income. Clearly,
with income of less than $100M being distributed across the whole personal sector, we do
not expect any major impacts on the proportion of the population below the LICOs.

Finally, once the user is satisfied as to the correctness of the adjustment procedures, s/he
would run the full SPSD through the model in one or more production runs. To meet the
illustrative goals described at the start of this section, outputs would have to include the
federal and provincial income tax totals, and the numbers of families above and below the

Page 122 Programmer’s Guide
11/19/97 SPSD/M Version 6.0

LICOs, with these outputs being produced both with and without the synthesis of new non-
farm self-employment income. Normally, the user would also include breakouts of these
variables by relevant classificatory variables such as family type.

Checklist for System-Specific Database Changes

(A) Create a new subdirectory for the analysis. Copy into it templates for all of the files that
will needed for the analysis. Items that are likely to be required include SPSM.mak,
SPSM.mdp, mpu.h, Ampd.c, vsu.h, vsdu.c, Adrv.c, and a control (".CPR") file. The
user will also create, in this same subdirectory, other files required for the analysis for
which there are no obvious templates, e.g. the ".MPI" file that will provide values for the
system-specific data aging parameters, or a batch file to control the SPSM session.

(B) Change the project environment to include all the relevant files and change the name of
the executable output file.

(C) Change mpu.h and Ampd.c to declare any new system-specific data adjustment
parameters, and to make them available, via invocations of pmaddent and stradd, to the
rest of the SPSM.

(D) Change vsu.h and vsdu.c as required to declare any new system-specific model
variables, and to make them available, via invocations of vardef and stradd, to the rest of
the SPSM.

(E) Change Adrv.c to save the original values of the variables to be adjusted, to effect the
adjustments, and then, after the household has been processed, to restore the original
values before leaving the procedure. These steps will typically require the definition of
local VECTORS of values dimensioned for the numbers of possible individuals in a
household.

(F) Compile the new model and correct any problems identified by the compiler.

(G) Supply values for the new system-specific data adjustment parameters via an ".MPI" file
or files. When the aging depends on the use of pseudo-random variables, provide a
".CPI" file with appropriate changes to the SEED parameter. The model will gain access
to these control and model parameter values at model execution time either interactively
or via an SPSM batch file.

(H) Validate the model carefully, and then make production runs.

