R

SPD/M

Programmer’ s Guide

This guide describes how to use the SPSM in glass box mode.
Glass box mode alows users to add new variables and
parameters to the SPSM as well as the ability to alter the SPSM
algorithms or implement new algorithms. The Microsoft C
compiler isrequired for using the glass box mode.

October 31, 1997

I*I Statistics Statistique i+l

Canada Canada Canada

Table of Contents

100 (U Tox £ o] o IR 1
Purpose of the Glass BOX MOE.........c.ccoiiiiiiiiiiiiis e eeeeeneens 1
Hardware and Software Requirements for the Glass box Mode............cccceveenee. 3
Programming Knowledge ReqUITEd............ccceieiiiiiiiis creeieeie e veene 4

Operating System Knowledge Required............ccoooeeiiiiiiies cvvvievieneenns 4
Fundamental Programming Concepts (Not Language Specific)................. 4
Knowledge of the C Programming Language..........ccccceveeeveeneenes cveenieenen 5

QUICK Start EXaAMPIE........coeiieiiieiesie s ettt eesteebesteseesseesaeesreens eesreenes 6
PreliMINAITES.o ettt feeraeeteseeseesreesbeenaeens £esseenes 6
Changing the project enVIrONMENL..........ccccueiiiiiiieiiie e seeee cesreenes 7
Changing the Alternative Driver FUNCtion Adr V. C) ...coceveevenieniinieies e 7
Changing the Alternative Family Allowances Functionff a. C)cccoceveeiennnnne 8
Testing the Resulting Alternative SPSM Model...........oooeiiiiiiiiiies v 10
SUIMMIBIY ...ttt e e beesseeesseeasbeeaseesaeeeases £ebeessseeaseeaaseeaaseeanneans seesnsessseens 14

SPSD/M and Glass BoX DireCtory SIIUCIUIEccuveieieiiieiieiis crieerieesiee e see e siee e e 15

The SPSD Household/Individual SIrUCLUFE..........coeiiiriieiiiies e en eeeneeas 18
The SPSD/M'S Data SITUCKIUNE..........oiieiieiiieiieeriees cerieesieeie e ee ssreesseenseenes 18

COMMON MBCTOS: ...ciiiiiiieiee e eriieeie ceeeeeseeasieeseeeseeesree e reesseeesseeanseeanns 19
THE NN SITUCIUIE. ... e ceeee e eeas 20
The N SITUCIUIE: ... e et e eeas 21
TRE X SIUCIUIE ... e eesaeesaeeseeeeeeneens 22
The ct and Cthase SITUCIUIES:cooiiiiiiieiieries e e 23
THE Ef SIIUCLUIE: ... e ee e ee e 25
TRE CF SIIUCKUIE: ... e e raee e nee e eneens 25
THE N SITUCIUIE ... e e raee e eee e 26
TREIN SITUCKIUNE: ... e e raee e nee e e 27
TRE I SETUCKUIE: ... et eeseeesaeeneeseeeneens 28
TREIC SITUCIUIE: ... e eesaeesaeeseeeee e 34
The im and Imbase SITUCIUIES:cooieiiiiieieint e e 35
The ubl and UD2 SIFUCIUIES:........cccuviee s et eeeaee 45
The uv Structure and the Imfill Array ... e 46
Sorting order and l0OPING......c.vereerierieriieieens eerieeee e see e eereeeeens 46
SUIMMIBIY ...ttt ettt e e eeesseeasseeesbeeaseesaeeeases £ebeessseeasesaaseeaaseaanseas seesssessseens 47
Introduction to Pointersin the SPSD/Mccooiiiiiiiiiies e 47
TREBESHANY ..ceeiieeie ettt ettt ee cesteeteseeseesreesreereenes eereereas 48
EXamples Of LOOPING:......coiieiiiiieiiniiies et beeeeseesneas 48
References With Respect to an Individual:.............ccooviiiiiies vovvieiennnns 51
SUMMIBIY ...ttt iee e eeesseeasseeasbeeaseesaeeeabes £ebeesaseeasesaaseesseaanneans seesnsessseens 52

SPSM Function Calling SIIUCLUIE...........ooeiiiiiiiiiiies e ne eesieesseesseesseeneas 53

Glass Box Development: Adding Typical Scalar Parameters..........ccoccvveveeneenes cveeveennen. 55
General Procedure for Making Glass box Changes: A Recapitulation................... 55

Create Task SUD-AITECONYcoviiiiiiiieeiies et ereeeeeas 55
Identify Filesto be Changed............cocoiiiiiiiiiiis o v 55

Copy Relevant Filesto Task Sub-directory.........ccccoovevviiieeiiies cviveiieecnen, 56

Edit ThOoSe REIEVANE FIlES......coeeeeeeeeeeeeeeeee e e 56

Compile the NEW VEISION........coiiiieiieiieies et eeraeeeens 56
Test the New Version of the Model ... v 56
Carry Out the Intended ANalYSIS.......cociiiiiiniieiieies e 57
Introduction to Parameter Addition............cooeriiiiiens e ceieene 57
Copy FilesAdrv. c, Mu. h, Anpd.c, Afa.c, SPSM nmak, and
IS 1Y 11 | o SRS 58
UpPdate the PrOJECEottt ettt feeeesee e e saeesbeeee e .59
Update the Algorithm DesCription INACYN V. € ..ooceveeerienieiieeieeies e 59
Modify Mpu. h to Define the new Parameters...........occoveererienies cevveeninseeneeenne 59
Modify Anph. ¢ to Make the Parameters Availableto the SPSM............ccccc..... 60
Modify the Functions that Use the New Parameter(s)........ccocceveererieninnns ceveeenene 62
Validate and Make Black-Box Production RUNS............ccccoeiriiniiins weveerieneenienee 63
SUMMANY/CONCIUSION.....couviiiiiieiierieriees et ees erreesbeeteeeesseesseenees 64
Glass Box Development: Adding Less Typical Parameters........ccoooeeeveieeniees cevveeenieene. 66
The pmaddent Function and itS ArgUMENES.........ccoeeieriiniieiiens cereerieeseeie e 66
Characterizing Scalar Parameters..........oooveiieiiniiis e ereeeeens 70
REAL/float/NUMBER Parameters..........cccooeveeneeiienies creenieeieseeseesieenens 70
INTERGER/INt PAramEters.........ccoieeiieiiieiiinies creeieeieseesieesiesseesee s seeeens 70
FLAG Parameters.........cociiiiieiiieiieet eeeiee e siee e sees saseessessnseesneans 70
FRACTION Parameters.........cccoeieieiiiiiieis ceeieesiieeseeesieesseeesnees saeeessessnns 71
OPTION ParameLerS........coiouiiiiieiieeiiieis ceerieeeieesee e e eeeeseees saeeeseesseennns 71
EDIT-FRACTION Parameters..........ccceeerrrerieeieens sereeeeseessessesesseessnssens oen 71
DUMMY Parameters..........cceeiiiiiiiiiiiiis eeeeiieeesieee e snneeesseeesnes 71
Vectors of User-defined Parameters..........ccooeiiiiiiiiies cevnieneeseee e e 72
Additionsto Mpu. h, Cpu. hor Apu. Nt e, 72
AdditioNSTO AP, € v et beeseeeeeeneas 73
User-Defined Parameter Vector References in the Source Code................ 74
Specification of Parameter Vector ValUes..........coocevvriviiinies cvvienienien 74
SUMMIBIY ...t et siieeie eeeseeesseeesseeaseeseeasseees beesseeasseseasessnseesneassns oan 75
User-defined Schedules for LOOKUPS.........cccoeiiiiiiiiniiiis e e 76
Schedule Types and LooKup FUNCLIONS..........cocceveriiniiiiiiens e 77
Appearance in SPSM Header Fles.........ccoovieiiiiiiiies v 77
Appearance in pmaddent CallS INAMPA. C ..oovvveivrinieieeeeies e, 78
Employing Schedule Referencesin User Code..........ccovveevvrieniennns ceveeniens 79
Appearance in Parameter FIleS.........ccoiiiiiiiiiiis e 80
Key Points for Adding Schedule Parameters..........ccccoovvenieeniens cevveeniene 80
Adding Matrices Of ParametersS........ccocoeviiiieriieiies cerieerieese e esseesseenes 8l
AppearanCe iNIVPU. N ..o e e 82
APPEAranCe INAIMPU. € ..oovveeiiiieiie e eeree et ns eeeneesseenns 82
Referencing Matrix Elementsin Source Code..........cccocevveeieriens coveennenne 83
Appearance in Parameter FIleS.........ccoviiiiiiiiis v 83
SUMMANY/CONCIUSION.....couviiiiiiiiiesiesiees et ees eereesbeeteseesseesseenees 84
Glass Box Development: Adding New Variables..........ccoooeiiiiiiiins o 86
Overview for Adding Variables...........ooeoieriiiiiiis ciieieeeseeseee e veeeeneens 86

Dependent Variable Types and CharaCteristiCS.......oocvveeieeierienies ceeeeeeesee e 87

The vardef and stradd Functions and their Arguments...........ccoccoveereeiens cevieeenn 87

Vardef "Name" Argument (and Definition of Variable "Stem" Name)...... 88

Vardef "Home Structure” Argument:ccoooeveeneenenies seeerieesieseeseeseeens 88

Vardef "Variable Location” ArgUmMEeNt:.........ccceieeieniennienns corveesieesieeseeeens 88

Vardef "C-Type" Argument (C_NUM & C_INT): oooiriiiiiieeneeeeiieen e 89

Vardef "Usage" (Type) Argument (V_ANAL & V_iiiiiiieeeeeee 89

Stradd Calls for Numeric Analysis Variables...........cocceeveeieniins cevvieeniens 20

Stradd Callsfor Integer Analysis Variables..........cccooviiiniiiies cvvviniene 20

Stradd Callsfor Integer Classification Variables..........ccoocevveevivnivnies v 20

The Family Allowance Supplement Example Extended.............ccoooevvniinies v, 91

Changesto project files and Adr V. C...ooceveeriiiiienieieeies e e 92

ChangEStO VSU.N........eiiiii it s et ae e ees 93

ChangeStO VS AU. € .oueeiiiiiiiecie e et eeesaeesreesre e b eee e 94

Changesto Af a. ¢ (Or, more generaly, any new substantive source code)........... 94

[AENtITYING SEING...ccviiieiieiieriereres e eeeesee e e saeeneeas 95

LoCal VariableS.........cooeiiieieiiciiet e ceee et 95

Calculate and Assign the New Model Variables.........c.ccccoeviiiiiiis e 95

(@010 0] o] =11 [0 o FA SRR 98

RV 2= T = (o] o 1SR 98
SUMMANY/CONCIUSIONScoiiiiieiirie e ceeriee et seesrees eesseesseesseenseesesneas 101
Changing Base and Variant Data Variables.........ccoceviiiiiiiiiis v veene 103
Making Changes That Affect All Tax/Transfer Systemsin a Model...................... 103
Typica Income and Population Growth Changes Via APR/API Files....... 104
Changes Involving New Logic Foradj U. Ccccceeiiiiiinneeiens e 104
Adding New Database Adjustment Parameters..........cccooeeviieviiecins cvviveene 105
A Worked EXamMPle........cooiiiiiit e et 106
Checklist for Changing Database Variables "Globally".........c.cccccooeene. 110
Making Changes That Affect Only the Base or Only the Variant...........c.ccccceuee 111
Implementing ChangeS iNATN V. € ..oceoieeiiriiiiiireeries e 112
A Worked EXamMPle........ooiiiiit e et 114

Checklist for System-Specific Database Changes..........ccccocevvvevieeies ceneee. 122

Introduction

The Programmer's Guide describes how users can alter the SPSM in order to model
tax/transfer systems or policy options not directly addressable by the SPSD/M as distributed;
e.g. they might make an alteration to the logic of the tax/transfer system in order to assess the
static distributional impacts that would result from a policy proposal.

This chapter introduces a variety of preliminary topics critical for understanding the use of
the SPSM in its glass box mode. Specific chapter topics include:

(1) adescription of the glass box mode, especially in contrast to the black box mode,
(2) the hardware and software requirements for using the glass box mode,
(3) the degree of programming knowledge required.

Subsequent sections in the guide then take up the details of actually developing glass box
applications. Thus, the following section describes a '‘Quick Start" procedure that tests the
success of the SPSM installation by effecting a simple glass box modification to the SPSM as
distributed. The Section entitled SPSD/M and Glass Box Directory Structure characterizes
the subdirectory structure relevant to the various aspects of glass box operations. The SPSD
Household/Individual Structure provides critical details on the key SPSD data structures used
by the SPSM. SPSM Calling Srructure describes the calling structure of the SPSM modules
that make up a specific model. Glass Box Development: Adding Typical Scalar Parameters
addresses the mechanism for adding user-defined model parameters to an SPSM model,
treating the most common forms of scalar parameters. Glass Box Development: Adding Less
Typical Parameters then takes up the addition of less typical kinds of scalar parameters, as
well as the addition of vectors and matrices of new model parameters. Glass Box
Development: Adding New Variables describes the addition of new variables to a model.
Changing Base and Variant Data Variables provides the definitive statement on managing
standard and alternate algorithms within the context of glass box operations.

Purpose of the Glass box Mode

A simplified systems view of the process of simulating taxes and transfers may be as follows:

Programmer’ s Guide Page 1
SPSD/M Version 6.0 11/19/97

Reports
Parameters

N

INPUTS OUTPUTS
Microdata
Microdata
TEXT EDITOR
User
GLASS BOX
Changes
Family
Allowance
Algorithm
old
Version
C++Compiler
Reports
Parameters
INPUTS OUTPUTS

f>

Microdata .
Microdata

A user specifies a series of inputs (parameters and data) which are then processed through a
system of algorithms (the Black Box) which in turn produces a system outputs (tables and
microdata). The user may create many different simulations by varying the inputs and then
analyzing the outputs. He may even deduce some of the contents of the black box through
repeated testing. However, the simulations possible are limited by the contents of the black
box. If, for example, the rules of the Manufacturer’s Sales Tax are not included in the system
of algorithms (with provisions for appropriate input data and parameters) then this program
can not be simulated without actually opening up and changing the black box. This ability to
look inside the black box and alter its contents is like turning the black box into a glass box.

Page 2 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

This guide explains how to use the SPSM in its glass box mode. Specifically, the term "glass
box mode" refers to a method of modifying versions of the executable SPSM program to
accomplish analyses that are not possible with the original, unmodified SPSM. Glass box
mode may be used to add or modify parameters, variables, and algorithms. Using the “glass
box” mode always entails altering the C++ Language source code and recompiling an
executable version of the program. The "black box mode" refers to the subsequent execution
of an executable version, either as shipped by Statistics Canada or as modified by user’s in
“glass box” mode. It isaways through the black box mode that a user carries out a variety of
policy relevant simulations via parameter changes, user variables, and tabulation expressions.

Because of the extra steps involved, users should attempt to avoid the glass box mode
wherever possible. The SPSM provides a number of devices that enable analysts to achieve
many desired results without re-programming. The most common technique is to alter the
default sets of program parameters that drive the SPSM. The analyst could simulate the
impact of an increase or abolition of Family Allowances by changing the numeric values of
the relevant parameters. In a second example, the analyst can define their own variables in
the control parameter file, and can use the resulting variables in a whole range of SPSM
outputs. The Introductory Guide provides an extensive detailed example in which an analyst
uses the user-defined variables to simulate an earned income tax credit. Similarly, the
analyst can create variables “on-the-fly” as expressions and export or tabulate them just as if
they had been full-fledged variables, and can conveniently represent differences between a
given variable in the base and variant tax/transfer systems. TheX-Tab User’'s Guide
provides several examples of this type of on-the-fly definition.

The Glass box mode must be used under the following conditions:

(1) Adding any new parameters.

(2) Adding new variables that require reference to other specific family members.

(3) New proposals which are designed to interact with the tax/transfer system. For example,
ataxable newborn allowances.

(4) New proposals that alter the logic of existing programs in ways that have not yet been
parameterized.

When users need to make such changes in the SPSM to reflect aternative tax/transfers
systems, they need to be familiar with the techniques described in this guide.

Hardware and Software Requirements for the Glass box Mode

The SPD/M Installation Guide provides the definitive statement on hardware and software
requirements. For most users, a printer is a practical necessity. The discussion here assumes
that oneis present.

The key aspects of software requirements are as follows:

1. Use of the SPSD/M in the glass box mode requires the availability of Visual C++ that
serves to compile the user's C language source code statements into the machine language
format required by the SPSM.

Programmer’ s Guide Page 3
SPSD/M Version 6.0 11/19/97

2. The SPSM itself requires an operating system compatible with the version of Visual C++.

3. Theuser must have an appropriate editor for entering or atering C language source code,
such editing being central to glass box usage

4. Itissuggested to use an efficient text editor compatible with C++ code.

Users expecting to use the SPSM heavily in the glass box mode will probably also want the
added efficiency provided by "utility" software such as the MKS toolkit that makes many
Unix style features available within the operating system.

Programming Knowledge Required

Because use of the SPSM in the glass box mode requires the user to do some programming,
glass box user will have to be somewhat more knowledgeable than the typical black box user.
This section characterizes the kinds of things that a glass box user will either have to know or
be prepared to learn.

Operating System Knowledge Required

Using the SPSM in its glass box mode requires that the user be fairly comfortable with a
number of areas relating to the operating system. A user needs to know about disk drives,
files, and file naming conventions, and about directories and subdirectories.

The user should be familiar with the concept of the DOS environment and with environment
variables such as thePATH variable. Effective operation in the SPSM's glass box mode also
requires that users be proficient with a number of DOS commands. The DOS commands
most critical include:

DR List directory contents

TYPE List file contents

MKDI R Make new directory

CHDI R Change current directory

RVDI R Remove directory

CcorY Copy files

XCOPY Copy files and/or directories

DEL Deletefile

SET Set/display environment variables
PATH Display current path

Users who are not at ease with the concepts and commands described here will probably
avoid a great dea of frustration by spending some time with the DOS manual or develop
some ability to do it in Windows environment before tackling actual glass box applications.

Fundamental Programming Concepts (Not Language Specific)

The SPSM glass box is not the place to learn your first programming language. Users should
be familiar with at least one high-level computer language prior to using the Glass-Box (e.g.

Page 4 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

FORTRAN, BASIC, PASCAL, and SAS). Because glass box applications involve
programming in a compiled language, it is desirable that glass box users come to the task
already familiar with the key concepts. A user should be comfortable with the idea of using a
text editor to write or revise source code, and with the idea of using a compiler and linker to

produce the desired intermediate and executable files. The user will benefit from a
familiarity with the notions of libraries, macros and preprocessor statements, modular
programming and program validation.

More critically, a user's experience with these concepts should be applied. Preferably, before
tackling SPSM glass box applications, a user should already have written and debugged
several non-trivial computer programs, not necessarily using the C language. Although it
may be possible for a user to learn to program by using the SPSM, we recommend against
the attempt. For prospective SPSM users needing to build or reinforce basic programming
skills, awide variety of programming textsis available.

Knowledge of the C Programming Language

Because SPSM glass box applications involve programming in the C language, a user must
aso program in C. Although the structure of the SPSM means that certain things like

input/output are done for the user, the prospective user will be most efficient if the basics are

previously understood. Users have to understand the purpose of defining constants and

declaring variables, and must appreciate the scopes of these declarations. They must

understand variables and variable types, specifically including pointer variables and
structured variables, and how the C language uses them. They must understand the nature

and structure of functions and the variety of statements that comprise them. They must be

familiar with C's major flow of control statements (if-else, switch, while, for, do-while), as
well as C's stable of assignments and operators, including the increment operator. For users

who have worked in other programming languages and are capable of absorbing this
information in a concentrated form, Kernighan and Ritchie's book, "The C Programming
Language" is the standard reference. Similarly, the C language manual that comes as part of

the Microsoft C Optimizing Compiler is a very useful and authoritative source for

information about C and its implementation.

Finally, of course, SPSM users must understand the basics of the Microsoft C Compiler. Itis
also necessary to understand the thrust of what is going on, and the various error messages
that the compiler may give in response to the user's code. The authority on these topicsis, of
course, Microsoft's set of manuals for the C compiler.

Programmer’ s Guide Page 5
SPSD/M Version 6.0 11/19/97

Quick Start Example

As itstitle suggests, this chapter provides the user with a quick start at using the SPSM in its
glass box mode. The chapter serves three main functions. First, it allows the user to check
the installation of the compiler and SPSD/M. If the user can carry out the chapter's ssmple
example successfully, then all of the major portions of the installations were performed
properly. Second, the example introduces key glass box concepts and terminology. Third,
the example illustrates, in an integrated manner, the general flow of glass box applications.

The chapter's approach is primarily narrative. Taking the reader through all the steps of a
simplified glass box application, it concentrates on the general approach. It describes the key
details of the exercise, but does not attempt to be exhaustive. The particular illustration used
here was selected for its simplicity; it addresses the most critical aspects of glass box
applications, but doesn't get bogged down in the additional requirements associated with
more ambitious applications.

Substantively, the example models a relatively simple change to a single transfer program,
Family Allowances, in the tax/transfer system. Our hypothetical analyst, intrigued by the
practice of Prince Edward Island in the 1970's, seeks to ascertain the aggregate and
distributional impacts that would be associated with giving additional Family Allowance
benefits to larger families. More specifically, in the variant system, the analyst wants to
increase the amount of the federal Family Allowance by $10 per month per child for selected
children in selected families. When a family has three or more children currently aged 0
through 17 years of age, then it receives, over the year, an additional amount equal to $120
times the number of these "excess' children, i.e. $120 for athree child family, $240 for afour
child family, etc. We assume that this additional Family Allowance benefit would be paid by
the federal government to the usual recipient and that the benefit would be treated just like
the regular federal Family Allowance benefit.

As regards the narrative, readers should not worry about the "whys" of the implementation.
Subsequent sections in this Programmer's Guide will address all of them more fully.
However, it is highly desirable that the user work through the example to the point of
actually carrying out all of the tasks described. Only in this way can the first purpose,
confirmation of the installation processes, be realized.

Preliminaries

The user should begin by selecting a subdirectory in which to work. This is the hard disk
subdirectory in which the user will edit copies of the relevant C++ language source code files
and describe the nature of the alternative system. We strongly recommend that the user
employ a directory other than those that the SPSD/M installation establishes for the
SPSD/M itself. The user can make a new subdirectory if necessary. For purposes of this
narrative, we'll assume that a subdirectory named GLASSEX1 is available as the working
subdirectory.

The user begins the process by copying, from the SPSD/M'sG.ASS subdirectory, to the

Page 6 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

GLASSEX1 work subdirectory, all of the relevant template files. Template files are files that
already contain most of the necessary information for a glass box application, and which the
user will modify to create the final versions necessary for the application. For this example,
the relevant template files are as follows:

1. Adrv.c, the aternate "driver" template that invokes all of the SPSM's tax/transfer
functions in the correct order. This template, distributed as part of the SPSM, is
effectively a duplicate of the base driver function the user should copy it in its
wor king subdirectory).

2. Afa.c, the alternate Family Allowances template that effects the computation of the
Family Allowance benefit. This template, distributed as part of the SPSM, is effectively
aduplicate of the base system'sf a. ¢ function that computes Family Allowance benefits.
(the user should copy it in its working subdirectory).

3. SPSM ndp, SPSM nmak carry out the compilation and linking of the user's new model {he
user should copy those files in its working subdirectory). It is possible that the file
conspsm.c may not work properly. If it is the case delete it from the project and use
instead the conspsm.obj file from \win32\winrel.

For other glass box applications the user may also need to copy other tax/transfer templates
and/or C language header files. In this example, however, the user does not need to alter any
of the header files because the new model creates no new variables and uses no new formal
parameters.

The genera procedure for our illustrative glass box application is straightforward.

1. Working on COPIES of Adrv.c, Afa.c and SPSM ndp, SPSM mak, we make the small
number of changes as described below.

2. Then we invoke/execute the SPSM mdp utility in C++ to generate a working space. To

work with the new model, the project should be recompile to produce a new executable
file (We assume the user know how to proceed).

Changing the project environment

Project environment should be modified if the user want to change the name of the compile
SPSM .exe associated with the project in Project: Setting:Link to G_LASSEX1. EXE.

The new files Adrv.c and Afa.c must be included in the project (Project:Add to
project:Files).

The key subdirectory \SPSM DEFS should all be added in Tools:Options:Drectory, since
definitions relevant to glass box applications reside there.

Changing the Alternative Driver Function (Adrv. c)

Programmer’ s Guide Page 7
SPSD/M Version 6.0 11/19/97

Adrv. ¢ contains two kinds of information that the glass box user will want to alter. The first
kind consists of labeling information that the SPSM uses in its reports and error messages.
When the user makes appropriate changes here, the resulting output becomes more
informative. The second kind consists of the function calls that effect the substance of the
model's tax/transfer calculations.

The user makes the labeling changes in the portion of the code, starting at about line 35, that
looks as follows:

==================== GLOBAL VARI ABLE DEFI NI TI ONS

o= ==—=—= */

/*gl obal */ char ALTNAME[| DSI ZE+1] = "Unnanmed";

/* G ve global string describing version of this nodule */

/[*gl obal */ char FAR Tdrv[] = "Untitled"

The ALTNAMVE] | DSI ZE+1] string provides an identifying name for the alternative driver;

the user replaces the placeholder "Unnamed" with the more informative name "FA Quick
Start". The new name must not exceed 20 characters in length. This alternative name will
then appear in the greeting screen. The Tdrv[] string provides a title for the aternative
driver; the user replaces the placeholder "Untitled" with the more informative title "FA Quick
Start”. The new title may not exceed 20 characters in length. TDrv's contents appear as

information in the control parameter file as an algorithm description. Upon completion of
these substitutions, the revised "labeling section” appears as follows:

[* ==================== GLOBAL VARI ABLE DEFI NI TI ONS

o= ==—=—= */

/*gl obal */ char ALTNAME[| DSI ZE+1] = "FA Quick Start";

/* G ve global string describing version of this nodule */

/*gl obal */ char FAR Tdrv[] = "FA Quick Start"

In the substantive portion of the code, the user needs to make only a single change to
indicate that the calculation of benefits for the variant system should use an alternate
Family Allowance calculation.

The relevant portion of the code, a single line appearing at about line 119, appears as follows:
fa(hh); [* conmpute famly all owances */

Unmodified, it invokes the regular Family Allowance calculation. The user changes the line
to invoke, instead, the alternative Family Allowance calculation that we shall describe
shortly. The modification consists solely in the substitution of the new function name, and
the revised source code appears as follows:

Afa(hh); /* conpute famly allowances */
For this quick start example, these three simple changes constitute the entire set of

modifications for theAdrv. ¢ functi on.
Changing the Alternative Family Allowances Function (Af a. c)

Page 8 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

The Afa.c function carries out the calculation of Family Allowances for the alternative
system. In a manner analogous to the Adrv. ¢ changes, the user's changes fall into two
categories, labeling changes and substantive changes.

The labeling change is very straightforward. At about line 52, the function provides for a
title, Tfa[], for the module, with the title being used in the report in which the SPSM
indicates the functions used to calculate the taxes and transfers. As with the title for the
driver, this title appears as an algorithm description in the control parameter file. The
relevant portion of the code appears as follows:

===—=—=—=—=—=—=—====== (GL.OBAL VARI ABLE DEFI NI TI ONS ==================

*/
/* G ve global string describing version of this nodule */
/*gl obal */ char FAR Tfa[] = "Untitled"

The user changes the "Untitled" string to something rather more informative. The resulting
section then appears as follows:

===—=—=—=—=—=—=—====== (GL.OBAL VARI ABLE DEFI NI TI ONS ==================

*/
/* G ve global string describing version of this nodule */
/*gl obal */ char FAR Tfa[] = "FA Quick Start"

The substantive portion of the Af a. ¢ changes is a bit more complicated, but not extremely
so. The option to be examined affects directly three of the calculated variables,

1. taxable Family Allowances (tfa),
2. federal Family Allowances, (ffa) and
3. Family Allowances, (fa).

(Of course other variables in the model, e.g. calculated taxes, are also affected indirectly.)
When the number of children in the census family (the variable "nch") is three or more, we
wish to increment each of the three Family Allowance variables by $120 times the number of
"excess' children. Everything else relating to the impacts of this policy change, e.g. the tax
impacts, will be taken care of automatically by other portions of the SPSM. In any event, the
variables in the routine are temporary, ceasing to exist once execution leaves the Afa
function; only items that have been saved into the relevant portions of the household
structure will be able to affect calculations elsewhere in the system.

With the nature of the desired change clear, the major remaining issue is where in thexf a. ¢
function to make the change. For purposes of logical correctness and clarity, the change
should be made after the three variables have already had assigned to them the "base system"
amounts of Family Allowances, but before any calculations such as assigning the amounts
into variables in the data structure for the household. In this example, the changes can all be
made, in parallel, at the same location.

The examplein not valid anymore and will be revised

The critical portion of the source code, as it exists before the implementation of our changes,
appears as follows: (The DEBUG statements shown here are irrelevant to the normal

Programmer’ s Guide Page 9
SPSD/M Version 6.0 11/19/97

calculation of Family Allowance benefits. Their presence permits detailed tracing to be
performed when needed, but is irrelevant here except as it identifies the portion ofAf a. c,
about line 358, where the Family Allowance changes will go.)

el se {

DEBUGL(" % standard FA cal cul ation\n");

tfa = nch * MP. STDFA, /[* taxable famly
al | owances */

ffa = tfa; /* federal part of famly
al | owances */

}

DEBUG3("% tfa=% 2f, ffa=%2f\n", tfa, ffa);

Substantively, we wish to add the expression "(nch-2) * 120.0" to each of the three key
variables, taxable Family Allowances (tfa), federal Family Allowances (ffa), and Family
Allowances (fa). Further, such increments are appropriate only when the number of children
aged O through 17 in the census family is at least three. C's "if" statement and its "+="
operator provide a very convenient way to do this.

el se {
DEBUGL(" % standard FA cal cul ation\n");
tfa = nch * MP. STDFA, /[* taxable famly
al | owances */
ffa = tfa; /* federal part of famly

al | owances */

/* $120/yr bonus for 3rd and subsequent children <18 */
if (nch >= 3) {

tfa += (nch-2) * 120.0;

ffa += (nch-2) * 120.0;

}

ffa);

DEBUG3("% tfa=% 2f, ffa=% 2f\n", tfa,

With the completion of the changes to Af a. c, the user's real work in implementing the
changes is now essentially done. All of the relevant substance and labeling changes are
complete and, assuming there have been no errors during their entry, all that remains is the
compilation of the new model and then its validation. Most important, though, it is the
resulting executable file from C++ compile, in this exampleaLASSEX1. EXE, that the user
runs to analyze the impacts of the change that was modeled.

Testing the Resulting Alternative SPSM Model

With all of the changes made, and the resulting files compiled and linked to create the new
executable file, we are ready to test the new model. The two related goals of this step are:

Page 10 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

1. to seek evidence about whether we have successfully made the desired change, and
2. to generate outputs that will help us diagnose errors should we have made any.

A very natural form of evidence takes the form of crosstabulations from a comparative run
that uses the unmodified tax/transfer system as its base system and the modified form as its
variant system. Later in this section we offer examples of two such crosstabulations.

In order to make the desired comparative run of the new model and get the output we need,
we must alter the control parameters for the model. The SPSV Parameter Guide provides
the authoritative description of SPSM control parameters;, here we simply list the key
parameter values for our purposes. (The "gl assx1a" portion of the two file names is an
acronym for "Glass box example 1, version a'.)

QUTCPR gl assxla. cpr # Name of control paraneter file
(out)

VARALG FA Quick Start # Name of variant al gorithm

VARVETH 3 # Method of creating variant vari abl es
BASVETH 2 # Method of creating base variabl es

QUTTBL gl assxla. t bl # Name of report file (out)

Two tables will suffice for validation in this example:

1. tabulate number of census families, variant federal Family Allowances, base federal
Family Allowances, and their difference, all by number of children aged 0-17 (to show
that we are giving the new Family Allowances to the right unitsin the right amounts) and

2. tabulate "delta Family Allowances" and "delta disposable income" by census family type
to show both that we are giving the new FA to only the right kinds of units and that a part
of it is being recovered via the tax system, with the recovery fraction higher for two-
parent families than for one-parent families.

The XTSPEC parameter to generate these tables will ook as follows:

XTSPEC
CF: cfnkids+ *
{units,

_infa: L="Base Famly Allowance (M",
inffa: L="New Famly Allowance (M"”,
inffa- inffa: L="Fam |y Allowance Increase (M”,
(inffa-_inffa)/units: L=*Average Famly Allowance

| ncrease”};

CF. cftypet+ *

{inffa- inffa: L="Famly Allowance Increase (M",
i mrdi sp- _i mdi sp: L="Di sposabl e I ncone |Increase (M",
(1 mdi sp- _imdi sp)/units: L=*Mean Di sposabl e | ncone

| ncrease”};

The highlights of this request are as follows:

Programmer’ s Guide Page 11
SPSD/M Version 6.0 11/19/97

1. Thefirst table uses "cfnkids' (number of children 0-17) as the row control variable. Note
that cfnkids is an SPSD classificatory variable, while the variable "nch" used above to
effect the changes inside Afa.c is alocal variable that is defined as a "float" variable and
could not be used here for tabulation purposes, even if it were classificatory.

2. The tabulated variables used in the first table are precisely those described above,
numbers of families, new and old Family Allowance benefits and their difference.

3. The second table simply tabulates, for another existing classificatory variable, the
differences in Family Allowances and in disposable income, with the "underscored"
variables referring to the base system and the non-underscored variable names to the
variant system.

The tables that result when one executes the new GLASSEX1 model with \SPSM\ba88t.cpr
appear as follows:

Tabl e 1U. Sel ected Quantities for Census Fam lies by Nunber of
children in census famly

| Number of children | Unit Count | New Fam |y | Base Fam | y|
Fam |y |

| in census famly | (000) | Allowance | Allowance |
Al | owance |

I I I (M I (M I
| ncrease (M|

Fom e e e e Fom e e oo Fom e e oo TR +- - -
---------- +

| O | 6401. 6| 0. 0| 0. 0|
0. 0|

| 1 | 1454, 2| 516. 5| 516. 5|
0. 0|

| 2 | 1430. 7| 1061. 7| 1061. 7|
0. 0|

| 3 | 612. 9| 850. 0] 776. 5|
73. 5|

| 4 | 111. 9| 229. 5] 202. 6|
26. 8|

| 5 | 36. 8| 83. 7| 70. 4|
13. 3|

| 6 | 5. 3| 28. 4| 25. 8|
2. 5|

| 7 | 0. 0| 0. 0| 0. 0|
0. 0|

| 8 | 0. 0| 0. 0| 0. 0|
0. 0|

| 9 | 0. 0| 0. 0| 0. 0|
0. 0|

Page 12 Programmer’s Guide

11/19/97 SPSD/M Version 6.0

Tabl e 2U. Selected Quantities for Census Famlies by Census

famly type

o e e e e e e Fom e e oo o Fom e e oo o +
Census famly type	Famly	Disposabl e
	Al'l owance	Incone
	I'ncrease	Increase
I I (M I (M I		
o e e e e e e Fom e e oo o Fom e e oo o +		
Wth Kids, 1 Adult	16. 7	15. 6
Wth Kids, 2+ Adult	99. 4	72. 3
Wth Elderly, 1 Adult	0. 0	0. 0
Wth Elderly, 2+ Adult	0. 0	0. 0
X her, 1 Adult	0. 0	0. 0
& her, 2+ Adult	0. 0	0. 0
o e e e e e e Fom e e oo o Fom e e oo o +		
Al'l	116. 2	87.9
o e e e e e e Fom e e oo o Fom e e oo o +

The values in Tables 1U and 2U result from running the new model on the 5% subset of the
SPSD in 1988 (ba88.cpr) and requesting the tables described above. The first table confirms
that we seem to be giving the additional Family Allowances to the right kinds of census
families. Increased benefits, some $116 million of them, appear only for census families
with more than two children aged 0-17, and the gross amounts are $120 times the number of
such "excess" children in those families.

The second table offers more evidence that the new benefits are being given only to the right
kind of census families and, further, that the new benefits are being partially taxed back.
Moreover, the degree of tax recovery is lower for one-parent families than for two-parent
families; this is to be expected since (1) those reporting Family Allowance benefits in two-
parent families tend to have higher incomes and to be subject to higher marginal tax rates,
and (2) the Income Tax Act requires that the higher net income spouse report the Family
Allowance benefits.

We conclude from the values appearing in these tables that the changes made above have
quite probably been successful in implementing our intentions.

The testing just described completes our quick start example. Because of the example's focus
we have perhaps not been quite as careful and methodical as would be warranted in the case
of areal application. Thus, we mention briefly here a number of things that we might have
chosen to do in implementing our hypothetical change.

Programmer’ s Guide Page 13
SPSD/M Version 6.0 11/19/97

We might have added "revision history" comments to the filesAdrv.c and Afa.c to
document the nature of the changes and our reasons for implementing them as we did. This
form of documentation is an element of sound professional practice for software
development and maintenance.

We might have created an intermediate (local) floating point variable imaf a. ¢ to store the
increment in a family's Family Allowance benefit. This increment, once computed, could
then have been assigned directly to the tfa, ffa and fa variables so that we would not have
been computing the identical expression three times in parallel. Possible minor efficiency
gains aside, the resulting code would probably have been slightly easier to understand.

We might have made a parameter out of the $10 per month ($120 per year) value, in case we
wanted to repeat the analysis later for a different value of the supplementary Family
Allowance benefit. Similarly, we might have made a parameter out of the number of
children NOT eligible for the additional benefit; perhaps someone would want to know the
impacts of restricting the extra benefits to families with four or more children, or relaxing
them to admit families with only two children aged 0-17.

We might have chosen to create a new variable that would contain just the pre-tax increment
for the family, making this variable part of the structure for the household so that we could
more conveniently tabulate this "difference" variable in crosstabulations or export it for
subsequent analysisin SAS.

We might have chosen to conduct more ambitious tests to ensure that the desired changes
had been implemented. For example, we might have produced a table showing the relative
sizes of the changes in federal and provincial income taxes to ensure that the new benefits
were being appropriately considered at both the federal and provincia levels. We might
have tabulated the size of the change in the child tax credit to assess whether the new Family
Allowance benefits were being properly taken into account in that credit's definition of
income.

In general, the style of alteration and the degree of testing conducted here are appropriate for
the limited goals of this introductory example. However, for a more serious glass box
application the user will probably wish to be more methodical in making the necessary
changes, devoting more attention to issues of documentation, labeling, validation and
possibly to efficiency of computation.

Summary

This chapter has provided a first-pass description of glass box applications in the SPSM,

illustrating them with a specific example. Section topics included changing the substantive
calculations in a variant Family Allowance function, altering the SPSM driver function that
coordinates the calculation of taxes and transfers, and using the C++ compiler to create a new

version of the model. A short section on validation illustrated the generation of tables to

assess the success of the change.

Page 14 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

SPSD/M and Glass Box Directory Structure

This chapter provides for glass box users an explanation of the hard disk directory structure
within which the SPSM operates. The information it contains is relevant because it tells the
user where certain items are located, which ones must be left in place untouched, which ones
are designed to serve as templates for changes, which ones are to serve purely as examples
for code that the user will build, etc.

Consider the following representation of user's hard disk directory structure:

C [Root directory |
|--- MSC [Mcrosoft C conpiler, with its own subdirectories
]
| --- SPSD [Data for the SPSDOM w th no subdirectories]
| --- SPSM [SPSM proper, subdirectories as shown |
| | --- DEFS
| | --- EXAMPLE
| | --- GLASS
Il [--- MODEL
| --- MBSDOS
| | --- WN32
| --- GLASSEX1 [G ass box task subdirectory 1]
| --- GLASSEX2 [G ass box task subdirectory 2]
etc.

At the top of the figure we see the user's root directory, with two first-level subdirectories
MsC and SPSD. The MsC subdirectory contains the user's compiler, absolutely necessary for
the creation of glass box applications; MsC contains a number of lower level subdirectories
not shown here. The sPSD subdirectory contains all of the SPSD/M's raw data and a number
of default parameter files; it has no lower-level subdirectories.

Of more direct applicability to the glass box user is thesPsM subdirectory and its lower-level
subdirectories. These were created automatically for the user during the SPSM installation;
the names used here are the recommended defaults. We provide here brief descriptions of
each of these directories -- their magjor contents and relevance to glass box applications.

An initial, general-level comment is in order --THE USER SHOULD NOT CHANGE
ANYTHING IN ANY OF THESE SPSM SUBDIRECTORIES. (1) Glass box
applications will always involve working withCOPIES of some of the files in these
subdirectories. (2) All of the user's glass box work will be done in one of theSEPARATE
SUBDIRECTORIES that the user has created to contain the working files for glass box
applications. It might even be useful for the user to switch on the read-only attribute for al
of the filesin these subdirectories.

DEFS This subdirectory contains a number of header files that define structures and
constants used throughout the SPSM. Of greatest interest to the glass box
user will be thevs. h file that defines the hierarchical data structure that
holds the SPSD/M's information about households and individuals. Recall,

Programmer’ s Guide Page 15
SPSD/M Version 6.0 11/19/97

EXAMPLE

GLASS

MODEL

MSDOS

WIN32

however, that the user will never have occasion to modify this structure. The
user's addition of user-defined variables is accomplished via a COPY of the
vsu. h file.

This subdirectory contains various "INCLUDE" files that serve to specify
parameters for the sample runs described in the tutoria portion of the
Introduction and Overview Guide Although they are potentially very useful
in testing for the successful installation of the SPSM and in learning how to
use models that have already been developed, these files are not directly
relevant to the development of glass box models, and can be ignored for
purposes of this glass box oriented discussion.

This subdirectory contains templates that the user will use as starting points
for the code that s/he writes to create variant tax/transfer systems and
models. (1) It contains the source code for all of the SPSM's tax and benefit
functions; the user will probably find it most efficient to create any new
functions by modifying COPIES of these elements. (2) It contains functions
that make the user defined parameters and variables accessible to the broader
SPSM, together with associated header files that define the relevant
structures to hold the user-defined variables and parameters.

This subdirectory contains examples of the definitions of model variables
and parameters. The elements in the subdirectory are intended ONLY to
serve as concrete examples for the user when s/he begins to define new
parameters and variables for glass box applications. The user will never
have occasion to modify the contents of these files, nor even to use or alter
copies of thefiles.

This subdirectory contains a small number of DOS "controlling object files"
that govern the form of the overlay structure that the SPSM uses. At avery
genera level, these items are similar to those in LIB in the sense that
SPSM.mak needs them and knows how to use them in the compilation of a
new version of the model. It also contains some executable files used in the
modification of SDSD in a project.

This subdirectory contains a smal number of WINDOWS 32 bits
"controlling object files' that govern the form of the overlay structure that
the SPSM uses. At avery genera level, these items are similar to those in
LIB in the sense that SPSM.mak needs them and knows how to use them in
the compilation of a new version of the model. It also contains some
executable files used in the modification of SDSD in a project.

At the very bottom of the representation of the user's hard disk subdirectory structure is a
glass box application "task" subdirectory GLASSEX1 and two sub-subdirectory WINREL and
WINDEBUG. Users may have as many such task subdirectories as are required for the glass
box applications they build. This one corresponds to the Quick Start example described in
Chapter 2. It contains all of the files that the user creates in replicating that example. The
specific files are as follows:

ADRV. C
AFA. C

CONSPSM OBJ
FAQSTST1. CPR

Page 16
11/19/97

Programmer’ s Guide
SPSD/M Version 6.0

FAQSTST1. TBL
SPSM DSP
SPSM DSW
SPSM MDP
SPSM MAK
SPSM BAK
SPSM CCB
SPSM OPT
SPSM PLG
GLASSEX1. EXE
GLASSEX1. PDB
W NREL

W NDEBUG

ADRV. C and AFA. C are the C source code files copied from the GLASS subdirectory and then
modified to reflect the desired new program logic; theiroBJ counterparts are the object files
produced as outputs when the ".C" files are compiled in WINDEBUG and WINREL.
GLASSEX1. EXE and GLASSEX1. pdb were created by the compile command. Finaly,
FAQSTST1. CPR is the control parameter file for runs of the FAQSTST1 program, and
FAQSTST1. TBL contains the crosstabulations that the associated run of SPSMFAQS produced.

The critical information in this chapter can then be summarized as follows:

1. No SPSM user should change ANYTHING in the sPSM subdirectory or in any of its
subdirectories created during the SPSM installation. (Note however that certain files that
may be definitely unnecessary can be deleted in their entirety.)

2. The glass box user will establish separate "task™" subdirectories for glass box applications.
Preferably these will not be subdirectories under SPSM.

3. The glass box user will copy the relevant elements from thesPSM GLASS directory, using
them as templates for the changes to be made. The changes themselves are then made to
these COPIES. Subsequent sections in thisProgrammer's Guide indicate in considerable
detail what the user must change and where the relevant templates are located.

4. The key subdirectories \sPsMm DEFS should all be added in Tools.Options.Directory,
since definitions relevant to glass box applications reside there.

Programmer’ s Guide Page 17
SPSD/M Version 6.0 11/19/97

The SPSD Household/Individual Structure

This chapter has three major goals, each of them developed in a separate section, but all of
them relating to the general topic of the SPSD/M's data structures and their usage.

The following section describes the hierarchical data structure that the SPSD/M uses for
household and their subcomponents. Glass box users need to understand this structure so
that they can refer to the variables contain there. These references will let the user either gain
access to the variables' values for calculations, or assign new values to the variables. An
appreciation of the data structures is also relevant to users who want to read and understand

the algorithms used in the black box version of the SPSM.

The second section develops the use of pointer variables as a major tool by which the user
accesses individual elements of the data. It also describes the major naming conventions
relevant for glass box applications. These topics are relevant both for users building their
own glass box applications, and those seeking to understand the standard SPSM algorithms.
The underlying "philosophy" for this development is consistent with the rest of this guide --
in many respects it is considerably more important for the glass box user to know how,
mechanically, to do something in a standardized, robust fashion, than to understand all of the
design-oriented reasons behind the structures and techniques. In other words, the section's
focus is determinedly practical; it concentrates much more on the mechanics of "how-to"
than the niceties of "why”.

The third section provides a "bestiary" of code fragments for performing common glass box
tasks, particularly as regards data structures. Theideais not only that the user should be able

to copy an existing wheel rather than re-inventing it, but that the copied wheel should further

exist in a standardized format, and not require debugging. The section's code fragments
include (a) processing relevant individuals/families via"for" statements, (b) referring to other
family members, (¢) accessing existing database and modeled variables, and (d) assigning
new values to variables.

The SPSD/M's Data Structure

This section begins with a "graphic" point-form overview of the hierarchical household data
structure used by the SPSD/M. Subsequent portions of the section then take up the
individual components in greater detail. In the initial overview, the different levels of the
hierarchy are reflected graphically via the indentation pattern and the associated item
"bullets’. The definitions that underlie this presentation appear in the filé SPSM DEFS\ VS. H.

The data structure information is relevant to the glass box user because an appreciation of the
nested structures is necessary in order to refer to the values of individual variables; such
reference is, of course, an integral part of writing the code for new or modified tax/transfer
programs. Later portions of this Programmers Guide, especially Chapter 8 on defining new
user variables, assume familiarity with the overall data structure.

The general SPSD data structure is as follows:

Page 18 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

HHLD : (type: hh_) Global structure holding an SPSD/M household.

- hhnXX: Numbers of families and individuals in the household.
- hd: Household characteristics variables
- fx: Raw FAMEX-related variables for the household.
* the fxio array of household expenditures by SNA categories.
* other variables
- ct: Commodity tax results as calculated by ctcalc.
* the ctfct array of federal commodity tax by category.
* the ctpct array of provincial commodity tax by category.
* other variables for tax by type
- ctbase: (typect_) Sameasct, but for an SPSD/M base system.
- ef : Information about economic families.
- cf : Information about census families.
- nf : Information about nuclear families.
- in: Information about individual persons.
id: SPSD variables
Individual Characteristics
ucl dataon individual'sfirst Ul claim
uc2 data on the individual's second Ul claim.
im : modeled variables
150 modeled items
ubl Modeled variables for first Ul claim
ub2 Modeled variables for second Ul claim
uv Glass-Box User-defined variables
imfill A filler array
imbase: same as im, but for the base system.
IC: SPSM individual control variables

Common Macros:

Detailed descriptions of the substance of individual SPSD/M variables themselves appear in
the SPSD/M Variable Guide. Here the focus lies with the organization of the variables
collectively, including identification of which variable will be found where. Much of the
detail with respect to the content of the several structuresis presented here via extracts from
vs. h. However, before beginning the discussion of that content, it is useful to note some of
the most important macros used in the vs. h definitions. The key items identified here have
been extracted from the \ SPSM DEFS\ SPSM H file; that file also contains many other macros
of lesser interest to the glass box user.

Some of the macros are useful for dimensioning arrays:

#defi ne MAXPERS 9 /* maxi mum # of persons in a househol d
*/
#def i ne MAXFAM 9 [* maximum # of famlies in a

househol d */

Programmer’ s Guide Page 19
SPSD/M Version 6.0 11/19/97

#def i ne NUMCOM 40 /* nunber of commodities (CTR arrays)
*/

#defi ne NUMREG 10 /* nunber of regions (provinces) */
#def i ne NUMURB 5 /* nunber of urban size classes */

Some of them allow the user to do things symbolically to make their meanings clearer:
#define LOQA CAL int /* type used to store true or false
val ues */

#define TRUE 1 /* mani fest constants to make code

nmore readable */
#defi ne FALSE 0

Some are used for consistency, and to avoid "nuisance" warning messages relating to C-
language type conversions (since numerical constants are double precision by default):

#defi ne NUMBER f | oat

#define ZERO (float) 0.0

#define HALF (float) 0.5

#define ONE (float) 1.0

#define THOUSAND (fl oat) 1000.0
#define MLLION (float) 1000000.0

In still another class of macros the individual elements act like functions, returning integer, or
NUMBER results. In the directory \ SPSM DEFS, the file SUB. H contains elements that will

be of considerable use to the glass box user seeking to read or write source code. Here we

summarize the identities of these macros and their basic functions, with the details of
implementation and structure found in thesuB. H file. Many of these macros are described

in the SPSD/M Algorithm Guide.

|szero |s argument zero ?

Isnzero |s argument non-zero ?

Isneg |s argument negative ?

I snneg |s argument non-negative ?

taxbak1 One level tax-back function
taxbak2 Two level tax-back function
taxbak3 Three level tax-back function
taxbak4 Four level tax-back function

nneg Change negative numbers to zero
minn Find the minimum of two numbers
maxn Find the maximum of two numbers
round Round to nearest integer

mini Find the minimum of two quantities
maxi Find the minimum of two quantities

The hh Structure:
The hh structure is a shell that holds a household's data. It contains four integer variables

Page 20 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

giving the number of persons and families of various types in the household; these variables
often serve as limits for loops in the SPSM source code. The bulk of the structure, however,
consists of other structures and arrays of structures that contain the data and modeled
variables for the household.

typedef struct hh_ {

i nt hhnef ; /* Nunmber of economic famlies in
househol d */

i nt hhncf ; /* Nunmber of census famlies in
househol d */

i nt hhnnf ; /* Nunmber of nuclear famlies in
househol d */

i nt hhni n; /* Nunber of individuals in household
*/

struct hd_ hd; /* Housing characteristics data

[struct] */

struct fx_ fx; /* FAMEX data [struct] */

struct ct_ ct; /[* Commodity tax variables [struct]
*/

struct ct_ ctbase; /* Base commodity tax vari abl es

[struct] */

struct ef _ ef [MAXFAM ; /[* Economc famly data [array] */
struct cf_ cf[MAXFAM ; /* Census famly data [array] */
struct nf_ nf[MAXFAM ; /* Nuclear famly data [array] */

struct in_ in[MAXPERS]; /* Individual data [array] */
} hh_;

The hd Structure:

The hd structure is one of the sub-structures within hh. It contains some 25 scalar variables
that apply to the household as a whole. Variables include the numbers of persons in various
age categories, information about the province and size of place of residence (relevant for
LICO analyses), information about the physical household itself (e.g. number of bedrooms),
plus data concerning the record matching used in the creation of the household in the SPSD.
As with most of the data structures used in the SPSD/M, the user can change the values of hd's
variablesif appropriate, but cannot alter the structure itself.

typedef struct hd_ {

i nt hdnpers; /* Nunber of persons in household */
i nt hdnadul t ; /* Nunmber of adults in household */

i nt hdnel d; /* Nunmber of elderly in household */
i nt hdnki ds; /* Nunmber of children in household
*/

i nt hdnear n; /* Nunmber of earners in household */
i nt hdageel d; /* Age of eldest in household */
Programmer’ s Guide Page 21

SPSD/M Version 6.0 11/19/97

i nt hdsexel d; [* Sex of eldest in household */

i nt hdspof | g; /* Househol d contains married couple
*/

i nt hdt ype; /* Househol d type */

NUVMBER hdseqghh; /* Househol d sequence nunber */
NUVBER hdwgt hh; /* Househol d wei ght */

NUMBER hdwgt hhs; /* Sub-sanpl e adj usted househol d
wei ght */

NUVBER hdwgt f x; /* Sum of househol d wei ght for FAMEX
group */

i nt hdl ast f x; /* Last household i n FAMEX group
flag */

i nt hdpr ov; /* Province */

i nt hdur b; /* Size of urban area */

i nt hdcl ohh; /* Nunmber of SCF cl ones */

i nt hdt enur ; [* Tenure */

i nt hdr oom /* Nunber of roons */

i nt hdbdr ns; /* Nunber of bedroons */

NUMBER hdunits; /[* Unit count */

NUVBER hdnspsd; /* SPSD records */

NUMBER hdnscf; /* SCF records */

NUMBER hdnf xv; /* FAMEX records */

NUMBER hdt pval ; [* Current value of adjustnment (TP
facility) */

} hd_;

The fx Structure:

The fx structure is a substructure within hd; it contains one vector that provides family
expenditures by category, plus a number of scalar variables relating to savings, mortgages
and changes in assets. The user may sometimes wish to change the values of some of the
elements of fx, but cannot alter the fx structure itself.

typedef struct fx_ {

i nt f xseqhv; /* FAMEX record sequence nunber */

i nt f xcl ohhv; /* FAMEX cloning factor */

NUMBER fxi o[NUMCOM; /* 1/0O expenditure categories [array]
*/

NUVBER fxrecom /* real estate conm ssions */
NUMBER fxintpl; /* Interest on personal |oans */
NUMBER f xi pac; [* life ins prens and annuity
contributions */

NUVBER f xgvpen; /* gvt pension plan contributions */
NUVBER f xpvpen; /* private pension plan

contributions */

Page 22 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

NUMBER f xcqp; /[* cpp - qpp contributions */
NUMBER f xui c; /[* U contributions */

NUMBER f xi nt ax; /[* Income taxes */

NUMBER f xprt ax; [* Property tax */

NUMBER f xt pt ax; [* Transfer of Property taxes */
NUMBER f xrf ees; /* Registration and |icense fees */
NUMBER f xnes; /* Not el sewhere stated */

NUMBER f xncal ; /* Net change in assets and
liabilities */

NUMBER fxrrspt; /* Total RRSP contributions (FAVMEX)
*/

NUMBER f xf abd; /* Account bal ancing difference */
NUMBER f xfonr; /* OQther noney receipts */

NUMBER fxnorti; /* Mortgage interest paid */
NUMBER f xhnkt; /* NMar ket val ue of hone */

NUMBER f xhnort; /* Mortgage val ue outstanding */
NUVBER f xpsave; /* Positive savings

*/

NUMBER f xnsave; /* Negative savings

*/

NUMBER f xsal dur; /* Sal e of durables

*/

} ofx_;

The ct and ctbase Structures:

The ct and ctbase structures are parallel substructures within hh; ct applies to the variant

system and ctbase to the base system. The focus within these structures is the calculation of

commodity taxes for the two systems. Each of these structures consists of two arrays (one

federal and one provincial) giving the household's commodity taxes by category, plus a
number of scalar variables that provide various memo items for commodity taxes and that
pertain to the FAMEX data on which the commodity tax calculations are based. Glass box

users will normally not make any changes directly to the contents of these structures, all of
the assignments being made via the SPSM's commodity tax module. The ct and ctbase
structures themselves are, of course, not subject to alteration by the user.

typedef struct ct_ {

i nt ct seghv; /* FAMEX record sequence nunber

*

i /nt ct prov; /* Province for COMIAX cal cul ati ons
*

N/UNBER ctfcid, /* Federal custominport duties

*

NjUNBER ctf exd; /* Federal excise duties

*

Programmer’ s Guide
SPSD/M Version 6.0

Page 23
11/19/97

NUVMBER ctfnfg;
*/

NUMBER ctfext;
*/

NUMBER ctfoen;
*/

NUVBER ctfgst;
*/

NUMBER cttxfc;
*/

NUMBER cttxfc_[NUMCOM ;
*/

NUMBER ct pl gl

*/

NUMBER ct ppl q;
conmm ssi ons */
NUMBER ct pgas;
*/

NUMBER ct panu;
*/

NUMBER ct pt ob;
*/

NUMBER ctprst;
*/

NUVBER cttxpc;
(total) */
NUMBER cttxpc_[NUMCOM ;
[array] */
NUMBER ct nexp;

t axes */
NUMBER ct nexp_[NUMCOM ;

taxes [array] */

NUMBER ct nes; /*
specified */

NUVBER ctl prop;
dwel | i ngs */
NUVBER ctsave;

*/

NUMBER ct ot hnon;
sour ces */
NUMBER ctishrh

*/

NUVBER ct df exp;
excl usi ve) */
} oct_;

Page 24

11/19/97

[/ * Feder al

[/ * Federal

[/ * Federal

[/ * Federal

[/ * Federal

[/ * Feder al

/* Provinci

/* Provinci

/* Provinci

/* Provinci

/* Provinci

/* Provinci

/* Provinci

/* Provinci

manuf acturer's sal es tax

exci se taxes

ot her energy taxes

GST

commodity taxes (total)

commodity taxes [array]

al

al

al

al

al

al

al

al

i quor gall onage taxes
profits on |iquor
gasol i ne tax

amusenent tax

t obacco t ax

sal es tax

comodity taxes

comodity taxes

/* Househol d expenditure net of

/* Househol d expenditure net of

Househol d expendi ture not el sewhere

/* Local

/* Househol d savi ngs

property taxes on owned

/* Househol d noney from ot her

/* Shared i ncome concept (FAVMEX)

/* Deflated expenditure (tax

Programmer’ s Guide
SPSD/M Version 6.0

The ef Structure:

The household structure contains an array of structures, MAXFAM of them, to hold the
information about such economic families as may be in the household (but not the
information about the individuals in these economic families). Thus, an ef structure is small,
containing only 11 items. The items consist of a pointer to the first individual in the
economic family, plus scalars that give information about the number of persons in various
categories, characteristics of the oldest person in the family, and the family's low income
cutoff. As with the preceding structures, glass box users may be able to alter the values of
variables when a problem warrants it, but the ef structure itself is not subject to alteration.

typedef struct ef {

i nt ef npers; /* Nunber of persons in economc
famly */

i nt ef nadul t; /* Nunmber of adults in economc
famly */

i nt ef nel d; /* Nunmber of elderly in economc
famly */

i nt ef nki ds; /* Nunmber of children in economc
famly */

i nt ef nearn; /* Nunber of earners in economc
famly */

i nt ef ageel d; /* Age of eldest in economc famly
*/

i nt ef sexel d; /* Sex of eldest in economc famly
*/

i nt ef spof | g; /* Economc famly contains married
coupl e */

i nt ef t ype; /* Economc famly type */

P_in efin; /[* First person in economc famly
[pointer] */

NUMBER ef povt hr; /[* Economc famly poverty threshold
*/

} oef_;

The cf Structure:

The household structure also contains an array of structures, MAXFAM of them, to hold the

information about such CENSUS families as may be in the household (but not the
information about the individuals in these census families). Thus, a cf structure is small,
containing only 14 items. The items consist of pointers to the first individual in the census
family, and other key individuals (the first child, spouse, and oldest member), plus scalars
that give information about the number of personsin various categories, characteristics of the
oldest person in the family, and census family type. As with the preceding structures, glass
box users may be able to alter the values of variables in the cf structure when a problem

Programmer’ s Guide Page 25
SPSD/M Version 6.0 11/19/97

warrants it, but the cf structure itself is not subject to alteration.
typedef struct cf_ {

i nt cf npers; /* Nunmber of persons in census
famly */

i nt cf nadul t; /* Nunmber of adults in census famly
*/

i nt cf nel d; /* Nunmber of elderly in census
famly */

i nt cf nki ds; /* Nunber of children in census
famly */

i nt cf nearn; /* Nunmber of earners in census
famly */

i nt cf ageel d; /* Age of eldest in census famly */
i nt cf sexel d; /* Sex of eldest in census famly */
i nt cfspofl g; /* Census famly contains married
coupl e */

i nt cftype; [* Census famly type */

i nt cf nchil d; /* Nunmber of children (including
18+) */

i nt cf cat; /* Census fam |y category

*/

P_in cfin; /[* First person in census famly

[poi nter] */

Pin cfinel d; /* El dest person in census famly

[poi nter] */

Pin cfinspo; /* Spouse of el dest [pointer]

*/

P_in cfinch; [* First child in census famly

[poi nter] */

*/

}oef_;

The nf Structure:

The household structure further contains an array of structures, MAXFAM of them, to hold
the information about such NUCLEAR families as may be in the household (but not the
information about the individuals in these census families). Thus, a cf structure is small,
containing only 13 items. The items consist of pointers to the first individual in the nuclear
family, and other key individuals (the first child, spouse, and oldest member), plus scalars
that give information about the number of personsin various categories, characteristics of the
oldest person in the family, and nuclear family type. As with the preceding structures, glass
box users may be able to alter the values of variables in the cf structure when a problem
warrants it, but the nf structure itself is not subject to alteration.

typedef struct nf_ {

Page 26 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

i nt nf npers; /* Nunber of persons in nuclear

famly */

i nt nf nadul t; /* Nunmber of adults in nuclear
famly */

i nt nf nel d; /* Nunmber of elderly in nuclear
famly */

i nt nf nki ds; /* Nunmber of children in nuclear
famly */

i nt nf near n; /* Nunber of earners in nuclear
famly */

i nt nf ageel d; /* Age of eldest in nuclear famly
*/

i nt nf sexel d; /* Sex of eldest in nuclear famly
*/

i nt nf spof | g; /* Nuclear famly contains married
coupl e */

i nt nftype; /* Nuclear famly type */

P_in nfin; /[* First person in nuclear famly
[pointer] */

P_in nfi nel d; /* Eldest person in nuclear famly
[pointer] */

Pin nfi nspo; /* Spouse of eldest [pointer] */
P_in nfi nch; [* First child in nuclear famly

[poi nter] */
}onf_;

The in Structure:

The biggest portion of the household structure consists of information about the constituent

individuals. This information is contained in an array of in structures, MAXPERS of them.
In turn, each "in element” is essentially a framework within which several sub-structures hold
al of the relevant information. The user cannot modify the in structure itself, and the
structure does not contain any scalar or pointer variables for the user to alter. Instead, as

described in more detail below, the in structure contains only lower-level substructures (id,
im, and imbase) that the user can access plus an ic substructure that the user can ignore.

typedef struct in_ {

struct id_ id; /* Individual SPSD variables [struct] */
struct im_im /* I ndividual variant result variables
[struct] */

struct im_inbase; /* 1 ndividual base result variables
[struct] */

struct ic_ ic; /* 1 ndividual nodel control variables
[struct] */

NUMBER uvbl [NUMWV] ; /* Bl ack-box user variables [array] */
Programmer’ s Guide Page 27

SPSD/M Version 6.0 11/19/97

} in_;

The id Structure:

The id substructure contains the "raw data' for an individual. The structure itself cannot be
changed, though the user will sometimes wish to alter the values of individual variables; see
Chapter for a description of the relevant data-aging techniques. The id substructure is very

relevant to the glass box user because access to the values of its variables will normally be
critical to the kinds of glass box algorithms developed. The id structure has four magjor types
of elements. (1) Five pointer variables refer to key individuals and family structures. (2)
Over 30 "int" variables supply classificatory variable information and "conversion"
information about the individual. (3) Another 40 "float" variables provide key income and
tax-calculation related information, e.g. income from paid employment; this category also
includes a vector of pseudo-random variables that can be used for program take-up

calculations. (4) Finally, the id structure includes two substructures for raw data about the

individualsfirst and second Ul claims during the year.

t ypedef struct

Pin
*/
P_hh
*/
P_ef
*/
P_cf
*/
P_nf
*/

i nt
*/

i nt
*/

i nt
*/

i nt
*/

i nt
*/

i nt
*/

i nt
head
i nt
*/

i nt
*/

Page 28
11/19/97

i di nspo;

i dhh;

i def;

i dcf;

i dnf;

i dspofl g;

i ddi sab;

i def seq;

i dcf seq;

i di nseq;

i dhhr h;

i defrh;
*/

i defrh;

i dage;

id_ {

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

Person's spouse [pointer]

Person's househol d [poi nter]
Person's economc famly [pointer]
Person's census famly [pointer]
Person's nuclear famly [pointer]
Per son has spouse

Disability status

Econom ¢ fam |y sub-sequence nunber
Census fam |y sub-sequence nunber

I ndi vi dual sub-sequence nunber

Rel ati onship to head of household
Rel ationship to economc famly
Rel ationship to census famly head

Age

Programmer’ s Guide
SPSD/M Version 6.0

i nt
*/
i nt
*/
i nt
*/
i nt
*/
i nt
*/
i nt
*/
i nt
*/
i nt
*/
i nt
*/
i nt
person
i nt
*/
i nt
*/
i nt
*/
i nt
*/
i nt
*/
i nt
*/
i nt
*/
i nt
*/
i nt
*/
i nt
*/
i nt
*/
i nt
*/
i nt
*/

i dcf pub;

i dclufl g;

idcintim

i dcsa;

i dcui b;

i dccgp;

i dedl ev;

i def pub;

i dest at ;

i di efl ag;
*/

idi mmi ;

i di nd;

idlfst;

i dl yfp;

idlystr;

i dl yun;

i dl yww,

i dmar st ;

i dni nco;

i dnonl f;

i docc;

i dscfflg;

i dscht p;

Programmer’ s Guide
SPSD/M Version 6.0

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

SCF CF publication flag
Common- Law uni on fl ag
Converted interest inconme (inputed)
Converted social assistance
Converted U benefit

Converted CPP/ CQP benefit

Educati onal |evel

SCF EF publication flag

Educati onal status

Cloned institutionalized elderly
Years since inmmgration

| ndustry

Labour force status

Last year full/Part tinme

Last year stretches unenpl oyed
Weeks unenpl oyed

Weeks wor ked

Marital status

No i nconme flag (SPSD vari abl es)
Maj or non-LF activity

Cccupati on

SCF hi gh-inconme preservation flag

School type

Page 29
11/19/97

i nt i dsex;
*/

i nt i dsynt hi ;
*/

NUMBER i dnage;
*/

NUMBER i daddded,;

i ncone (256)*/

NUVMBER i dal exp
(229) */

NUVBER i dcapgex;
*/

NUVBER idcarry;
*/

NUVBER i dccet ;
child */

NUVBER i dccett;
T778) */

NUVMBER idcharit;
*/

NUVBER i dcl oss;
(253) */

NUVBER i dcount ;
*/

NUVBER i ddal i no;
*/

NUVBER i ddi sot h;
(318) */
NUVBER i ddi ssl f;
*/

NUVBER i ddues;
*/

NUVBER i deducm
al | owance */
NUVBER i denpl o;
(248) */

NUVMBER i dexpl or;
expenses (224) */
NUVBER i df df at c;
*/

NUVBER i df dsft;

surtax (511) */
NUVBER i dforavg;
(237) */
NUVBER
*/

i df ori nc;

Page 30
11/19/97

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

Sex

Synt hetic high income person

Age

Addi ti onal deductions from net

O her al |l owabl e enpl oynent expenses
Capi tal gains exenptions (254)
Carrying charges (221)

Child care expenses associated with
Child care expenses (Limt A Form
Chari tabl e donati ons (340)

Al | owabl e ot her years capital | oss
Per son count

Ali nony paid (220)

Disability anmount for dependants
Disability anount for self (316)
Uni on and professional dues (212)
El i gi bl e nont hs of education

Enpl oyee hone rel ocation | oan dedn
Expl orati on and devel opnent

Forward averaging tax credit (478)
Foreign tax credit applied to
Forward averagi ng anmount w t hdr awal

Net foreign inconme (508)

Programmer’ s Guide
SPSD/M Version 6.0

NUMBER i df ortx;
*/
NUMBER idfsitc;

(518) */
NUVBER idgifts;
(342) */
NUVBER i dhonst u;
(558) */

NUMBER i dhosslf;
*/

NUMBER i dhosspo;
*/

NUMBER i di capg;
CAPA R) */
NUMBER i dicqgp
*/

NUVBER i di div;
FDGUR) */
NUMBER i di enp;
*/

NUMBER idiint;
*/

NUMBER idil oss;
*/

NUVBER i di nogv;

t axabl e) */
NUMBER i di not h;
*/

NUMBER i di oi nv;
rent al */

NUMBER i di pens;
*/

NUVBER i di room
boarders (126) */
NUVBER i di sa;
*/

NUVBER i di sefm
*/

NUMBER i di senf;

*/
NUMBER iditc;
(412) g

NUVBER i ditogv;
*/

NUVBER iditoth;
(taxabl e) */

Programmer’ s Guide
SPSD/M Version 6.0

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

Foreign tax paid (507)

Addi tional investnent tax credit
G fts to Canada/ provinces/culture
Col | ege res/resdnt honmeowner assi st
Hosp. contributions - self (598)
Hosp. contributions - spouse (599)
Capital gains (actual) (127 /

CPP/ QPP i ncone (114)

Di vidend i nconme (actual) (120 /
Wages & sal aries

| nterest incone (121)

Busi ness i nvestnent | osses (217)
O her governnent incone (non-

O her noney i ncone (non-taxable)
O her investnent incone wth net
Pensi on i nconme (115)

Net inconme fromrooners and

Soci al assistance incone

Sel f-enpl oyed i nconme - farm ng

Sel f - enpl oyed i nconme - non-farm ng
Federal investnent tax credits

O her governnent incone (taxable)

O her non-governnent i ncone

Page 31
11/19/97

NUMBER i dl abt xc;
*/

NUVBER i dnedgro;
*/

NUMBER i dm ncar;
*/

NUVBER i dnovexp
*/

NUMBER i dncl os;
| oss (252) */
NUMBER idnort h;
*/

NUVBER i dot hded;
(232) */

NUMBER i dot hpe;
*/

NUMBER idpartl o;
*/

NUVBER i dpol con
(409) */
NUVBER i dproptx;
*/

NUVMBER idprvftc;
T2036) */

NUVBER i dprvpol
(565) */

NUMBER i drent pd;
*/

NUVBER i drkl yun
*/

NUMBER i drkl yww,
*/

NUVBER i dr pp;
contributions (207)
NUVMBER idrrsp
*/

NUMBER idscfctc;
*/

NUVBER i dscffa;
*/

NUMBER idscfftc;
*/

NUMBER i dscf oas;
*/

NUVMBER i dscf ui b;
*/

Page 32

11/19/97

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

Labour funds tax credit (414)

Medi cal expenses, gross (330)

M ni mum tax carryover (504)

| nput ed novi ng expenses (219)

Al | owabl e ot her years non-capital
Nor t hern deducti ons (255)

O her deductions fromtotal incone
O her dependant exenptions (305)
Limted partnership | osses (251)
Federal political contributions
Net property taxes paid (556)
Provincial foreign tax credit (Form
Provincial political contributions
Total rental paynents (555)

Raki ng foundation: weeks unenpl oyed
Raki ng foundati on: weeks worked
Regi stered pension pl an

RRSP cal cul at ed anmount (208)

Child tax credit

Fam |y al | owances

Federal tax credit

A d age security

Unenpl oynent insurance benefits

Programmer’ s Guide
SPSD/M Version 6.0

NUMBER idsheltr; /* Mani toba shelter allowance (T1C

I\N/IElJrI\]/?BER ids{ kded; [* Stock option deduction (249)
N/UNBER i dtuitn; [* Tuition fees (320)

N/UIVBER i dvencap; /* Venture capital tax credit (564)
N/UIVBER i dxii2; [* Part XIl.2 tax credit (Trusts)
(456) */

NUMBER i dext [NUMEXT] ; [* Extra nunbers [array]
*/
NUMBER i drand[NUVRAND]; /* Random nunbers [array]
*/

struct uc_ ucl; /[* U claim#1 data [struct]
*/

struct uc_ uc2; [* U claim#2 data [struct]
*/

*/ }oid_;

The ucl and uc2 substructures contain raw, as opposed to calculated, information about the
individual's first and second Ul claims during the year. Obviously, this information will be
meaningful only to the extent that the individual actually has Ul claims.

typedef struct uc_ {

i nt ucstat; /[* Claimstatus flag

*/

int ucstart; /* Week cl ai m established

*/

i nt ucrpeat; /* Repeat claimflag

*/

i nt ucbtyp; /[* Claimtype

*/

i nt uctpcng; /* Type change flag

*/

i nt ucweeks; /* Weeks of benefits

*/

int ucyl, /* Weeks on U in first year before
claim */

int ucy2; /* \Weeks on U in second year prior
to claim */

int ucy3; [* Weeks on U in third year prior
toclaim */

i nt ucy4, [* \Weeks on U in fourth year prior
to claim */

i nt ucyb5; [* Weeks on U in fifth year prior

toclaim */

Programmer’ s Guide Page 33
SPSD/M Version 6.0 11/19/97

i nt ucwwor k; /* Weeks of work prior to claim
*/

i nt ucquitp; /* Penalty for voluntary quit

*

iat ucuer; /* Local unenploynent rate (x10)
*

iat ucexhas; /* Exhaustee fl ag

*

i;t uct r nwk; /* Weeks of training benefits
iat ucgot pa; /* Received paternity benefits
*

NLNBER ucwkhr; /* Weekly hours of work

*

NLNBER uct r nbr; [* Training benefit weekly rate
NLNBER ucern; /* I nsurabl e weekly earnings

*

NLNBER ucef f; [* Effective weekly rate

*

NLNBER ucef f; [* Effective weekly rate

*

}/UC_;

The ic Structure:

This structure is included here strictly for reasons of completeness. Not even glass box users
will have reason to refer to the values of its variables, to say nothing of changing those
values. Instead, the structure's variables are useful only to the SPSM framework as it
processes the individual.

typedef struct ic_ {
i nt i csel ect; /* Individual selected flag
*/
NUMBER i cmari nc; /* Income after adjustnment
*/
NUMBER i cnarol d; /* Saved old SPSD i ncome before
adj ustnment */

NUMBER i cmarant; /* Amount of SPSD i ncome adj ust nment
*/

i nt i cni nco; /* Saved no inconme flag before
adj ust nent */

i nt i crolled,; /[* Individual already rolled up flag
*/

i nt i crefper; /* Reference person flag
*/
Page 34 Programmer’ s Guide

11/19/97 SPSD/M Version 6.0

i nt ictpflg; /* Selected for cloning (HHC
facility) */
} ic_;

The im and imbase Structures:

The im and imbase structures are two parallel substructures within the in structure. The
contain, for the variant and base systems, all of the "modeled” variables at the level of the
individual. The glass box user will regularly have occasion to refer to and change the values
of these variables. Indeed, it is via one of the substructures in im/imbase, i.e. the uv
substructure, that the user can add new user-defined variables to aversion of the SPSM.

The major components of the im and imbase structures are as follows:

1. Thereisatotal of over 150 "NUMBER" variables that correspond to calculated taxes and
benefits, or to significant intermediate variables involved in their calculation.

2. Thereare severa "int" variables that provide modeled categorical variables.

3. Thereisapair of substructures, ubl and ub2, that provide the modeled variables for the
individual's first and second Ul claims; these are companion structures to the ucl and uc2
structures that provide the raw data for these same Ul claims.

4. Thereisthe user-defined uv structure that is the subject of Chapter 8's description of how
the user adds new user-defined variables to an SPSM model, and afiller array, imfill, that
pads any storage locations not used by the uv structure.

typedef struct im_ {

NUMBER i mal exp; /* Al owabl e enpl oynment expenses
*

NLNBER i mant df ; [* Difference due to m nimumtax
*

NLNBER i mat xc; /* Age tax credit

*

NLNBER i mat xcrt; /[* Total tax credits applied

*

NLNBER I maxm /* Age personal exenption

*

NLNBER i nbft; /* Basic federal tax

*

NLNBER i mbpt ; /* Basic provincial tax

*

NLNBER i nbt c; /* Basic personal tax credit

*

NLNBER i nccea,; [* Child care expenses al |l owed

*

NLNBER i nccec; [* Child care expenses cl ained on

behal f of child */

Programmer’ s Guide Page 35
SPSD/M Version 6.0 11/19/97

NUMBER i ncceni
zer oed */
NUMBER i nccezi
*/

NUVBER i mcche;
*/

NUVBER i nrcdeds;
*/

NUVBER i mcenc;
credit */
NUMBER i mchar a;
gifts (cal cul at ed)
NUMBER i ntchartc;
*/

NUVMBER i nchcl m
cl ai ned */
NUMBER i ntppctc;
*/

NUVMBER i ntqgppc;
*/

NUVBER i mct chen;
benefits */
NUMBER i nctc;

*/

NUMBER i nctxcrt;
chil dren */
NUMBER i mct Xcs;
*/

NUVBER i mdedea;
*/

NUMBER i ntapgex;
(254) */
NUMBER i ndedf n;
*/

NUVBER i ndedft;
*/

NUVBER i ndedt ;
*/

NUMBER i npedi ng;
*/

NUVBER i mdi sat c;
*/

NUMBER i mdi sex;
*/

NUMBER i medrcv;

from ot hers*/

Page 36
11/19/97

*/

/* Consumabl e i ncome with CCE not

/* Consumabl e i ncome with CCE zeroed

[* Child" s non-refundable credit

/* Dependent children deductions

[* Child' s equivalent to married

/* Al owabl e charitabl e donations and
/* Charitable donations tax credit

/* Nunmber of dependent children

/* CPP contributions tax credit

[* CPP/ QPP contributions

/* Federal child tax credit and child
[* Child tax credit

/* Tax credits transferred from

/* Dependent children tax credits

/* Enpl oynment all owance

/* Model ed capital gains deduction

/* Al deductions fromnet incone

/* Deductions fromtotal incone

/* Deductions transferred from spouse
/* Dependant's net incone

/* Disability tax credit

/* Disability exenption

/* Education and tuition transferred

Programmer’ s Guide
SPSD/M Version 6.0

NUMBER i medtrf; /* Education and tuition transferred
to others */

NUVBER i medt xc; /* Education all owance tax credit

*/

NUVBER i meduc; [/ * Education all owance for student
(322) */

NUMBER i mexm /* Personal exenptions (Basic+Age)
*/

NUMBER infar; /* Fam |y all owance recovery

*/

NUMBER i nf cben; /* Total Federal Child Benefits

*/

NUVBER i nf cbenb; /* Total Federal Child Benefits Base
*/

NUVMBER i nf cbene; /* Total Federal Child Benefits
Ear ni ng suppl */

NUVBER i nfdtxc; /* Federal dividend tax credit

*/

NUVBER i nf edbal ; /* Federal taxes |less transfers

*/

NUVBER i nf edt ax; /* Federal tax before tax credits

*/

NUMBER inffa; /* Federal portion of famly

al | owances */

NUVBER infothtr; /* Federal other trans incone and ref.
credits */

NUMBER i nfoth; /* Federal other governnent incone
*/

NUMBER i nfptc; /* Federal Political Contribution Tax
Credit */

NUVBER i nfsa; /* Federal social assistance

*/

NUVBER i nfstc; /* Federal sales tax credit

*/

NUVBER i nfsur; /* Federal surtax

*/

NUVBER i nftax; /* Federal taxes

*/

NUVBER inftr; /[* Federal tax reduction

*/

NUVBER inftrt; /* Federal tax reduction transferred
from spouse */

NUVBER infortc; /* Federal other refundable tax
credits */

NUVBER inftran; /* Federal transfer income

*/

Programmer’ s Guide Page 37

SPSD/M Version 6.0 11/19/97

NUMBER i ngi si nc;
reduction */
NUMBER i ngi smax;
*/

NUVBER i m af et c;
Credit Benefits */
NUMBER i m bcf b;
*/

NUVBER i m capgt;
*/

NUMBER i m cqp;
*/

NUVBER i mdivt;
*/

NUMBER i m enp;
*/

NUVBER imself;
*/

NUMBER imgis;
*/

NUVBER i m gist;
*/

NUVMBER i m gispa;
*/

NUMBER i m asb;
*/

NUVBER i mnet;
*/

NUVBER i mntdn;
*/

NUMBER i m oas;
*/

NUMBER i m o0sa;
*/

NUMBER i nf newpg;
*/

NUVBER i m otg;
*/

NUMBER i m sbspa;
*/

NUMBER i m senb;
*/

NUVBER i mshri;
SPSD) */
NUMBER i m sa;
program */

Page 38

11/19/97

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

| ndi vi dual ' s i ncone for G S/ SPA
Maxi mum amount of G S

Al berta Fam |y Enpl oynent Tax
BC Fam |y Bonus

Capital gains (taxable)

CPP/ QPP payabl e

Di vi dend i nconme (taxable)
Wages and sal ari es

Total self-enpl oynent incone
G S benefits

A S provincial top-up

A S and spouse's al | owance

Al berta seniors benefit

Net i ncone

I nterest incone deduction all owed
OAS benefits
O her SA or guarantees

Federal new prograns

O her taxabl e denpgrants
Federal Seniors Benefit SPA
Federal Seniors Benefit

Shared i nconme concept (FAVEX &

Soci al assi stance (or repl acenent

Programmer’ s Guide
SPSD/M Version 6.0

yUNBER i mspa; /*
NLNBER i mtax; /*
*

N/UNBER imtot; /*
*

NLNBER i muib; /*
| nsurance benefits */

nyBER i mmanl t c; /*
NUVBER i nmarant ; /*
*

NLNBER I nmar ex; /*
*

NLNBER i mart ax; /*
adj ust nent */

NUVBER i nmart xc; /*
*

NLNBER i mdi sp; /*
*

NLNBER i meda; /*
*

NLNBER i mredat c; /*
NLNBER i menp; /*
*

NLNBER I mm cons; /*
*

NLNBER I mm onv; /*
L\I(JNBER I mmkt ; /*
N/UIVBER i Mot h; /*
*

NLNBER i mt ax; /*
*

L\I(JNBER i mt ot ; /*
NLNBER i mtran; /*
*

NLNBER i mbcbb; /*
*

NLNBER i Mbwi s; /*
y}wBER i mbcben; /*

Programmer’ s Guide
SPSD/M Version 6.0

Spouse' s al | owance
Taxabl e i nconme
Total incone
Unenpl oynment | nsur ance\ Enpl oynent
Mani t oba | earning tax credit

Adj ustment to inconme source
Married exenption clainmed

Change in consumabl e i ncone after
Married tax credit clainmed

Di sposabl e i ncone

Medi cal expenses al |l owed (conput ed)
Medi cal expenses al lowed tax credit

Al'l enpl oynment inconme

Consunmabl e i ncone
| nvest nent i ncone
Mar ket 1 ncone
Q her i ncone

Al taxes
Total i ncone

Al transfer incone
NB child tax Benefits base anpunt
NB child tax Benefits WS

Total NB child tax Benefits

Page 39
11/19/97

NUMBER i mf ach; /* Nunmber of famly allowance chil dren
claimed */

NUMBER imettr; /* Net transfers to person

*/

NUMBER i mptc; /* Non-refundabl e provincial tax
credits */

NUMBER i npasr; [* OAS recovery

*/

NUVMBER i npasres; /* Partial OAS fraction

*/

NUMBER i noccec; [* Ont. Child Care Exp. credit all owed
(child) */

NUMBER i noccea; [* Ont. Child Care Exp. credit all owed
(Fam ly)*/

NUMBER i nont eht; [* Ontario Enployers Heath Tax (Self-
enpl oyed) */

NUMBER i nfortxc; /* Federal foreign tax credit (509)
*/

NUMBER i noftca; [* Other federal tax credits applied
(416) */

NUMBER i not hrep; /* OQther federal repaynents

*/

NUVMBER i npeht; /* Provincial elderly health tax

*/

NUVBER i npehtc; /* Provincial elderly health tax
credit */

NUVBER i npendn; /* Pension incone deduction all owed
*/

NUVMBER i npent xc; /* Pension incone tax credit

*/

NUMBER i npex; [* Al personal exenptions and

deduct i ons */

NUMBER i npf a; /* Provincial famly allowance

*/

NUMBER i npf p; [* Provincial famly prograns

*/

NUVBER i nphot c; /* Provincial HOSP tax credits

*/

NUVBER inpnit; /* Provincial net incone tax

*/

NUVBER i npot h; /* Provincial other governnent incone
*/

NUVMBER i npovi nc; /* Inconme for |owincone nmeasurenent
*/

NUVBER i nmpptc; /* Provincial Political Contrib Tax
Credit */

Page 40 Programmer’ s Guide

11/19/97

SPSD/M Version 6.0

NUVMBER i nppt xt c;
*/

NUVBER i nppt g;
seniors */
NUVMBER i nprvbal
*/

NUVBER i npropt x;
*/

NUVMBER inptr;

*/

NUMBER i npsa;

*/

NUVBER i npstg;
seniors */
NUVMBER i npsur;
*/

NUMBER i npt ax;
*/

NUMBER i npalltc;
credits */
NUMBER i nportc;
credits */
NUMBER i nptc;

*/

NUMBER i nptran
*/

NUMBER i ngaaf a;
Suppl enent */
NUMBER i ngaar c;
Tax Credit */
NUMBER i ngnbf a;
*/

NUMBER i ngal exp
expenses

NUMBER i ngatc;
*/

NUMBER i ngaxm
*/

NUMBER i ngbt c;
*/

NUMBER i nqgcapgt;
*/

NUMBER i ngccea;
(dedn) */
NUMBER i ngcceni;

*/

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

Provincial Property tax tax credit

Provincial property tax grant for

Provinci al taxes less transfers
| nput ed property tax paid
Provincial tax reduction

Provi nci al social assistance
Provincial sales tax grant for
Provinci al surtax

Provi nci al taxes

Al'l refundabl e provincial tax
O her refundabl e provincial tax
Ref undabl e provincial tax credits
Provinci al transfer incone

/* Quebec Availability Al owance FA

/* Quebec Availability Allowance Refunded

/* Quebec newborn All owance

/*

/*

/*

/*

/*

/*

/*

cce credit calculation */

Programmer’ s Guide
SPSD/M Version 6.0

Quebec al | owabl e enpl oynent
Quebec age tax credit
Quebec age personal exenption
Quebec basic tax credit
Quebec taxabl e capital gains
Quebec child care expenses all owed
ref undabl e

Quebec net incone for

Page 41
11/19/97

NUMBER i ngccetc; /*
expenses Tax Credit */
NUMBER i ngcdeds; /*
*/

NUMBER i ngchar a; /*
donations(calc) */

NUMBER i ngcppt c; /*
credit */

NUVMBER i ngdct c; /*
*/

NUMBER i ngdedea; /*
*/

NUVMBER i ngdedf n; /*
i ncome */

NUMBER i nqgdedft; /*
*/

NUVBER i ngdedt ; /*
spouse */

NUVMBER i nqgdepni ; /*
*/

NUMBER i nqgdi sex; /*
*/

NUMBER i nqdi stc; /*
*/

NUVBER i ngdt xc; /*
*/

NUMBER i ngei ; /*
reducti on */

NUMBER i ngexm /*
(Basi c+Age) */

NUMBER inqgftr; /*
*/

NUMBER i nghsf c; /*
Contri buti ons */

NUMBER i nghsftc; /*
Cont.tax credit */

NUMBER i nmidivt; /*
*/

NUVBER i ngi net; /*
*/

NUMBER i ngi ntdn; /*
al | oned */

NUMBER i ngit ax; /*
*/

NUVBER ingitot; /*
*/

Page 42

11/19/97

Quebec
Quebec
Quebec
Quebec
Quebec
Quebec
Quebec
Quebec
Quebec
Quebec
Quebec
Quebec
Quebec
Quebec
Quebec
Quebec
Quebec
Quebec
Quebec
Quebec
Quebec
Quebec
Quebec

refundabl e child care
dependent chil dren deduction
al l owabl e charitable

CPP/ QPP contri butions tax
dependent child tax credits
enpl oynent al | owance

al | deductions from net
deductions fromtotal incone
deductions transferred from
dependant's net inconme
di sability exenption
disability tax credit

di vidend tax credit
eligible incone for tax
personal exenptions
famly tax reduction
Heal t h Services Fund
Heal t h Services Fund
t axabl e di vi dends
net incone
i nterest income deduction
t axabl e i ncone

total incone

Programmer’ s Guide
SPSD/M Version 6.0

NUMBER ingittr;
*/

NUVMBER i ngmar ex;
*/

NUMBER i ngneda;
*/

NUMBER i ngntc;
*/

NUMBER i ngpendn;
al | oned */
NUMBER i ngpex;
deduct i ons */
NUVBER ingptr;

NUVMBER i ngrepay;

NUMBER ingritc;
*/

NUVMBER i ngstddn
al | oned */
NUMBER ingstr;

NUMBER i nqgt a;

NUMBER i ngt aa;
NUMBER i nqtar;
NUMBER i nqgtca;
NUMBER inqtct;

NUMBER ingtcts;
spouse */

NUMBER ingtfa;
*/

NUMBER ingtottc;
*/

NUMBER i ngui ct c;
*/

NUMBER i ngl at c;
*/

NUMBER i nrent pd;
*/

NUVBER i nr epay;
*/

Programmer’ s Guide
SPSD/M Version 6.0

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

Quebec incone tested tax reduction
Quebec nmarried exenption cl ai ned
Quebec nedi cal expenses all owed
Quebec nmarried tax credit

Quebec pension i ncone deduction
Quebec personal exenptions and
Quebec property tax refund

Quebec repaynents

Quebec retirenent incone tax credit
Quebec stand. /nedical +charitable
Quebec sal es tax refund

Quebec tax abatenent (total)
Quebec tax abatenent (applied)
Quebec tax abatenent (refundable)
Quebec tax credits applied

Quebec tax credits transferable
Quebec tax credits transferred from
Quebec taxable famly all owances
Quebec total tax credits

Quebec U contributions tax credit
Quebec living alone tax credit

| nputed rent paid

Soci al Benefits Repaynents

Page 43
11/19/97

NUMBER i nsbi nc; /* I ndividual incone reducing Seniors
Benefit */

NUVBER i msbmax; /* Federal Seniors Benefit maxi num
benefit */

NUVBER i msbni ; /* Consuminc with Seniors Benefit not
zeroed */

NUMBER i nsboas; /* Federal Seniors Benefit OAS portion
*/

NUVBER i msbzi ; [* Consuminc with Seniors benefit
zer oed */

NUVMBER i nmspanax; /* Maxi mum anmount of SPA

*/

NUVBER i mst ddn; /* Standard or nedical +charitabl e
al | owed */

NUMBER i nstxcrt; [* Tax credits transferred from spouse
*/

NUVBER i maxcr; /* Total tax credits

*/

NUMBER intfa; [* Taxable famly all owances

*/

NUMBER i ntutxc; [* Tuition tax credit

*/

NUVBER imtxcrt; /* Total tax credits transferred
*/

NUMBER i nt xf; /* Federal incone tax payable

*/

NUMBER i nt xfc; /* Federal commodity taxes

*/

NUMBER i nt xp; /* Provincial incone tax payabl e
*/

NUMBER i nt xpc; /* Provincial commobdity taxes

*/

NUMBER i nui br; /[* U benefit recovery

*/

NUVBER i mui c; /* U C contributions

*/

NUMBER i muicrf; /* U El contribution refund

*/

NUVBER i mui ctc; /[* UC contributions tax credit

*/

i nt i mant f g; /[* Mnimumtax flag

*/

i nt i nccez; /* |s CCE zeroed?

*/

i nt infiler; /* Taxable filer status

*/

Page 44 Programmer’ s Guide

11/19/97 SPSD/M Version 6.0

i nt i ngi styp; /[* Type of A S entitlenent
*/

i nt I Mmi nc; /* No incone flag

iat I nobaspar ; [* Partial QOAS residency flag

iat i nol dtyp; [* Type of A S/ SPA nuclear famly

i;t i mgfs; /* Quebec famly situation (1-5)

iat i ngndc; /* Quebec nunber of dependent children
iat i msbtyp; [* Type of Seniors Benefit entitlenent
i;t i msbz; /* Is Seniors Benefit Zeroed?

iat i mspat yp; /[* Type of SPA entitl enment

iat i mui dpf g; /[* U claimants has dependents fl ag
s{ruct ub_ ubl; [* U claim#1 results [struct]

firuct ub_ ub2; [* U claim#2 results [struct]

s{ruct uv_ uv; /* user variables [struct]

céar infill [UVESI ZE-si zeof (uv_)]; /* filler array for im

[array] */

}oim;

The ubl and ub2 Structures:

The ubl1 and ub2 structures contain the modeled variables for the individual's first and second
Ul clams. Although the structure of ubl and ub2 is not under the glass box user's control,
glass box applications may well need to alter the values of these variables. Normally thisis
done viathe SPSM's Ul function, though in principle the user could write a separate function
to calculate values for these variables. Note that "downstream™ calculations such as income
tax use the modeled Ul variables as inputs.

typedef struct ub_ {

i nt ubcl mak; /* Weeks on claim

*/

i nt ubcal wk; /* Weeks on claimin cal endar year

*/

i nt ubei wbp; /* Weeks of past El benefits */

i nt ubpl; /[* Week # of first paynent

*/

Programmer’ s Guide Page 45

SPSD/M Version 6.0 11/19/97

i nt ubp2;
*/

i nt ubp3;
*/

i nt ubp4;
*/

i nt ubp5;
*/

i nt ubplc;
(w ndowed)

i nt ubp2c;
(w ndowed) */

i nt ubp3c;
(w ndowed) */
i nt ubpéc;
*/

i nt ubp5c;

(w ndowed) */
NUMBER ubcl npd;
*/

NUMBER ubcal pd;
*/

NUMBER ubcl nfs;
*/

NUMBER ubcal fs;
cal endar year
NUMBER ubern
*/

} ub_;

*/

*/

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

Week

Week

Week

Week

Week

Week

Week

Week

#

#

of

of

of

of

of

of

of

of

Week # of

start of second phase
start of third phase

| ast paynent

| ast training paynment
first paynent

start of second phase
start of third phase

| ast paynent (w ndowed)

| ast training paynment

Benefits paid on claim

Benefits paid in cal endar year

Fam |y suppl ement paid on cl aim

Fam |y supplenment paid in

Model ed i nsurabl e weekl y earni ngs

The uv Structure and the imfill Array:

The uv structure is one whose contents are defined by the user, in terms of both substance

and variable names. Chapter 8 describes how the user creates new variables, e.g. defining a

new tax or transfer program. The user controls the substance of "uv" viathevsu. h header

file, and the vsdu. c file, but can ater the values of the defined elements themselves
anywhere insideAdrv. c.

of the structure of uv here, since the user definesit. The array imfill can be ignored by the
glass box user; its existence and size are atechnological device useful in the mechanics of the

SPSM's operation.

These definitional and assignment capacities are the essence of
glass box applications when the user needs to add new variables. Of course the user must be
careful to give any new variable/tax to the right individual(s) so that roll-ups will work
properly throughout the remainder of the SPSM. Clearly it is not feasible to provide alisting

Sorting order and looping

Page 46
11/19/97

Programmer’ s Guide
SPSD/M Version 6.0

The SPSD is afile whose order is fixed. It cannot be sorted by the user. The sort order of
the database is critical to understand when attempting to loop through households. The
database is clustered into households that are randomly sorted in a stratified way. Each
individual household is then sorted as follows:

Household
Economic Families
Census Families
Nuclear Families
Head of Family
Spouse if present
Y oungest Child to Oldest Child

Within a household, individuals are grouped into economic families. Within an economic
family, individuals are grouped into census families. Within the census family, individuals
are grouped into nuclear families. Within the nuclear family, the head is always first
followed by the spouse if present. Children then follow sorted according to their age.

An entire household is loaded into the data structure specified above. Loops may then be
established to process any of the units of analysis within a household.

Summary

This section has provided a snapshot overview of the SPSM’s framework for storing data
about the household, its families, and their component individuals. An appreciation of this
structure is crucia to the glass box user as he/she seeks to refer to or alter the values of

existing data variables and modeled variables, and to create such new variables as would be
necessary for a customized version of the SPSM. The remainder of this chapter takes up
additional topics critical for accessing and assigning these variables. It employs he
perspectives of both the C language's use of pointers, and of a bestiary from which the user
can pirate elements for common SPSM tasks, e.g. stepping through the members of various
family types.

Introduction to Pointers in the SPSD/M

The C language makes heavy use of pointer variables, i.e. variables that point to a particular
area of memory, and especialy to a specific data structure. Although the portions of the
SPSM's source code dealing with tax/transfer algorithms make less use of pointers and
pointer arithmetic than those portions closed to the user, the glass box user will still have to
employ pointers. Even though the usage of pointersis essential, the design of the SPSM has

Programmer’ s Guide Page 47
SPSD/M Version 6.0 11/19/97

made it as simple as the designers could manage. A variety of macros and code fragments
are provided to make the pointer usage as simple and often as mechanical as was feasible.
This section briefly shows how these pointers are applied for typical glass box tasks such as
looping and referencing. Note, however, that this section is in no way intended to provide a
comprehensive course in pointer usage more generally outside the SPSM.

The Bestiary

A bestiary is a "collection of descriptions of real or imaginary animals’. The particular
"animals" collected and described here are real. They are fragments of C-language source
code likely to be useful to the glass box user as s/he reads and writes the code for tax/transfer
programs. The code fragments described here are all included in the fileBESTI ARY. C so that
the user can copy the segments without having to retype them.

The elements of the bestiary are provided in support of a philosophy emphasized throughout
this guide. More precisely, users should not have to reinvent the wheel, but should be given
every assistance in taking advantage of things that already exist within the SPSM. Being
able to copy existing code, perhaps modifying it in the process, provides four major
advantages.

1. The existing source code is known to be correct, and thus doesn't have to be debugged.

2. There will be greater consistency between the user's code and that of the distributed
SPSM.

3. Copying is much faster than re-entry.

4. The user can often get the needed job done, safely, without having to understand all of
the underlying detail. The general format used is that of a heading, followed by the code
itself, and, sometimes, a short comment or explanation.

Examples of Looping:

One of the most common tasks in reading, modifying or writing code is looping through the
relevant units in a household or one of its substructures. The following set of code segments
probably come close to being exhaustive as regards the looping required by the user. Note
that the source code segments include the relevant definitions required. E.g. in the first
example below, the user must declare the pointer 'in' of type 'P_in," and the integer, 'ini' so
that they can be used in the operation of the loop. In practice, the definitions will appear in
the source code prior to the loop itself.

[** * PROCESS ALL | NDI VI DUALS | N HOUSEHOLD hh **/
register P_in in;

int ini;

Page 48 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

for (ini=0, in=&h->in[0]; ini<hh->hhnin; ini++ in++) {
DEBUX2(" % processing individual %l in househol d\n",
ini);
/* code here, using pointer "in */

}

In the preceding loop, and the others that follow, the C 'for' statement is used. Items before
the initial semicolon initialize variables for the looping. The condition between the two
semicolons specifies when the loop is to continue. The items still within the parentheses, but
after the second semicolon specify the incrementing necessary for the next iteration. Also
included in the code fragment is a 'code here' comment. It indicates where the SPSM's code,
or the user's code, should go to act on the unit through which the loop cycles. The ‘code here
comment also identifies that unit in terms of the pointer that the loop controls.

[*** PROCESS ALL | NDI VI DUALS | N ECONOM C FAM LY ef **x

register P_in in;

int ini; for (ini=0, in=ef->efin; ini<ef->efnpers;
ini++, in++) { DEBUR2(" % processing individual %l in
economc famly\n", ini);

/* code here, using pointer "in */

}

[*** PROCESS ALL | NDI VI DUALS I N CENSUS FAM LY cf **/

register P_in in;

int ini;

for (ini=0, in=cf->cfin; ini<cf->cfnpers; ini++ in++t) {

DEBUX2(" % processing individual % in census famly\n",
ini);

/* code here, using pointer "in' */

}

/ *** PROCESS ALL CHI LDREN (i ncluding 18+) | N CENSUS
FAM LY cf *%

register P_in in;
int ini;
for (ini=0, in=cf->cfinch; ini<cf->cfnchild; ini++, in++)

{
DEBUX2(" % processing child (including 18+) %l in census
famly\n", ini);
/* code here, using pointer "in' */
}
[*** PROCESS YOUNG CHI LDREN I N CENSUS FAM LY cf *x
register P_in in;
Programmer’ s Guide Page 49

SPSD/M Version 6.0 11/19/97

int ini;
for (ini=0, in=cf->cfinch; ini<cf->cfnkids; ini++, in++)

{

DEBUX2(" % processing child (<18) % in census famly\n",
ini);

/* code here, using pointer "in */

}

[*** PROCESS ALL | NDI VI DUALS I N NUCLEAR FAM LY nf

* % /

register P_in in;

int ini;

for (ini=0, in=nf->nfin; ini<nf->nfnpers; ini++ in++) {

DEBUX2(" % processing individual % in nuclear famly\n",
ini);

/* code here, using pointer "in */

}

[*** PROCESS CHI LDREN I N NUCLEAR FAM LY nf *x

register P_in in;

int ini;

for (ini=0, in=nf->nfinch; ini<nf->nfnkids; ini++ in++)
{

DEBUX2(" % processing child % in nuclear fam|ly\n",
ini);

/* code here, using pointer "in' */

}

[*** PROCESS ALL ECONOM C FAM LI ES | N HOUSEHCOLD hh

* * /

P_ef ef;

int efi;

for (efi=0, ef=&hh->ef[0]; efi<hh->hhnef; efi++ ef++) {

DEBUX2(" % processing economc famly %\ n", efi);

/* code here, using pointer "ef' */

}

[*** PROCESS ALL CENSUS FAM LI ES I N HOUSEHOLD hh **/

P_cf cf;
Page 50 Programmer’ s Guide

11/19/97 SPSD/M Version 6.0

int cfi;

for (cfi=0, cf=&h->cf[0]; cfi<hh->hhncf; cfi++, cf++) {
DEBUX2(" % processing census famly %\ n", cfi);

/* code here, using pointer 'cf' */

}
[*** PROCESS ALL NUCLEAR FAM LI ES | N HOUSEHOLD hh

**/

P_nf nf;

int nfi;

for (nfi=0, nf=&h->nf[0]; nfi<hh->hhnnf; nfi++ nf++) {
DEBUX2(" % processing nuclear famly %\ n", nfi);

/* code here, using pointer 'nf' */

}

References With Respect to an Individual:

Another common glass box task involves referring to other individuals in a structure or
substructure, or to units of analysis "higher up" in the structure. It is via such references that
the user can refer to characteristics such as the providence of residence for an individual, the
income of the spouse of the eldest member of a census family (if that spouse exists), or the
age of the second oldest child living in any of the census families within a common economic
family.

[*** REFERENCE SPOUSE OF I NDI VIDUAL in **/

if (in->id.idspoflg) {

P_in inspo;

inspo = in->id.idinspo;

/* code here, using pointer 'inspo */

}

Notice here that there will not always exist a spouse.
[*** REFERENCE HOUSEHOLD OF I NDI VIDUAL in *x

P_hh hh;
hh = in->id.idhh;
/* code here, using pointer 'hh */

With the pointer to the household retrieved, the user then has access to household
characteristics such as province of residence. In contrast to the situation with the spouse of
an individual, the household will always exist.

[*** REFERENCE ECONOM C FAM LY OF I NDI VIDUAL in *x/

Programmer’ s Guide Page 51
SPSD/M Version 6.0 11/19/97

P_ef ef;
ef = in->id.idef;
/* code here, using pointer "ef' */

Similarly, the individual's economic family will aways exist, and will be relevant for
ascertaining whether the individual livesin abelow - LICO unit.

[*** REFERENCE CENSUS FAM LY OF INDIVIDUAL in **
P_cf cf;

cf = in->id.idcf;

/* code here, using pointer 'cf' */

[*** REFERENCE NUCLEAR FAM LY OF | NDI VI DUAL in **
P_nf nf;

nf = in->id.idnf;

/* code here, using pointer 'nf' */

These key references, coupled with the looping fragments of the previous section, permit the
user to do, relatively conveniently, amost anything likely to be needed for tax/transfer
simulation.

Summary

The first part of this chapter described the detailed data structure used for SPSD/M
households, and all of its substructures. That part also identified the most important manifest
constants and function macros the user will encounter in the SPSM's source code. The later
portions described the role of pointer variables in the SPSM and characterized the major
pointer types used. They concluded with a bestiary of code fragments for common glass box
tasks, looping through individuals and family units, and referring to an individual's spouse or
to the units of analysis that contain him/her.

The next chapter builds on this foundation by describing how the SPSM processes
households in terms of calculating taxes and transfers. That description is in turn a
foundation for the later chapters that indicate how to add user-defined parameters and
variables in the course of modifying the logic of the tax/transfer system.

Page 52 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

SPSM Function Calling Structure

The calculation of taxes and cash transfers for a household is controlled by a function whose
only task isto call all other individual tax/transfer algorithm functions. The sequence of calls
is critical to the simulation due to the informational requirements of the tax/transfer
functions. For example, net income must be known before GIS can be calculated. The
following list gives the functions called bydrv and adrv in the order in which they are

called.

Function
ui(hh)
fa(hh)
oas(hh)
dem(hh)
txinet(hh)
gis(hh)
senben(hh)
sa(hh)
txitax(hh)
txhstr(hh)
txcalc(hh)
txprov(hh)
gist(hh)
txcte(hh)
txfstc(hh)
gai(hh)
memol(hh)
ctmod(hh)
memo2(hh)
cceopt(hh, drv)
classu(hh)

Description

Compute Unemployment Insurance benefit
Compute family allowances

Compute old age security

Compute new demogrants

Compute net income

Compute guaranteed income supplement for elderly
Compute senior benefit

Compute social assistance

Compute taxable income

Compute child & spouse deductions

Compute federal tax

Compute provincial taxes and credits

Compute provincial elderly top-ups

Compute child tax credit

Compute federal salestax credit

Compute new guarantees, refundable credits
Compute disposable income, etc.

Compute commodity taxes and allocate to persons
Compute consumable income, etc.

Zero CCE for young kids if optimal

Compute user-defined reporting variables (in \glassbox)

The calling order of the component functions ofdr v reflects the logical precedence between

them.

The first functions, ui, faand oas, simulate programs whose benefits are determined by
factors other than income and as such as called first.

dem isastub routine for glass box applications that require calculations to occur before
entering the tax system routines.

txinet calculates net income prior to certain transfers.

gis calculates transfers to the elderly.

sa calculates social assistance or guaranteed income transfers.

Federal and provincial taxes are calculated next in the next four functions with the tx
prefix (txitax, txhstr, txcalc, and txprov).

gist, txctc, and txfstc calculate income tested transfer programs.

Programmer’ s Guide
SPSD/M Version 6.0

Page 53
11/19/97

gai is another stub routine that isintended for use by glass box users who wish to
simulate options requiring information on all personal income taxes and cash transfers.
For example, users may use this function to simulate an income supplementation
program.

The memol and memo2 functions create aggregate variables for reporting.

In the ctmode function, sales and excise taxes are calculated by applying Input/Output
based effective sales tax rates to observed family expenditures.

cceopt optimizes income by maximizing the childcare expense credit and the child tax
credit.

classu is astub routine that allows the glass box user to compute and assign values to new
or re-defined variables.

The functions called bydr v call other functions and sub-functions in order to complete their
calculations. The following page contains a complete list of the names of functions and sub-
functions along with a short description in the order in which they are called bydrv. Please

refer to the specific function in theSPSD/M Algorithm Guide for a more detailed description.

Sub-functions can be found listed under the function that calls them. Thus for a complete
understanding of the calculation of net income one would have to consult both the txinet and
txccea functions.

Function names are printed in lower case, bold, courier font (e.g. txinet, txcalc) and
correspond to a single C language source code file (e.g. tixnet.c, txcalc.c). Sub-
functions are defined within the function (file) that calls them and are shown in lower case,
courier font (e.g. ui sqz, gi ssub). Thefollowing exampleisacall of a sub-function uiclm()
in ui.c where uiclm is defined in a section of ui.c.

valid_claim= uiclnm(in, & n->id.ucl, in->id.ucl.ucyl, & n->i mubl,
hh- >hd. hdprov, hh->hd. hdurb, wctb);

Page 54 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

Glass Box Development: Adding Typical Scalar
Parameters

As its title suggests, this chapter explains to the glass box user the mechanics of the
programming tasks associated with adding typical scalar parameters during the development
of glass box applications. Structurally, the chapter communicates this information via a
detailed worked example. The first section reviews the general procedure for developing
glass box applications, describing the steps that are fundamental to any model alteration, be it
changing code, adding parameters or adding variables. The second section takes up several
preliminaries to parameter addition. It also describes the nature of the example to be used, an
extension of the Family Allowance supplement example used in this Guide's Quick Start
Chapter. The remaining sections then use the example to explain in detail the steps involved
in adding the most common kinds of scalar parameters to a model. Finaly, the last section
summarizes the key points for regarding the addition to a model of these common forms of
parameters.

General Procedure for Making Glass box Changes: A
Recapitulation

Section 2 has already described the general procedure for developing glass box applications,
including the reasoning behind the steps. We summarize the key points here in capsule form.

Create Task Sub-directory

identify Files to be Changed

Copy relevant Filesto Task Sub-directory
Edit Relevant Files

Compile the new version

Test the New Version of the Model

Carry Out the Intended Analysis
Create Task Sub-directory

The user creates a new "task subdirectory" to hold the files relevant for the new glass box
application. She/he will edit files in the task subdirectory, leaving all of the other SPSD/M
files alone.

Identify Files to be Changed

Programmer’ s Guide Page 55
SPSD/M Version 6.0 11/19/97

The user identifies those filesinc: \ spsm gl ass for which variants will have to be created.

For example, in the Quick Start example, we identifiedaf a. ¢, Adrv.c and SPSM.mak, and

SPSM.mdp. The example appearing in this chapter indicates how other files, e.g.Mpu. h and

Anpd. ¢, are relevant to adding new parameters to a glass box application. Section 8 will

explain how still other files,vsu. h and Vsdu. c, are relevant when the user wishes to add

new variables to amodel. Clearly, the tax/transfer function files that use the new parameters
must also be changed. At times, the user may find it more efficient to use files already
developed in a previous application as templates, rather than going all the way back to the
glass subdirectory's template files.

Copy Relevant Files to Task Sub-directory

The user copies all of the identified-relevant files across to the task subdirectory. The user
will work only with these copies, leaving the originals unchanged.

Edit Those Relevant Files

The user makes appropriate changes in each of the files identified as relevant. We
recommend that the changes be made in the following order:

1. Include all relevant filesinto the project and change the output file name in
Project:Setting:Link.

2. Editthe Adrv. c file, as necessary.

3. Editthe Mpu. h and Anpd. ¢ files, when appropriate, to add any new parametersto the
model.

4. Editthevsu. h andVsdu. c files, asappropriate, to add any new output variablesto the
model.

5. Edit the source code files to add the desired new substantive logic to the tax/transfer
system.

We shall follow this prescribed order in the examples we present in this and subsequent
sections.

Compile the new version

The user should activate de Debugging setting in Build:Set Active Configuration and then
run a debug execution of the project. When the program changes are properly implemented
then the new model should be compiled.

Test the New Version of the Model

Page 56 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

The user tests the new version via a set of validation analyses designed to reveal any
problems with the logic that has been added or modified. This step may require going back
to some of the earlier ones to remedy any deficiencies that are discovered.

Carry Out the Intended Analysis

Finally, once the validation is complete, the user can proceed with "production runs’ of the
new executable code to simulate the consequences of the change that was modeled.

Introduction to Parameter Addition

This section takes up a few critical preliminaries to the procedure for adding typical scalar
parameters. First, it illustrates why a user might wish to add one or more parameters to a
model. In addition, it describes the substance of the new parameters we use to illustrate the
addition of typical parameters.

As noted at the end of the Quick Start example, our hypothetical analyst there took a few
shortcuts that might be done differently in a real-world policy development exercise,
especialy if the new model were intended to be used repeatedly or by multiple analysts. One
of these shortcuts was to "hardwire" the $120 per year Family Allowance increment right
into the Af a. ¢ function. Although this might be acceptable if the user would never want to
try another value for the increment, it is not particularly efficient should there be any interest
in examining the impacts of other values. The user would need to re-edit the code and then
to recompile the model for each separate value to be examined; the user might, for example,
seek to confirm a belief that the impacts are generally proportional to the amount of the
increment, and wish to try multiple values by way of investigation. With appropriate
parameters added to the model, no additional editing is required, and the user can investigate
multiple values without re-compilation by simply supplying new parameter values to the
modified model.

Consequently, the several sections in this chapter describe the steps necessary to add new
parameters to the model, cleaning up the Quick Start example by way of a specific
illustration. This chapter restricts itself to the most commonly used forms of scalar
parameters. We believe that the kinds of additions described here will meet perhaps 80% of
the parameter addition needs of glass box users. We leave the definition of more esoteric
scalar parameters, and of vectors and matrices of parameters, to Section 7. Whatever the
type of new parameters, once added to a model, they are available to all functions called by
Adrv. c; they are not restricted to the function for any single transfer program.

Substantively, we shall add three parameters to a variant of the Quick Start model. The three
additions correspond to the three most common forms of parameters that glass box users will
have occasion to use.

1. The first parameter, a scalar "float" or "real" value, will provide the value of the Family
Allowance increment given in respect of certain children; it will eliminate the hardwired
$120.00 value. Well call this parameterf asuppc (Family Allowance Supplement Per

Programmer’ s Guide Page 57
SPSD/M Version 6.0 11/19/97

Child).

2. The second parameter, a scalar integer value, will indicate the number of children at
which the supplement begins to be payable; it will eliminate the hardwired value of "3"
used in the Quick Start example. We'll call this parameterf asupf ec (Family Allowance
Supplement's First Eligible Child).

3. The third parameter, a "flag" variable that is effectively a boolean switch, will indicate
whether any attention is to be paid to the first two parameters. In this, its function
parallels that of the many "flag" variables used throughout the SPSM. When turned "on"
it will enable the computation of the supplement; when turned "off" the model will
calculate Family Allowances with no provision for the supplement. Well call this
parameter f asupf | g (Family Allowance Supplement Flag).

Our description assumes that the user has chosen to use \ gl assex2 as the task directory,
creating it if necessary.

Copy Files Adrv. c, Mou. h, Ampd.c, Afa.c, SPSM nek, and
SPSM ndp

The user copies to the new task subdirectory all of the files for which changes are required..
Similarly, the user will wish to modifyAdrv.c to update the description used for the
substantive files (here onlyAf a. c) being changed. Thus, Adrv. ¢ need to be copied.

Two other files, Mpu. h and Ampd. ¢, are always relevant when the user wishes to add a new
model parameter. Mpu. h (Model Parameters, User) is a C language header file that defines
the nature of the new parameter. Anpd. ¢ (Alternate Model Parameter Definitions) contains
the function invocations that make the user's parameters known throughout the rest of the
SPSM, e.g. so that they can be referenced by name for purposes of changing values "on the
fly" when the user executes an SPSM executable file.

The user must copy these Mpu. h and Anpd. ¢ files across from the glass subdirectory or

some equivalent source. If, for example, the user has already, elsewhere, modified these files
to define other parameters, and wishes to retain those previous modifications, s’he can copy

templates for Mpu. h and Anpd. ¢ from the subdirectory in which they exist. By the term

"templates’ we refer to existing files, or pieces of text or code, that serve as a convenient

starting point for making any desired modifications. For example, it would make no sense at
al for the user to enter, from scratch, completely new versions of the relevant files. In this
example, we'll assume that these are the first parameters being added, and will copy the
templates from glass.

Finally of course, the user must copy the substantive tax/transfer function or functions that
will use the new parameter. For our purposes the only relevant substantive function is the
Afa. ¢ function. Rather than copying it from glass and then having to start from scratch,
we'll copy it from glassex1 so that some of our work is already done, e.g. locating where the
assignment of the increment should be made.

Page 58 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

The user will have to copy SPSM.mak and SPSM.mdp that describe the project environment.

Update the project

All the required files should be included in the project and the name of the output executable
changed in Project: Setting:Link to glassex2.exe.

Update the Algorithm Description in Adrv. ¢

Recall from the Quick Start example that the al tname[] and Tdrv[] global variables
received new values to reflect and document the nature of the changes to be made. Here,
with a new version of the model being created, a corresponding substitution isin order. The
two substitutions, consisting exclusively of the contents of the two strings, result in the
following code:

==================== GLOBAL VARI ABLE DEFI NI TI ONS
" */

[*gl obal */ char ALTNAME[| DSI ZE+1] = "Paraneteri zed FA
Suppl enent " ;

/* G ve global string describing version of this nodule */
/[*gl obal */ char FAR Tdrv[] = "Paraneterized FA Suppl enent"”

At this point we can carry out a debugging compilation to check our modification. Such a
check helps a user to identify syntax errors while the nature of the modification is still fresh
in the memory. To do so, select Win32Debug project in Project:Set Active Project and then

do Build:Start Debug. If compilation and links are required, C++ will let you know.

Modify Mpu. h to Define the new Parameters

The user next needs to change the file Mpu. h to define the type of the new parameters.
When the change is made in the glass version of Mpu. h, the line containing the string
"UMDUMMY" is replaced with definitions of the new parameter(s). The name
"UMDUMMY" refers to "User Model Dummy parameter.” We're calling the first new
parameter FASUPPC to indicate that it is the amount of the FA supplement per relevant
child. Before the change the indicated line (about line 62) reads:

i nt UVDUMWY; [* dummy entry
*/

Because, as the label indicates, this entry is only a placeholder, dummy, entry so that the
SPSM will have something to work with if the user has not yet defined any user parameters,
we delete this line completely. We replace it with the lines:

NUMBER FASUPPC, [* Fam ly Al'l owance Suppl enent per Child

*/

i nt FASUPFEC, /* FA Supplenment, First Eligible Child

*/

Programmer’ s Guide Page 59

SPSD/M Version 6.0 11/19/97

i nt FASUPFLAG /* FA Suppl enent, Activation Fl ag
*/

In the first line, "NUMBER" is a macro used by the SPSM to ensure portability across
machines; it corresponds to the type "float". FASUPPC is the name of the new parameter.
The SPSM convention is that such parameter names are capitalized. The other two
parameters are naturally integers. For readability, we have a'so added comments on the right
to indicate the nature of the parameter values.

These simple additions complete our changes toMvpu. h. Typically, if we were adding new
parameters to a non-empty set of user parameters already in place, we would simply add the
new definitions to the bottom of the existing list inMu. h, just as the FASUPFEC and
FASUPFLAG parameters here follow the FASUPPC parameter.

The SPSM allocates space for up to 500 such new parameters, easily enough for typical glass
box user applications. Even more parameter additions are possible when some of them are of
the smaller "int" type. Any attempt to exceed this limit will result in a compile-time
error message that will make the problem apparent.

Modify Anph. ¢ to Make the Parameters Available to the SPSM

The user also needs to change the Anpd. ¢ file to make the new parameter "visible'
throughout the portions of the SPSM that may need to reference it. The SPSM provides a
function "pmaddent” (Parameter Module, Add Entry) to carry out this task. The user calls
the function once for each new parameter, just before the "DEBUG_OFF (Anpd)" statement
near the end of Anpd. c, at about line 138.

If the user isworking on a copy of Anpd. ¢ that already contains invocations of pmaddent for
other parameters, those other calls can be used as templates. In our example though, since
there are, as yet, no other parameters added, we copy a pmaddent template from the file
C: \ SPSM MODEL\ Mpd1. ¢ (Model Parameter Definition File 1). For our first parameter,
FASUPPC, we recognize that this NUMBER type parameter should be very similar to the
STDFA parameter appearing at about line 252. We simply copy that pmaddent invocation
and make appropriate substitutions. This, practice, copying something generally similar that
dready exists and works, and then modifying it, is standard practice in glass box
development. The invocation, as copied, looks like:

pmaddent (pcp, " STDFA", (char *)&MP. STDFA, NULL, P_SCL, C NUM O, 0, NULL, 0);

We modify it for our purposes by changing the two references to STDFA to correspond to
our new parameter. Replacing "STDFA" by "FASUP" and "(char *) &\VP. STDFA" by "(char
*) &WP. UM FASUPPC', because the new parameter is an element of the substructure UM (User
Model) that lies within the MP (Model Parameters) structure, we obtain the result:

pmaddent (pcp, " FASUPPC', (char *)&WP. UM FASUPPC, NULL, P_SCL, C NUM 0, 0, NULL,
0);

For the moment we simply retain all of the other arguments to the function without having to
worry about what they represent. Aslong as we have chosen an appropriate template to steal
from, there is no problem. Later, in Section 7, we'll look at the meaning of each of the

Page 60 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

arguments to pmaddent so as to facilitate more informed judgements about appropriate
sources for pmaddent templates, and more effective recovery from any incorrect choices.

We choose UIWAITWKS (the integer number of weeks in the Unemployment Insurance
waiting period) as our template for our integer parameter specifying the "position” of the first
child in the family to be granted the supplement. Similarly, we choose an existing flag
parameter to serve as the template for our new FA supplement flag; FAFLAG, which
controls whether Family Allowances are computed at all, seems a good choice. Before our
modifications, these two invocations appear as follows:

maddent (pcp, "U WAl TWKS', (char *)&WP. UIWAI TWKS, NULL, P_SCL, C_INT, 0, 0, NULL,

)
pmaddent (pcp, "FAFLAG', (char *)&WP. FAFLAG, NULL, P_SCL, C_INT, E_FLAG 0, NULL, 0);

p
0
As with the FASPPC parameter above, we modify each of these templates in two places,
substituting the name of the parameter and its relation to the MP structure. The modified

pmaddent invocations appear as follows:

pmaddent (pcp, " FASUPFEC', (char *)&WP. UM FASUPFEC, NULL, P_SCL, C_INT, 0, 0,
NULL, 0);
pmaddent (pcp, " FASUPFLAG', (char *)&MP. UM FASUPFLAG, NULL, P_SCL, CINT, EFLAG O,
NULL, 0);

These simple additions complete the modification of Anpd.c as regards making the
VALUES of the new parameters available throughout the SPSM, at least once we have
somehow assigned those values. Later in this section we address some of the mechanisms by
which the user can make the assignments. However, we still need to provide clear labels for
the parameters so that the SPSM can use them to give meaningful documentation of the
model parameters as appropriate.

Once again, the design of the SPSM renders our job easy. There is a ready-made function.
stradd, to implement the labeling. Just after the pmaddent statements we insert three lines
to invoke thisfunction, st r add --

stradd("FASUPPC', "Fam |y Al |l owance Supplenent per Child");
stradd(" FASUPFEC', "FA Supplenent, First Child Payable");
st radd(" FASUPFLAG', "FA Suppl enent, Activation Flag");

The stradd (String Add) function, when executed, "attaches' the descriptor string to the
parameter so that the descriptor will automatically appear in al relevant SPSM
documentation and labeling. With the @tradd) function's arguments this simple, i.e. one
string identifying the name of a new parameter, with a second string providing the associated
description, we do not even need to resort to a template.

The final item within this step, partial compilation of theanpd. ¢ function, is optional, but

we recommend it as conducive to the orderly development of glass box applications. This
type of partial compilation enables the user to have the compiler check for syntax errors
while the nature of the modifications is still fresh in one's mind. It does not ensure that the
modified source code meshes with the rest of the SPSM. Note that one has to have modified

any relevant header files, here thevpu. h header file, first in order for the Debug compilation
to work.

Programmer’ s Guide Page 61
SPSD/M Version 6.0 11/19/97

Modify the Functions that Use the New Parameter(s)

To complete the programming changes involved in adding the parameter, we next need to

ater the Af a. ¢ function so that it makes use of the new symbolic parameters rather than the

"hardwired" values that appeared in the Quick Start example. We begin by adjusting the
label defined for the function; more specifically we modify the code defining the label so that
it reads --

/*gl obal */ char FAR Tfa[] = "Afa.c Paraneterized"

With this label supplied, the SPSM can use it whenever it has occasion to use the function's
description in its documentation.

The substantive changes to theAf a. ¢ function are simple to implement.

Where the Quick Start example used "120.0", we substitute the symbolic representation
"MP.UM.FASUPPC". This naming convention, exactly identical to the one used in the
"pmaddent” function invocation in the Anpd. ¢ change above, reflects FASUP's location
within the UM (User Model) substructure of the MP (Model Parameter) structure that the
SPSM uses to store al of the model parameters.

Where the Quick Start example used 3 to represent the number of children required in the
family for the supplement to be paid, we substitute MP.UM.FASUPFEC. All relevant
formulae are adjusted accordingly.

We make the calculation of the supplementation, and its addition to thefa, tfa, and ffa
variables conditional on the value of the new flag variablef asupf | ag.

Thus, the key Quick Start example source code that appeared as.

/* $120/yr bonus for 3rd and subsequent children <18 */
if (nch >= 3) {

tfa += (nch-2) * 120.0;

ffa += (nch-2) * 120.0;

}

becomes, in itsgl assex2 incarnation:

/* Conditionally add a Fam |y All owance bonus for the
"FASUPFECt h" and subsequent children <18 in the unit */
i f ((MP.UM FASUPFLAG == 1) & (nch >= MP. UM FASUPFEQ)) {
tfa += (nch- MP. UM FASUPFEC+1) * MP. UM FASUPPC,

ffa += (nch- MP. UM FASUPFEC+1) * MP. UM FASUPPC,

}

Page 62 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

The underlying logic remains unchanged, but now it is specified parametrically. In addition
we have modified the comment to reflect the generalization to symbolic parameters. In
writing the source code in this fashion, we have trusted that users of the model will supply
only reasonable values of the parameters. For example, we trust here that no user will

inadvertently supply a value of zero (0) for MP.UM.FASUPFEC and unintentionally create a
Family Allowance supplement for those families with zero children aged O through 17.
Later, in Section 7, we'll show how the user can use the SPSM's edit-check facilities to

guarantee that the parameters values are reasonable.

Once again we perform a Debug compilation to catch any syntactic errors before compiling
the new model.

Validate and Make Black-Box Production Runs

As with the Quick Start example, we still need to test the new variant of the model to ensure
that it gives reasonable results. With SPSM runs being essentially free, and not terribly time
consuming, two particular validation runs immediately suggest themselves.

1. Thefirstisarun with theFASUPPC parameter set to zero, using the same tables generated
in the Quick Start example. For this run we set the FASUPFEC parameter to 3, and the
FASUPFLAG parameter to 1. We expect that there will turn out to be no differences
between the base and variant systems because the zero value for the parameter renders
the change nil.

2. We modify the first test to supply avalue of 120.0 for theFASUPPC parameter, leaving the
FASUPFEC and FASUPFLAG parameters at 3 and 1. Again we request the Quick Start
tables as output, expecting to observe the same results we obtained from the original
Quick Start example with its hardwired 120.0 value.

3. We modify the FASUPFEC to take on a value of 2, expecting that this will considerably
increase the cost of the hypothetical option, since there are relatively many two-child
families. The specific tables allow us to ascertain easily, at least for the gross amount of
the supplement, whether the right amounts of supplement have been calculated for each
of the family types by number of children.

4. Finaly, we add afourth test to turn the supplement off via theFASUPFLAG parameter. In
making this validation test, we leave theFASUPPC and FASUPFEC parameters at 120.0
and 2 so that we can be sure that any effect is caused by resetting the flag parameter to
zero. As with the first validation run described above, we expect that there will be no
differences between the base and option Family Allowances, the computation of the
supplement having been suppressed.

For carrying out the validation tests, it remains only to assign the desired values to the new
parameters. The design of the SPSM makes this easy. If we simply run the new model
without having bothered to specify a needed parameter value, the SPSM notes the omission,
allowing us to provide the value via the "on-the-fly" parameter editing facility. Or, to be

Programmer’ s Guide Page 63
SPSD/M Version 6.0 11/19/97

functionally equivalent, we could have placed an appropriate entry in theMvPR (Model

Parameter) file, since such files hold model parameters generally, whether the parameters are
defined by the user or are built into the SPSM as distributed. Similarly, the new parameter
file could have been specified in anMPl (Model Parameter Include) file. Authoritative
descriptions of these latter two methods may be found in Section 2 of the SPSM User's

Guide.

Upon making the tests described above, we are encouraged that our change, the addition of
the three new parameters, has been properly implemented because all of the sets of outputs
appear as anticipated. The results of the third test, where we shift the FASUPFEC (first
eligible child) parameter, are especially important. There we can check to see if appropriate
amounts of supplement benefits are added to families classed by number of children aged O
to 17. Now, with the model changes validated, we are ready to make the relevant set of
production runs. For example, a client might ask us to use aFASUPPC parameter value of
60.0 to confirm our his expectation that the same number of families would be affected as
with avalue of 120.0, and that the costs, in aggregate and as an average per affected family,
would be only half as great as for that 120.0 value. Similarly, we might substitute a much
larger value, say 5000.0, to confirm our expectation that, with such a large transfer, the
proportion of the supplement recovered through the tax system would rise somewhat as some
families move into higher tax brackets.

Summary/Conclusion

It is useful to conclude by highlighting, but without any redevelopment, the key points
relevant for adding typical scalar parameters to a model. In noting these points, it is taken as
given that the analyst is working with COPIES of the relevant files, and is performing all of
the modifications in a task subdirectory dedicated to the analysis at hand. We also assume
that the user has updated the project to include all of the relevant source code files. In terms
of technique, we assume that the user will most often be grabbing a chunk of similar existing
code as atemplate, and then modifying it as required.

1. Modify the Mpu. h header file, adding one statement for each new parameter. The
statement indicates the name of the parameter and its type, with NUMBER used for float
values.

2. Modify Anpd. ¢ source code file, adding two statements for each new parameter.

Add one "pmaddent” invocation for each parameter so that the SPSM can make its

value available to all functions called byAdrv.c. Normal practice is to copy the

invocation from an existing invocation and then modify it in two places -- the name
of the parameter and its address.

Add one stradd invocation for each parameter so that the SPSM attaches the
parameter's label to that new parameter.

Page 64 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

3. Modify the relevant substantive function(s) to make use of the new parameter(s),
changing the labeling as well as the internal logic of the function.

4. Debug and Compile the new model Make the necessary "production runs' of the model
and then interpret the results.

Programmer’ s Guide Page 65
SPSD/M Version 6.0 11/19/97

Glass Box Development: Adding Less Typical Parameters

This chapter describes in greater detail the arguments for the pmaddent function and that
function's use when the user adds scalar, vector and matrix parameters to glass box
applications. To do this, it builds on the foundation established in Section 6 (adding typical
scalar parameters), developing the new considerations for less typical scalar parameters, for
vectors and lookup schedules, and for matrices. Finally, the last section summarizes the key
points for regarding the addition, to a model, of these less common forms of parameters.

The first section of this chapter presents the set of arguments for the key pmaddent function,

describing the key features of each of them. The following section then presents a list of the
types of scalar parameters the user might wish to add. For each type, it indicates briefly the
purpose of that specific type, describes the key pmaddent arguments for the type, and
identifies an appropriate pmaddent template to use when creating a parameter of that type.

Also included is a section that takes up the special considerations involved in adding vectors
of parameters, following with schedule "lookup" parameters. Section 7.5 then develops the
corresponding elements for matrices of parameters.

The pmaddent Function and its Arguments

Recall from Section 6's description of adding typical parameters that the most complicated
aspect of making a new parameter available to a model lies with the changes toAnpd. ¢, the
changes to Mpu. h being very straightforward definitions of the parameters types. Within the
Anpd. ¢ changes, the only significant challenge, and not by any means a particularly onerous
one, comes from the invocation of the pmaddent function. We noted that the glass box user
can usually sidestep the complexities of that function simply by choosing an "appropriate’
template invocation, one copied from an "appropriately similar" parameter already defined.
In this section we explain more fully the sense of the various pmaddent arguments, so that
the glass box user will be able to use the pmaddent function confidently, even when thereis
no obvious template to be copied and modified.

Our starting point for the description of the pmaddent arguments is the explanatory comment
that appearsin Anpd. c itself (at about line 150 of the GLASS version). Welll take up each of

the ten arguments in sequence. We emphasize, however, that the user should have relatively
little occasion to require this information. Most of the time, the parameter to be added will

be well understood, and an appropriately similar template parameter readily identifiable. In
all those cases the user should simply modify the relevant templates (as described in Section
7.4) and get on with the modeling, leaving the intricacies of pmaddent to those doing non-
standard tasks.

Anpd. ¢' s summary of the pmaddent arguments s as follows:

/**
* prmaddent (
* pcp, <= paraneter chain being extended

(l eave as i59)

Page 66 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

* "OXXXXX! <= nane by which the paraneter wl|
be known

* (char *)&WP. UM XXXXX, <= address of the paraneter

* For mat , <= printing information for the
par anet er

* Agg_Type, <= Aggregate type (scal ar, vector,
etc.)

* C Type, <= C-type (integer, nunber, string)
* Edi t, <= Edits to be perforned

* Row_nmax, <= Maxi mum nunber of rows, or
option edit limt. * Rows _addr, <= Address of
int holding current nunber of rows * Limt <= Nunber
of col umms *);

**/

The first argument (pcp) is particularly straightforward; the user ALWAYS enters the
variable pcp. The argument identifies the specific parameter chain that the user is extending.
Although the SPSM employs other parameter chains in its operations, the user may add
parameters ONLY to the pcp chain.

The second argument, characterized by the "XXXXX" placeholder in the comment, is the
user’s name for the parameter. The name here will be the same one that the user employed in
the Mpu. h definition. Users should be careful to choose reasonable mnemonics for these
names, e.g. the FASUPFLAG name we used in Section 6. The SPSM convention is that
these names should start with an upper-case letter and should contain only upper-case letters
and digits.

The third argument, characterized by the (char *)& MP.UM.XXXXX placeholder, is the
address for the parameter. The initial (C language "cast") portion of the argument, '(char *)'

is invariant. Similarly, the 'MP.UM" portion is invariant because the user's parameters are
always added to the "Model Parameter, User Model" structure. The 'XXXXX' portion

represents the name of the user's parameter; it is set to the string used as the second

argument, but without the delimiting quotes. Finally, reflecting C's treatment of variable's
addresses, the ampersand (&) is present if the parameter is a scalar, and typically absent if it
is not (i.e. absent if the parameter is a vector, lookup parameter or a matrix). The common

C-language device of specifically referring to the first element of an array is taken up later as
a special topic. For the specia case of a' DUMMY' parameter, described below, this third
argument takes on the value of 'NULL".

The fourth argument, characterized in the description above as 'Format', is a string. It
contains information about how the SPSM should display the value of the parameter when
documenting it. Typically, the user will use the predefined format 'NULL', indicating that
the SPSM is to print the parameter as it sees fit. Another predefined format, "F_FRACT",
contains the string "8.5" and is particularly suited for printing out the value of afraction. The
user can also enter an explicit string for the argument; e.g. using "8.0" specifies that the value
should occupy 8 characters, and that it should not include a fractional part. An argument of
"7.2" would specify a string occupying 7 characters, with two digits beyond the decimal
point. When appropriate, e.g. for the lookup style parameters, the argument can include

Programmer’ s Guide Page 67
SPSD/M Version 6.0 11/19/97

multiple format indicators, e.g. "8.0 8.2 8.2". The predefined format F_ LKTUR, used for
P_LKPXY type parameters provides a concrete example of this usage.

The fifth argument, characterized in the description above by 'Agg_Type€, indicates the type
of the parameter. This argument reflects a forced choice among the six integer values O
through 5. Each of the six values has a mnemonic counterpart that the user can employ, for
clarity, in place of the numeric valueitself. The six values, their mnemonic counterparts, and
their interpretations are as follows:

The value 0, represented mnemonically by P_SCL, is the most common value. It is used for
aparameter that is a scalar value (integer, float, fraction, etc.).

The value 1, represented mnemonically by P_VCT, is used when the parameter is a vector.
Other key information about the vector, e.g. the number of elements it contains, is given by
other pmaddent arguments.

The values 2 and 3, represented by the mnemonics P_LKPXY and P_LKPSL, are used
within the SPSM for two specia kinds of schedules in which lookups are performed, one
with an X-Y format and the other with a range-slope format. In the event that the user

wishes to create parameters of these types, the GISST and FTX parameters provide

operational examples. These two parameter types define schedules that correspond to
functions LKUPL1 and LKUP2 respectively; the LKUP1 and LKUP2 functions themselves
are documented in the SPSD/M Algorithm Guide (Section 6). The use of schedules in the
SPSM is documented more fully in Section 7.5 of this chapter. The value 4, represented by
the mnemonic P_TBL, is used when the parameter is a two dimensional matrix (table).
Other key information about the matrix, e.g. the numbers of rows and columns, is given by
other pmaddent arguments. The commodity tax matrix CTTXRM provides a good example.

The value 5, represented by the mnemonic P_ DUMMY/, will not generally be used by glass
box users. This parameter type corresponds to a dummy entry used to hold the name of a
header string for documentation purposes.

The sixth argument, characterized in the description above by 'C_Type, indicates the type of
the parameter. There are three possible entries for this argument. The value C_INT is
appropriate when the parameter value is inherently an integer, i.e. consists of a number with
no fractional part, and has a value within the C language's bounds for integer values. The
user will employ avalue of C_INT for this argument when thevpu. h entry for the parameter
used an 'int' declaration. Parameters that are "flags' or "options" will naturally be integers.

The value C_NUM is appropriate when the parameter value may have a fractiona part, or
when it is too large to be stored as an integer. The user will employ a value of C_NUM for
this argument when theMpu. h entry for the parameter used a'NUMBER' declaration.

The value C_STR is used when the parameter value is a dummy entry used for a header
string. Glass box users will not generally have occasion to use C_STR.

The seventh argument, characterized in the description above by 'Edit’, indicates the edit
checks to be imposed on the value of the parameter. The activation of these edit checks will

Page 68 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

force the value of the parameter to obey various constraints that may be appropriate. In
addition, they may constrain a user's ability to modify the parameters values at execution
time via the SPSM's parameter editing facilities. The pmaddent argument governing such
edit checks is an integer value. Typically, the user will choose a value by entering an
element from a set of predefined mnemonic values (described below).

The codes and their interpretations are as follows:
E_NONE (value 0) indicates that no edit checks are to be performed on this parameter.

E_FIXL (value 1) applies only when the parameter is a vector, lookup table or array (and
thus has a known maximum number of rows). This edit code prevents the user from
attempting to change the actual number of rows from the maximum value. The mnemonic
here indicates that the row limit is regarded as fixed.

E FLAG (value 2) indicates that the parameter is a flag. Under SPSM conventions, this
means that the parameter is treated as a binary variable (defined as an integer) that must take
on either the value O (zero) or the value 1 (one).

E _FRCT (value 4) indicates that the parameter is a fractional value that must fall in the
domain 0.0 and 1.0, inclusive.

E_NOCH (value 8) indicates that the user is not alowed to make any changes to the value of
the parameter via the SPSM's built-in parameter editor. This edit check can apply to any of
the types of parameters, C_ INT, C_ NUM or C_STR.

E OPT (vaue 16) indicates that the parameter is of a specia "option" type, corresponding to
a forced (integer) choice of values from 1 to the maximum option number permitted. The
maximum number itself is provided, for option parameters, by the eighth pmaddent
argument.

Should multiple codes be relevant, the user can simply add the relevant component values
together. E.g. avalue of 12 indicates a parameter that must be a fraction, and that the user is
not permitted to edit dynamically at run time.

The eighth argument, characterized in the description above by 'Row_max', indicates the
maximum number of rows for certain types of parameters (P_VEC, P_LKPXY, P_LKPSL,
or P_TBL). (Note however, the SPSM's flexibility, in that the actual number of rows used in
a specific application may be less than this maximum.) For the other parameter types (P_SCL
and P DUMMY) this argument should take on a value of O (zero), except for OPTION

parameters, where it indicates the number of legitimate option values. (A value of N for an
OPTION parameter indicates that the legitimate values range from 1 to N inclusive.) Since
scalar parameters (P_SCL) are the norm, this argument will most often take on the value O.

The ninth argument, characterized in the description above by 'Rows addr', contains the
address of the integer variable corresponding to the current (actual) number of rows for
certain kinds of parameters, P_VEC, P_LKPXY, P_LKPSL, and P_TBL. When the number
of rows is irrelevant, e.g. for a scalar or DUMMY parameter, the user enters a value of

Programmer’ s Guide Page 69
SPSD/M Version 6.0 11/19/97

'NULL' for this argument; thus, this argument will typically take on the 'NULL' value.

The tenth and last pmaddent argument, characterized in the description above by 'Limit’,
indicates, for parameters of type P_TBL, the number of columns in the table. In contrast to
the flexibility provided for rows, where the actual number of rows may be smaller than the
maximum number, the SPSM requires that the actual number of columns be fixed
beforehand. For all other parameter types, this argument takes on the value of 0 (zero).

Characterizing Scalar Parameters

With the description of pmaddent's arguments complete, we turn first to the kinds of scalar
parameters that the user may wish to add. (Sections 7.4 through 7.6 take up the addition of

parameters that are not scalars.) The discussion here treats them in roughly descending order
as regards expected frequency of use. For each of the types the description indicates (1) the
general nature of the parameter, (2) the key pmaddent arguments, and (3) an appropriate
pmaddent template. Even though this chapter deals primarily with more specialized types of
parameters, we have, for completeness, included in this scalar parameters section instances of
the more common parameter types already described in Section 6 of thisProgrammer's

Guide.

REAL/float/NUMBER Parameters

The analyst uses this type of parameter when needing to supply a rea value, e.g. some
program guarantee expressed in dollars and cents. The Mpu. h definition will use the
NUMBER specification. In the pmaddent call, the key argument is the C_NUM entry for
C _Type. An appropriate templateis--

pmaddent(pcp, "STDFA", (char *)&MP.STDFA, NULL,P_SCL,C NUM, 0, 0, NULL, 0);

INTERGER/int Parameters

The analyst uses this type of parameter when needing to supply a value that is inherently an
integer, e.g. the typical number of weeks in the waiting period for unemployment insurance.
The Mpu. h definition will use the int specification. 1n the pmaddent call, the key argument is
the C_INT entry for C_Type. An appropriate templateis --

pmaddent(pcp, "UIWAITWKS', (char *)&MP.UIWAITWKS, NULL,P SCL,C INT, 0, 0, NULL,0);

FLAG Parameters

The analyst uses this type of parameter when wishing to supply a "switch" value, e.g. an
indicator that will specify whether certain other calculations are to be performed or not. The
Mpu. h definition will use the int specification for such a parameter. In the pmaddent call, the
key arguments are the C_INT entry for C_Type and the E_FLAG entry for Edit. An
appropriate templateis --

pmaddent(pcp, "FAFLAG", (char *)&MP.FAFLAG, NULL,P_SCL,C_INT, E_FLAG, 0, NULL, 0);

Page 70 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

FRACTION Parameters

The analyst uses this type of parameter when wishing to supply a value that is inherently a
fraction, and thus more constrained in value than afloat. Tax rates and contribution rates are
good examples of this type of parameter. The Mpu. h definition will use the NUMBER
specification for such a parameter. In the pmaddent call, the key arguments are the C_NUM
entry for C_Type and the F_FRACT entry for Format. In the template call we suggest for
this type of parameter, the user has chosen NOT to require an Edit check that will constrain
the value between zero and unity; the template itself is --

pmaddent(pcp, "UIBASRATE", (char *)&MP.UIBASRATE, F_FRACT,P_SCL, C_NUM, 0, 0, NULL, 0);

OPTION Parameters

The analyst uses this type of parameter when the parameter reflects a forced choice among a
small fixed number of alternatives;, a numerical value is used to indicate a nomina or
gualitative selection. As an example of such a qualitative distinction, one might consider a
parameter that indicates whether CPP/QPP deductions are to be treated as (1) a deduction in
computing taxable income, or (2) a non-refundable credit in the calculation of taxes, or (3) a
tax credit refundable at the federal income tax level, but not at the provincial income tax
level. The Mpu. h definition for a FLAG parameter will use an int specification. In the
pmaddent call, the key arguments are the C_INT entry for C_TYPE, the E_OPT entry for
Edit, and the numeric entry giving the number of legitimate categories for the Row-max
argument. An appropriate templateis--

pmaddent(pcp, "MDCROPT", (char *)&MP.MDCROPT, NULL, P_SCL, C_INT, E_OPT, 2, NULL, 0);

EDIT-FRACTION Parameters

The analyst uses this type of parameter when it is desirable to constrain any user-supplied
value to fall in the interval from zero to unity. For example, the parameter might represent a
taxback rate that would be considered unreasonable if it corresponded to a rate of less than
zero percent or greater than one hundred percent. The Mpu. h definition for an editable
fraction parameter will use a NUMBER specification. In the pmaddent call, the key
arguments are the C_NUM entry for C_Type and the E_ FRCT entry for Edit. The user
might wish also to specify a Format specification of F FRACT. An appropriate templateis -

pmaddent(pcp, "CHATR1", (char *)&MP.CHATR1, NULL, P_SCL, C_NUM, E_FRCT, 0, NULL, 0);

DUMMY Parameters

The user will not typically specify DUMMY parameters, which are intended for conveying
labeling and sectioning information when parameter configurations are being documented.
Anillustrative templateis -

pmaddent(pcp, "2.3.1", NULL, NULL, P DUMMY, C_STR,0, 0, NULL, 0);

For all types of scalar parameters, the user has the same choice among mechanisms for
supplying values to them as described in Section 6:

Programmer’ s Guide Page 71
SPSD/M Version 6.0 11/19/97

1. gpecification via inclusion of the parameter in a parameter file (MPR, CPR and APR
files),

2. specification via presence in a supplementary inclusion parameter file (MPI, CPl and
API), and

3. specification viathe SPSM's dynamic parameter editing facility. (Note, however that the
ability to use the third option may be constrained by the parameter's pmaddent entry for
the Edit argument.) This approach is automatic if the user chooses not to specify avalue;
the Edit argument permitting, the SPSM will prompt for avalue.

Vectors of User-defined Parameters

The preceding portions of this chapter have focused primarily on scalar parameters, in part
because they are the most common types, and in part because they are easiest to describe.
However, the SPSM also offers the user the capacity to create vectors of parameters. Such

vectors will be most relevant when the user wants to create a set of related parameters with

the members of the set occurring in anatural "indexable" order along a single dimension.

As an example, consider the case of an analyst modeling some proposed housing supplement
program. For each family size up to ten this hypothetical program has an income limit
beyond which a family becomes categorically ineligible to receive benefits. Unfortunately,
these limits, though increasing with family size, are not related to that family size in any
smooth or readily calculated manner. Instead, the user wants to have ten different

parameters, corresponding to families of size one to ten-plus, to represent the benefit cutoff

levels. It makes much more sense to have a vector of parameters, indexed on family size,

than to develop code that treats each of the ten possibilities as a separate, independently

developed case.

In this section then, we characterize the key points the user must understand to define vectors
of user parameters for SPSM models. Our earlier comments about parameter addition in
general continue to hold (order of changes to files, use of mnemonic values, validation, etc.),
but we focus on those aspects specific to the effective use of vectors of user-defined
parameters.

Additions to Mpu. h, Cpu. hor Apu. h

Just as the user declares scalar parameters in Mpu. h (or Cpu. h or Apu. h), she must also
declare any user-defined parameter vectors in these files. The scalar and vector declarations
look very similar, except that the vector declaration indicates, via an expression in square
brackets, the length of the vector. The SPSM treats parameter vectors as column vectors;
thus the length of the vector isits number of rows.

For our housing program example, suppose that the user has declared a (manifest) constant
HHPY COMR (Hypothetical Housing Program, Income Cutoff Maximum Rows). The user
has assigned it the value 10 because there will be a distinct cutoff for each family size up to

Page 72 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

ten-plus. The definition would be accomplished via a statement of the form --

#defi ne HHPYCOWR 10 /* maxi mum # of nunber of rows in the
HHPYCO vector */

See the M. h file in the SPSM DEFS subdirectory (starting at about line 40) for illustrations
using parameter vectors that are part of the black box SPSM, rather than being user-defined.

The vector itself is to be named HHPY CO, with the value of the i'th entry corresponding to
the cutoff for a family of size i+1. (Recal that the C language starts all vectors with the
zero'th entry.) The Mpu. h entry for the new vector will then look something like --

NUMBER HHPYCO HHPYCOWR]; [/* Hypothetical Housing Program
| nconme Cutoffs */

Although it is possible to "hardwire" the length directly into the declaration, e.g. using
something like HHPY CO[10], we strongly discourage it. We recommend instead the
manifest constant approach described above. The reason behind this recommendation stems
from the need, in the corresponding Anpd. ¢’ s pmaddent invocation, of an entry for the
maximum number of rows. Using a given manifest constant in both locations precludes the
possibility of alater revision leading to one value being used invpu. h while another is used
in Anpd. c. If the user should create a discrepancy between the Mpu. h (or Apu. h or Cpu. h)
and Anpd. ¢ values, the errors that result could be infuriatingly difficult to track down.

Recall that the actual number of rows present in the (column) vector for a given SPSM

execution may be different from (less than) the maximum number possible for that
parameter. Thus, the user must also declare, in the same header file, a variable in which the
SPSM will store the actual number of rows being used (a value that may vary from run to run
of a given executable version of a glass box model). The user provides a variable for the
SPSM to store the actual number of rows via an additional declaration in the header file.
Following the SPSM convention that these length variables are named as the parameter name
with a suffix of "rows", thempu. h file should also contain a declaration of the form --

i nt HPPYCOr ows; [* nunber of rows in HPPYCO */

The mp.h file in theSPSM DEFS subdirectory provides many examples in its section on array
limits (about line 580). Later on, Anpd. ¢’ s pmaddent call for HPPY CO will refer to the
address of the HPPY COrows variable.

Additions to Anpd. c

So that the SPSM can make the values in the new parameter vector available to the user's
substantive code, the user must set up the appropriate linkages via an invocation of
pmaddent, just as with scalar parameters. The invocation would look like one of the
following:

pnmaddent (pcp, "HHPYCO', (char *)MP. UM HHPYCO, NULL, P_VCT,
C NUM E_NONE, HHPYCOWR, &MWP. UM HHPYCOr ows, O);

or

Programmer’ s Guide Page 73
SPSD/M Version 6.0 11/19/97

pmaddent (pcp, "HHPYCO', (char *)&WP. UM HHPYCO 0], NULL,
P VCT, C NUM E_NONE, HHPYCOWR, &MP. UM HHPYCOr ows, O0);

In the first illustrative invocation the third argument uses no ampersand because the reference
is to the new parameter vector; C treats such a reference as the address of the first element.

In the second illustrative invocation the use has elected to refer more explicitly to the address
of the first element by including the ampersand and the [O] index. ThewvpdX. c files in the

SPSM MODEL subdirectory contain examples of both types of reference.

Three other pmaddent arguments deserve speciad comment for our description of the
highlights for user-defined parameter vectors. The Agg_Type argument (#5) necessarily
takes on the value P_VCT. The Row-max argument (#8) is the manifest constant created in

Mpu. h to specify the maximum number of rows; in our housing program example this
corresponds to the HHPY COMR entry. Finally, the Rows-addr entry (#9) corresponds to the

name of the variable declared to store the actual number of rows, preceded by an ampersand,

in our housing program example this corresponds to the & MP.UM.HHPY COrows entry.

Note that other capacities activated by pmaddent's arguments remain available to the user.
Thus, the user uses C_Type to indicate whether the variable is a float value or an integer.
The user uses the Format argument to specify, if desired, a format for each of the individual
values in the vector. And the user employs the Edit argument to impose any relevant edit
checks.

Just as with scalar parameters, the user will also wish to modify theAnpd. ¢ file to add an

invocation of stradd for each new user-defined parameter vector. This addition will ensure
that when the SPSM documents the new user-defined parameter, the user's textual

description of the parameter will form part of that documentation.

User-Defined Parameter Vector References in the Source Code

Once the user has completed the header file and Anpd. ¢ changes necessary to make the

parameter vector available to the substantive functions, it remains to refer to the relevant

parameter values in those substantive functions. To continue with the hypothetical housing
program example, suppose that the user has available an integer variable, HHPFS,

(Hypothetical Housing Program Family Size) that gives the family size as defined by the
anticipated regulations governing the program. Suppose too, that the user is absolutely

confident that HHPFS's value will lie in the domain 1 through 9 inclusive. To refer to the
relevant income cutoff for benefits from the hypothetical program, the user, recognizing that
the C language always numbers a vector's elements starting with O, would employ an
expression of the following form:

MP. UM HHPYCQ[HHPFS- 1]

Specification of Parameter Vector Values

In order for the user's new code to accomplish anything, the values of the vector's elements
must be made available to the SPSM so that it, in turn, can make them available to the user's

Page 74 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

code Typlcally the user WI|| speC|fy these values in an ".MPR" or ".MPI" file (or their

".CPR', ".CPI", ".APR" Or ". API " counterparts). The UIREPUER vector, specifying key
regional unempl oyment as they apply to Ul entry requirements for repeaters, provides a good
example.

U REPUER 5 # Regi onal unenpl oynent rate
6.0

© 0N«
coo

115

The format is clear. The first line contains the name of the parameter, followed by the
number of ACTUAL elements to be used; an optional documentary comment should be
added to make the nature of the parameter obvious to any reader of the file. Successive lines
specify, one value per line, the values for the vector. It is important that the number of
elements entry not exceed the maximum rows value specified in the pmaddent entry, and that
the number of additional lines in the parameter file be equal to the number on the parameters
first line; the SPSM will check to ensure that these requirements are met.

To continue with our hypothetical housing program example, the user might enter, in the
".MPR'Or ". MPI " file, something like the following:

HHPYCO 10 # I ncone cutoffs for housing program by
famly size
5000.
6120.
7250.
8400.
9500.
10600.
11600.
12500.
13300.
13900.

eNeolololololNoNoNoeNe

Summary

The key factors in adding vectors of user parameters to an SPSM glass box model can be
summarized in the following checklist:

1. Make appropriate changes in the header file (e.g.Mpu. h).

Use a manifest constant for the maximum length of the vector, e.g.
#define HHPY COMR 10 /* maximum # of rows for HHPY CO */
Declare the vector itself,

NUMBER HHPY CO[HHPY COMR]; /* comment */

Declare a variable to hold the actual length of the vector, e.g.

int HPPY COrows; /* actual number of rowsin HPPYCO */

Programmer’ s Guide Page 75
SPSD/M Version 6.0 11/19/97

2. Make appropriate changes in the Anpd.c file; remember the benefits of partial
compilation.

Insert an appropriate pmaddent invocation, usually by modifying a copy of an
existing one.

Enter an invocation of stradd so that the SPSM can label the new parameters
when appropriate.

3. Write the C-language source code that uses the parameters. Remember C's convention
that vectors begin with the zero elements. Debugging compilation is often useful here
too.

4. Supply values for the elements of the vector via a multi-line entry in an appropriate
parameter file.

5. Don't forget the need for validation and testing to make sure that the new code is doing
what is intended of it.

User-defined Schedules for Lookups

Parameters in the form of schedules are useful primarily when one needs to perform some
sort of alookup, i.e. given a x-value, find the corresponding y-value. This section employs
as examples two schedules aready present in the SPSM, and one hypothetical new user-
defined schedule to be added as a parameter. Together, the three examples cover the major
forms of schedule parameters that a glass box user might normally need.

The first of the existing schedule examples involves federal taxes -- given taxable income,
calculate the corresponding tax from the tax table/schedule.

The second existing schedule example addresses program take-up rates -- assuming that the
decision of whether to apply for benefits in a program is believed to depend on the benefit
that could be claimed (the higher the benefit that would be received, the more likely a unit is
to file to claim that benefit), given a unit's potential benefit, look up its probability of
applying for (taking up) those benefits.

The third, new parameter, example involves atotally hypothetical earnings supplement based
very loosely on the U.S. Earned Income Tax Credit, but applied to individual earnings. In it,
a hypothetical earnings supplementation program subsidizes initial earnings, up to $10,000
annually, at arate of 15%, does not further subsidize any earnings from $10,000 to $15,000,
and then, beyond $15,000, reduces the subsidy previously given at the rate of 10% of
earnings above $15,000, so that there is no subsidy payable to individuals earning $30,000 or
more. The new parameter will describe the subsidy payable as a function of the individual's
earnings. The relevant coordinate pairs are thus (0, 0), (20000, 1500), (15000, 1500), and
(30000, 0).

In terms of their specification as SPSM parameters, schedules are very similar to vectors.
The main exception is that schedules have a fixed number of columns, three, rather than the

Page 76 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

single column for a vector. (In use, the schedules employ the SPSM's |kupl and Ikup2
functions.) Thus, with the relatively minor exceptions highlighted in this section, one adds a
schedule to a glass box application very much as one would add a vector of parameters.
Consequently, the vector-oriented prescriptions about mnemonic names, stradd labeling,
partial compilation, validation etc. are not repeated here.

Schedule Types and Lookup Functions

An appreciation of two separate dichotomies is absolutely critical for the effective use of
schedules in the SPSM.

The first dichotomy involves the type of schedule. The user makes the choice as to type via
the fifth argument of the pmaddent call.

If the argument is P_LKPXY, then lookups in the schedule are done in X-Y format, using the
first (x-values) column of the schedule and the second (y-values) column; the slope values of
the third column (the slopes across the successive segments of the schedule) are present, but
ignored (that information being redundant because it could be calculated from the X-Y pairs).
If the fifth pmaddent argument is P_LKPSL, then lookups in the schedule are done in slope
format, using the information in the first (x-values) column and the third (slopes) column,
plus the first value in the second (y-values) column. The remaining values in the second
column are ignored in the sense that they are redundant because they could be calculated
using the rest of the information in the schedule.

The second dichotomy reflects whether or not the user wishes to apply interpolation in the
calculation when performing the associated lookup with the schedule. When interpolation is
desired (when the desired value might lie BETWEEN entries in the y-values column), the
user invokes the lkupl function from the SPSM algorithm library. When no interpolation is
desired, the user invokes the lkup2 sister function. The SPSD/M Algorithm GuideAD_1
(Section 6) provides the authoritative description of these two algorithms.

Appearance in SPSM Header Files

Exactly as with vectors of parameters, user-defined parameters that are schedules require
certain entries in an appropriate header file (u. h, Cpu. h, or Apu. h).

One of these is (usualy) a manifest constant to define the maximum length of the schedule.
The federal tax schedule (FTX) uses the maximum length FTXMAX. The GIS single
pensioner take-up schedule (GISST) uses GISSTMAX. For our earnings supplement
schedule, ESS, we'll use ESSMAX. The corresponding definitions (in Mp.h for FTXMAX
and GISSTMAX, and inMu. h for ESSMAX) are asfollows:

#def i ne FTXMAX 15 /* maxi mum of number of rows in FTX
t abl e */
#defi ne G SSTMAX 8 /* maxi mum of nunmber of elenents in

G SST table */

Programmer’ s Guide Page 77
SPSD/M Version 6.0 11/19/97

and

#def i ne ESSMAX 5 /* maxi mum nunber of rows in ESS
schedul e */

The second of these is a variable in which the SPSM stores the actual number of rows used
by the schedule in a given run; it must, of course, be less than or equal to the maximum
number. Following SPSM conventions, the Mp. h definitions for variables to contain the
actual numbers of elements are as follows:

i nt G SSTr ows; /* number of rows in 3G SST table */
i nt FTXr ows; /* nunber of rows in FTX */

In mpu. h, we'll follow this convention and define a variable ESSrows for the actual number
of rowsin ESS --

i nt ESSr ows; /* number of rows in ESS schedul e */

Mp. h (for the FTX and GISST schedules) and Mpu. h (for the ESS schedule) also need to

contain the definitions for the schedules proper. Typically, these are carried out using the
manifest constants defined earlier. The SPSM provides a constant, LKP_COLS, that

indicates clearly its role as defining the number of columns for lo9okup schedules. The
definitions themselves are straightforward:

NUVBER FTX[FTXMAX] [LKP_COLS]; /* Federal tax table [taxable

i ncone, basi ¢ federal tax] */

NUMBER QG SST[A SSTMAX] [LKP_COLS]; /* G S take-up rate: single
pensi oner by benefit |evel [benefit,rate] */

NUVBER ESS[ESSMAX] [LKP_COLS]; /* Earnings suppl enment schedul e
[earni ngs, benefit level] */

Appearance in pmaddent Calls in Anpd. ¢

The user defining schedule parameters will need to modify theanpd.c file, adding
invocations of pmaddent, to enable the SPSM to make the parameter available to the
substantive source code. We begin by looking at the relevant pmaddent entries for the
SPSM's existing FTX and GISST schedules.

The FTX example, drawn from thempd2. c file, appears as follows:

pmaddent (pcp, "FTX', (char *)&WP. FTX[0][0], NULL,
P_LKPSL, C NUM O, FTXMAX, &MWP. FTXrows, 0);

Note that the third argument indicates clearly that the schedule has both rows and columns,
and that the fifth argument denotes this as a slope-oriented schedule; the eighth and ninth
arguments make use of the manifest constant and actual-number-of-rows entries defined in
Mp. h.

The GISST example, drawn from thempd1. ¢ file, appears as follows:

pmaddent (pcp, "d SST", (char *)&WP. d SST[0] [0], F_LKTUR,
P_LKPXY,C NUM E_F

Page 78 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

Here the fifth argument indicates that this is an X-Y type schedule. Again, the eighth and
ninth arguments make use of the elements defined for the schedule in themp. h file.

For the hypothetical earnings supplementation program, we would add to the Anpd. ¢ file an
invocation of pmaddent (probably copied from an existing call and then modified as
appropriate) that appears as follows:

pmaddent (pcp, "ESS', (char *)&WP. UM ESS[0][0], NULL, P_LKPXY,
C NUM 0, ESSMAX, &WP. UM ESSrows, 0);

The strong parallels with the existing GISST schedule should be apparent. Note, however,
the key differences that mark a user-defined parameter schedule: the UM qualifier in the third
and ninth arguments, and the user-defined (maximum rows) constant and (actual rows)
variable address for the eighth and ninth pmaddent arguments.

Employing Schedule References in User Code

Glass box applications that use schedules will reference them almost exclusively via the
SPSM's two lookup functions, Ikupl and Ikup2. This makes source code expressions using

the parameters very straightforward. Illustrations using our three examples indicate the

nature of these references.

The GLASS subdirectory's ATXCALC. C function serves to calculate federal income taxes.

This computation involves looking-up, for an individual, that individual's tax as a function of
hisher taxable income. The user chooses whether or not to apply interpolation (via the
choice between |kupl and Ikup2), supplies the schedule, the actual number of rows, and the
relevant x-value, and the lookup function does all the rest automatically. Here, the user does
want interpolation, applied in aschedule. The relevant source code appears as follows:

if (isnzero(in->imimtax)) {

/* calculate federal tax */

in->iminfedtax = (NUMBER) | kupl(MP. FTX, MP. FTXrows, i n-
>Imimtax);

DEBUXR2(" % fedtax =% 2f\n", in->iminfedtax);

}

The GLASS subdirectory's AG S. C function calculates GIS benefits. This computation

involves looking-up, as a function of the potential benefit that would be payable, the
probability that the unit will take-up (i.e. apply for) the benefit. Here the user chooses not to
invoke interpolation -- the desired takeup rate is the one in the last row in which the potential

benefit is at least as great as the row's x-value. The user provides the schedule, the actua

number of rows, and the potential GIS benefit, and the lookup function returns the takeup

probability. (Once again, the schedule itself appears in the next sub-section,) The expression
to ascertain the takeup probability appears as

| kKup2(MP. d SST, MP. d SSTrows, (double) gis))
For the earnings supplement illustration, assume that the user has assigned the appropriate

Programmer’ s Guide Page 79
SPSD/M Version 6.0 11/19/97

definition of earnings for an individual to a (double) variable named iearn. Then the
expression for looking up the individual's corresponding earnings supplement would be --

| Kupl(MP. UM ESS, MP. UM ESSrows, i earn)
Note the necessity for the UM qualifier indicating that ESS is a user-defined schedule.

Appearance in Parameter Files

As with any other parameter, the user is responsible for defining schedule parameters in the
appropriate parameter file(. MPR/1, . CPR/I,0r . APR/ |). In paralel with the specification
of a parameter vector, the first line provides the parameter name and number of rows, along
with a comment identifying the parameter. The remaining rows for the schedule are the x-
value, y-value, slope triplets. Probably the only non-obvious characteristic is that the
redundant items (those that will not be used for the computations) are enclosed in
parentheses.

The slope-oriented FTX schedule describes tax payable (before tax reform) as a function of
taxable income --

FTX 10 # Federal tax table
0 0 0. 060
1238 (74) 0. 160
2476 (272) 0.170
4952 (693) 0. 180
7428 (1139) 0. 190
12380 (2080) 0. 200
17332 (3070) 0. 230
22284 (4209) 0. 250
34664 (7304) 0. 300
59424 (14732) 0. 340

The X-Y type GISST schedule describes takeup probabilities as a function of amount of GIS
benefit available. The use of the Ikup2 function with this schedule means that these takeup
rates are modeled as jumping sharply at the key benefit levels.

@ SST 5 # A S take-up rate: single pensioner by benefit |evel
0 0. 365 (0.0009)
169 0. 510 (0.0006)
419 0. 660 (0.0003)
919 0. 820 (0.0001)
3169 1. 000 (0.0001)

The X-Y type ESS schedule describes the earnings supplement benefit as a function of an
individual's earnings; it is used with the Ikupl function because interpolation is desired.

ESS 4 # Hypot heti cal earnings suppl ement schedul e
0 0 (0.15)
10000 1500 (0.00)
15000 1500 (-0.10)
30000 0 (0.00)

Key Points for Adding Schedule Parameters

Page 80 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

Most of the key points for schedule parameters are identical to those for vector parameters.

1. Modify the relevant header file to include a manifest constant for the maximum number
of rows, an integer variable to store the actual number of rows, and the definition for the
schedule itself.

2. Modify the Anpd.c file to include appropriate pmaddent and stradd invocations,
generally ones copied from elsewhere and then modified.

3. Provide the schedule via an appropriate parameter file or parameter inclusion file, and
don't forget to validate the addition.

Two other key points are specific to schedule parameters.

1. Beabsolutely sure, in the parameter file, that the x-value column of the schedule contains
valuesthat are in strictly ascending order.

2. Don't forget to "mark" the redundant values in the schedule by enclosing them in
parentheses.

Adding Matrices of Parameters

For some specialized purposes involving groups of parameters, even vectors or schedules of
parameters are not sufficiently convenient. For example, rather than managing several equal-
length vectors in paralel, it may be much more efficient to perform lookups in a matrix of
values. The design of the SPSM permits the definition and utilization of such matrices,
though it limits the number of dimensions to 2 (rows and columns). This section will
describe the use of matrices of parameters via two examples, one drawn from the black box
version of the SPSM, and a second involving the specification of a new user-defined matrix
of parameters. Given the close relationship between parameter vectors and parameter
matrices, the is no special highlights division for this section.

The black box illustration uses the CTPRST matrix specific to the commodity tax capacities
of the SPSM. This parameter provides a large (40 commodities (rows) by 10 provinces
(columns)) matrix of factors relevant for the calculation of the provincial sales tax.

The second example, in which the user adds a new matrix of parameters to the SPSM,

involves a matrix of income cutoffs levels for an (hypothetical) experimental poverty
measure. To facilitate the classification of families asin or out of poverty, the user wants to
have a matrix that provides the relevant cutoffs as a function of integer variables specifying
the families' structures (rows) and the sizes of place of residence (columns). Thus, the
matrix's (3,2) entry will contain the poverty line for a family whose structure index is 3 and
whose size of place of residence index is 2. The user has elected to name this matrix
EPMCO (experimental poverty measure cutoffs). For the sake of this example, we'll assume
that the user has chosen a measure defined in terms of 18 family structures (involving, say,
combinations of the numbers and ages of family members) and four categories of size of
place of residence.

Programmer’ s Guide Page 81
SPSD/M Version 6.0 11/19/97

Appearance in Mpu. h

Taking the black box matrix example first, we are not surprised to find the relevant header
information for CTPRST in filemp. h of the DEFS subdirectory. Thus, there is an integer
definition, to define the actual number of rows (commodities) CTNUMCOM, asfollows:

i nt CTNUMCOM [* nunber of rows for commodity di nension
par ns */

In addition, there is adefinition for the matrix itself --
NUMBER CTPRST[NUMCOMI][NUMREG]; /* Provincial retail salestax [com x prov] */

However, Mp. h does not contain manifest constants for the dimensions of the matrix
(NUMCOM and NUMREG) since these are so closely related to the design of the
commodity tax facility in the SPSM that they have been defined elsewhere so that the
commodity tax module can more conveniently use the constants.

Turning to our experimental poverty measure cutoff matrix, we appreciate that we shall have
to provide the relevant "defining" information to the SPSM via entries in thevpu. h file. The
specific needs are (1) manifest constants for the dimensions, (2) a variable for the actual
number of rows, and (3) the matrix itself. TheMu. h lines for these items might appear as
follows:

#define EPMFAMMAX 18 /* maximum of number of family structures (rows) for EPMCO matrix */
#defineEPMSIZE 4 /* number of size of place of residence categories for EPMCO matrix */

int EPMCOrows; /* number of rowsfor EPMCO matrix */
NUMBER EPMCO EPMFAMVAX] [EPMSI ZMAX] ; /* experinental poverty neasure cutoffs [fam x size] */

Appearance in Anpd. c

In paralel with the requirements for vectors of parameters, the SPSM requires for each
parameter matrix a call to pmaddent so that the parameter values can be made available to the
user's source code.

For our black box example, this call, found in filevpd4. c, appears as follows: (There is, of
course a corresponding stradd call.)

pmaddent (pcp, "CTPRST", (char *)MP. CTPRST, NULL, P_TBL, C NUM E_FIXL, NUMCOM

&WP. CTNUMCOM NUMREGQG) ;

The only arguments of any special interest at this point are the P_TBL entry for the fifth
(Agg_Type) argument, and the NUMREG entry for the final (number of columns) argument.
The eighth and ninth entries (maximum and address of actual numbers of rows) are just aswe
would expect them given the preceding descriptions for vectors and schedules.

Turning to our poverty measure glass box example, we recognize that it is necessary to add a
pmaddent call to the Anpd. ¢ file to permit the SPSM to give the user's source code access to
the parameter matrix. That call might well appear as follows:

Page 82 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

pmaddent(pcp, "EPMCO", (char *)MP.UM.EPMCO, NULL, P_TBL, C_NUM, E_NONE, EPMFAMMAX, & MP.UM.EPMCOrows,
EPMSIZE);

Presumably, the user would also add to the Anpd. ¢ file acall to stradd to permit the SPSM to
produce appropriate documentary information.

Referencing Matrix Elements in Source Code

Referencing the elements of a parameter matrix is easy. Assuming the variable i holds the
(integer) commodity category and variable j the (integer) province code, then the associated
removal factor for that combination is --

MP. CTPRST[i][]]

Similarly, if the integer variable fstruct holds the family structure code, and the integer
variable sizecode provides the category for the size of place of residence, then the
experimental poverty measure cutoff for that structure/size combination is given by --

MP. UM EPMCO f struct] [si zecode]

The primary factor to consider in such references is the C-language's convention that each
dimension begins with the zero element; e.g. our 18 by 4 array uses indices that run from 0
through 17, and O through 3, respectively. A user must make the decision about the

appropriate tradeoff between using "natural, positive" integers as indices into the matrices,

and economizing on the fixed block of memory available for user parameters (including any
necessary row address variables).

Appearance in Parameter Files

Just as with all other forms of parameters, the user must provide values for the parameters.
Normally this will occur via entries in the appropriate parameter or parameter inclusion files
(i.e.. PR, .MP, .CPR,.CPI, .APROr.API). For parameter matrices a parameter file entry
consists of afirst line that specifies the name of the parameter and the actual number of rows,
plus typically a documentary comment. The succeeding lines for the parameter then supply
the rows of the matrix. In our illustrations here, we provide only the first, identifying, line
and then the first of the lines of numeric values.

For the black box example —

CTPRST 40 # Provincial retail sales tax
0. 01326 0.01326 0.01326 0.01326 0.01316 0.01406 0.02242 0.00626 0.00010 0. 00550
0. 15257 0.15257 0.15257 0.15257 0.13057 0.24354 0.15684 0.13914 0.00013 0.29100
0.17538 0.17538 0.17538 0.17538 0.16338 0.22635 0.13837 0.08953 0.00010 0. 00605
0. 08125 0.08125 0.08125 0.08125 0.08424 0.07750 0.06300 0.08521 0.00009 0.07406
0. 08029 0.08029 0.08029 0.08029 0.07239 0.06953 0.05715 0.07306 0.00010 0.06512
0. 08293 0.08293 0.08293 0.08293 0.06684 0.05282 0.05581 0.00305 0.00008 0.06866
0. 00296 0.00296 0.00296 0.00296 0.00359 0.00197 0.00130 0.00171 0.00001 0.00141
0. 00997 0.00997 0.00997 0.00997 0.00934 0.00753 0.01018 0.01073 0.00024 0.01057
0. 00886 0.00886 0.00886 0.00886 0.01140 0.01421 0.00969 0.00879 0.00022 0.01017
0. 08363 0.08363 0.08363 0.08363 0.06777 0.00206 0.02368 0.04331 0.00004 0.00662
0. 08283 0.08283 0.08283 0.08283 0.35376 0.00201 0.02646 0.00544 0.00004 0.02263
0. 09406 0.09406 0.09406 0.09406 0.06143 0.00733 0.01685 0.01645 0. 00064 0.02582
0. 08515 0. 08515 0.08515 0.08515 0.07698 0.09175 0.07097 0.06762 0.00011 0.08368
0. 08160 0.08160 0.08160 0.08160 0.09371 0.08702 0.06739 0.06646 0.00008 0.07739

Programmer’ s Guide Page 83

SPSD/M Version 6.0 11/19/97

0. 08086 0.08086 0.08086 0.08086 0.08141 0.08654 0.06925 0.06538 0.00009 0.07740
0. 08238 0.08238 0.08238 0.08238 0.08320 0.08203 0.06751 0.05395 0.00011 0.07746
0. 08331 0.08331 0.08331 0.08331 0.09420 0.01711 0.07477 0.01461 0.00009 0.01935
0. 00067 0.00067 0.00067 0.00067 0.00054 0.00464 0.00740 0.00678 0.00006 0.00690
0. 05967 0.05967 0.05967 0.05967 0.05408 0.04822 0.02270 0.01925 0.00017 0.01865
0. 00821 0.00821 0.00821 0.00821 0.01031 0.00618 0.00623 0.00397 0.00011 0.00738
0. 00043 0.00043 0.00043 0.00043 0.00034 0.00124 0.00145 0.00173 0.00002 0.00059
0. 01581 0.01581 0.01581 0.01581 0.00875 0.10256 0.01323 0.00799 0.00025 0.01145
0.02112 0.02112 0.02112 0.02112 0.02389 0.04246 0.03516 0.00786 0.00013 0.01465
0. 07207 0.07207 0.07207 0.07207 0.06970 0.08270 0.07019 0.04924 0.00005 0.10050
0. 07667 0.07667 0.07667 0.07667 0.07584 0.08081 0.06841 0.03319 0.00014 0.04053
0. 14145 0. 14145 0. 14145 0. 14145 0. 14506 0.01002 0.00841 0.00897 0.00012 0.01248
0. 04574 0.04574 0.04574 0.04574 0.04843 0.08112 0.03185 0.02851 0.00021 0.02790
0.03739 0.03739 0.03739 0.03739 0.04921 0.01000 0.02035 0.01185 0.00019 0.01653
0. 08336 0.08336 0.08336 0.08336 0.08897 0.07353 0.06346 0.06354 0.00003 0.04449
0. 07581 0.07581 0.07581 0.07581 0.08182 0.07966 0.05424 0.06289 0.00007 0.07054
0.07746 0.07746 0.07746 0.07746 0.08965 0.04561 0.05949 0.03563 0. 00009 0.04247
0. 04765 0.04765 0.04765 0.04765 0.04967 0.02692 0.02058 0.02111 0.00016 0.01419
0. 00489 0.00489 0.00489 0.00489 0.00411 0.00745 0.00795 0.00733 0.00017 0.00929
0. 08402 0.08402 0.08402 0.08402 0.11465 0.08444 0.06428 0.06551 0.00008 0.07433
0. 07875 0.07875 0.07875 0.07875 0.07826 0.08018 0.07052 0.06623 0.00015 0.07777
0. 04826 0.04826 0.04826 0.04826 0.04245 0.00867 0.00918 0.00758 0.00008 0.01028
0. 06598 0. 06598 0. 06598 0. 06598 0.07010 0.05898 0.07703 0.01556 0.00707 0.02343
0. 02430 0.02430 0.02430 0.02430 0.02547 0.02539 0.00705 0.00708 0.00018 0.01004
0. 01002 0.01002 0.01002 0.01002 0.01255 0.00805 0.00822 0.00735 0.00029 0.01300
0. 00000 0. 00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
For our postulated poverty measure example --
EPMCO 18 # Experinmental poverty neasure cutoffs

5600. 0

6210.0

6530. 0

7050.0

Summary/Conclusion

It is useful to conclude by highlighting, but without redeveloping them in any detail, the
general level key points relevant for adding less typical scalar parameters and non-scalar
parameters to a model. In noting these points, we are assuming that the analyst is following
the general procedures outlined in Section 6 for scalar parameters. For example, it istaken as
given that the analyst is working with COPIES of al the relevant files, and is performing all
of the modifications in atask subdirectory dedicated to the analysis at hand. We also assume
that the user has updated the project environment, and is following the appropriate
"checklists" provided for the less typical parameters.

1. We recommend the "copycat" approach as general way to proceed. Throughout this
chapter we've provided concrete illustrations of the items a user might want to use as
templates. Users should rarely need to employ the detailed material on
Mpu. h/ Cpu. h/ Apu. h (definitions, manifest constants for max rows, and actual rows) and
Anpd. ¢ (pmaddent and stradd).

2. Advanced users may want to be aware of the special "services' available via the
pmaddent arguments: the ability to specify printing formats, edit checks, and the
maximum number of allowable rows or options.

3. Vectors can sometimes be much more efficient than a number of individually named

Page 84 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

scalar parameters. The SPSM provides for this capacity, though the user must supply
additional information in the pmaddent call and be sure to provide another variable for
the number of relevant rows, as well as a constant for dimensioning. We've offered
several potential templates to facilitate the copycat approach.

4. In many respects, schedules are like a special case of vectors, applicable when one needs
to look up ay-value, as afunction of ax-value, from afixed relationship.

5. Matrices (2-dimensional) are also possible. Some additional information, the number of
columns, becomes necessary, but the matrix approach can be considerably more efficient
than juggling multiple parallel vectors. Once again, the copy and modify approach is
recommended.

Programmer’ s Guide Page 85
SPSD/M Version 6.0 11/19/97

Glass Box Development: Adding New Variables

This chapter describes how to add new user-defined dependent variables to an SPSM glass
box application. Thus, it shows how to address challenges such as those raised in the Quick
Start example, where the user would like to have had a separate variable for the hypothetical
Family Allowance supplement. The availability of user-defined dependent variablesis even
more important if the user is modeling some new program, e.g. an earnings supplement that
could not be conveniently combined into any existing model dependent variable.

Structuraly, this chapter covers all of the major issues and steps involved in adding new
dependent variables to a model. Included in this chapter is an introductory overview of the
process, and also a section that characterizes the major types of variables that the user may
wish to add. An explanation follows of the critical vardef function that establishes the
linkages between the user's source code and the rest of the SPSM and also describes how to
use the stradd function to make the new variables' labeling available throughout the SPSM.
We then introduce an illustrative extension of the Family Allowance supplement example
used in previous examples, which defines new variables that will be available to the SPSM's
several output facilities. Following this are examples of the source code changes that the
user has to make, and the descriptions of the compilation and validation of the resulting
model.

Overview for Adding Variables

In broadest outline, the key steps involved in adding new variables can be characterized as
follows.

1. Decide what new dependent variables are needed, choose appropriate names and
descriptions for them, and copy al of the relevant header and source code files over to
the subdirectory in which the new model will be built.

2. Makethe relevant changes to the project environment (identifying all of the appropriate
source code files associated with the new dependent variables), and updateadr v. ¢
(providing documentary text strings).

3. Make the necessary changestovsu. h and vsdu. c to render the new dependent variables
accessible throughout the SPSM model that will be created.

4. Supply new source code (in new or existing modules) to calculate the values for the new
dependent variables.

5. Compile the new model and validate it for correctness.

The preceding points are, of course, only an overview. Section 2 and the recapitulation
section of Section 6 provide a much fuller description of the model creation process as a
whole. This chapter, however, concentrates on those details especially relevant for the
addition of new dependent variables.

Page 86 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

Dependent Variable Types and Characteristics

The SPSM provides users with the capacity to create three different types of user-defined
dependent variables. All threetypes are scalars. The SPSM does not provide for vectors or
matrices of dependent variables. The specific types are as follows:

1. Numeric analysis -- Thisisthe most common type of user-defined dependent variable. It
consists of a numeric (float) value that will be used as an analysis variable, e.g. tabulated
asacell entry inthe control parameter XTSPEC. A good example of this type of
dependent variable is the value of some new income-tested benefit that will be payable to
afamily.

2. Integer analysis -- Less frequently used, this type of dependent variable consists of an
integer (int) value that will be used as an analysis variable. The primary use of thistype
of variable is export in SAS format, where an integer variable takes up fewer characters
than a numeric analysis variable. Examples of this type of variable might be the
minimum and maximum numbers of weeks that a family could be without earnings
income during the year (as deduced from the labour-force variables for the family
members, e.g. weeks without work and looking for work).

3. Integer class -- this type of dependent variable consists of an integer (int) value that will
be used as a classificatory variable, e.g. to define the categories for a classificatory
variable in the XTSPEC parameter. Thistype of variable is particularly relevant when its
values represent purely nominal categories, e.g. a classification of families by types.

A few other characteristics of user-defined dependent variables, individually and collectively,
will be of considerable importance to the glass box user --

First, all user-defined dependent variables are defined at the level of the individual. Thus, the
user must take care to assign values to "appropriate” individuals so that when the unit of
analysisis at a higher level, say the census family level, the SPSM's roll-up algorithms will
yield the desired results.

Second, the space allocated allocates for such variables can handle approximately 50
variables. Violation of thislimit can result in obscure errors that are difficult to track down.

The vardef and stradd Functions and their Arguments

The vardef and stradd functions are absolutely critical to the capacity to create new user-
defined variables and have them used properly throughout the rest of the SPSM. It is only
via the information communicated via calls to these functions that the rest of the SPSM
learns about the nature of the new variables and the documentary text that goes with them.
This section documents first the vardef function, and then the stradd function.

Programmer’ s Guide Page 87
SPSD/M Version 6.0 11/19/97

The vardef function plays the same genera role for user-defined variables that pmaddent
does for user-defined parameters. There will be one vardef call for each variable that the
user defines. Vardef defines the characteristics of the new variable so that the SPSM can link
it into the same variables framework used by the SPSD/M's own database, anaytic and
classificatory variables. The vardef calls are always made in thevsdu. ¢ function. The
following short description of the function's arguments appears at about line 100 of that
function --

* var def (" _uvew', <= the name of the variable,
gquoted, with ' _

* I'N, <= hone structure (leave at '"IN)
* i muv. ew, <= variable location (always in

i muv)

* C_I NT, <= C-type (C_INT or C_NUM

* V_CLAS <= type of variable (V_CLAS or
V_ANAL)

*

);
Well describe the nature of the vardef arguments one at a time, in order. Subsequent

sections in this chapter provide specific illustrations for the use of both the vardef and stradd
functions.

Vardef "Name" Argument (and Definition of Variable "Stem" Name):

The first argument gives the variable's name as a double-quoted text string. The user should

always include an underscore as the first character after the initial double quote, and then the
characters "uv" as the second and third characters to indicate the "user variable" status. The

remainder of the name, i.e. everything after the " _uv" prefix, is known as the variable's stem
name. Generally speaking, this stem portion should be as informative and mnemonic as is
feasible.

For variables that will not be exported outside the SPSM itself, there is no real limit on the
number of characters in the stem name. However, for variables that are to be exported to

other packages, certain limitations may apply. For example, if the created variable is to be
exported to SAS, then the stem must not exceed six characters. If it isto be exported to the

MAPSIT EXAMINE module, then the stem portion should not exceed ten characters.

Vardef "Home Structure" Argument:

The second argument indicates the structure in which the new variable resides. Because
user-defined variables are ALWAY S defined at the individual level, the user should always
enter this argument as an (unquoted) 'IN'.

Vardef "Variable Location" Argument:
The third argument indicates the location of the variable (as regards the SPSM's data

Page 88 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

structures). The location is specified via three components, two of which are invariant.
Specifically, the first portion of the location is ALWAYS equal to "im.uv" (but unquoted).
This information tells the SPSM that the new variable isinside the user variable (uv) portion
of the im structure (individual level model variables). The fina portion of the location
specification is the new variable's stem name, as defined above for the first argument.

Vardef "C-Type" Argument (C_NUM & C_INT):

The fourth argument specifies the C language type of the variable. It will take on one of two
values. Numerical analysis variables will use the entry "C_NUM" (unquoted). Integer
analysis and integer classification variables will use the value"C_INT" (unquoted).

Vardef "Usage" (Type) Argument (V_ANAL & V_:

The fifth and last argument specifies whether the SPSM is to treat the variable as an analysis
variable (tabulatable) or a classificatory variable (categorical). It will take on one of two
values. Both numerical and integer analysis variables will use the entry "V_ANAL"
(unquoted). Integer classification variables will usethe"V_CLAS" (unquoted) form.Clas)

The combination of the fourth and fifth entries tells the SPSM how many bytes of memory it
needs to allocate for the variables, an important consideration given the limit of 200 bytes for
al user-defined variables. As noted above, the requirements are six bytes for a numerical
analysis variable, three bytes for an integer analysis variable, and one byte for an integer
classification variable.

We have aready seen simple applications of the stradd function when we discussed the
documentation of user parameters in Sections 6 and 7. The same function serves a similar
purpose here, but in a more sophisticated fashion, since it is used to define both a short
description of the user variables themselves, but also, in the special case of integer analysis
and integer classification variables, the range of values and the textual labels associated with
particular values of the variables. Thevsdu. c file contains, at about line 110, capsule
documentation for both the variable description and value label uses.

* stradd("uvew', <= the nane of the variable, quoted
* "Regi on" <= a printing | abel for the

vari abl e

*) ,

** stradd("ew', <= the stem nane of the vari abl e,
quot ed

* "\tEast\tWest" <= string containing a | abel for
each valid

*) | evel , preceded by a tab "\t'
character.

As with the vardef function above, we shall take up the arguments in sequence. A
complicating factor here is that the NUMBER OF stradd INVOCATIONS and structure of
the stradd arguments depends on the type of variable for which stradd is being used.

Programmer’ s Guide Page 89
SPSD/M Version 6.0 11/19/97

However, the number of stradd arguments is always constant at two. Favoring clarity over
brevity, we shall describe each of the three types (numeric anaysis, integer anaysis, and
integer classification) individually.

Stradd Calls for Numeric Analysis Variables:

Numerical analysis variables require only a single invocation of the stradd function. The first
argument specifies the variable name. It is identical to that used for the first vardef
argument, EXCEPT THAT THE LEADING UNDERSCORE PRESENT THERE IS
OMITTED HERE.

The second argument for a numerical analysis variable is the (quoted) string that the SPSM
will use when it needs to print a description of the variable.

For example --
stradd(" uvnewben", "New Hypot hetical Benefit");

Stradd Calls for Integer Analysis Variables:

Integer analysis variable additions require two separate stradd invocations. The first
invocation defines the label for the variable as a whole. The second invocation defines, via a
set of labels for the individual integer values, the range of values for the variable.

In the first (variable label) invocation, the first argument specifies the variable name. It is
identical to that used for the first vardef argument, EXCEPT THAT THE LEADING
UNDERSCORE PRESENT THERE IS OMITTED HERE.

In the first (variable label) invocation, the second argument is the (quoted) string that the
SPSM will use when it requires a description of the variable as a whole, e.g. in documenting
atable.

In the second (value labels) invocation, the first argument is the STEM NAME for the
variable; neither the underscore nor the leading “uv” string should be present.

In the second (value labels) invocation, the second argument is a quoted string that tells the
SPSM how many categories are relevant. The string consists of the repeated pattern ‘tx’

where x always varies from zero to “one minus the total number of categories’. Thus, for a
variable having four categories, the second argument would take the form -- “tO\t1\t2\t3".

The slash-t notation is the C language’ s standard way of denoting atab character.

For example --
st radd(" uvnput pp", "Nunber persons unenpl oyed 2+ periods");
stradd(" nput pp", "\tO\Vt I\t 2\t 3\t 4");

Stradd Calls for Integer Classification Variables:

Page 90 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

The stradd invocations for integer classification variables are identical to those for integer
analysis variables WITH ONE CRITICAL EXCEPTION. In the second (value labels)
invocation, the second argument is a quoted string that provides the textual labels for the
several categories of the variable. In essence, the several, user-supplied, labels correspond to
the integers 0 .. "categories minus 1" entries of the second stradd invocation for an integer
analysis variable. Thus, for example, the labels for "region” documentation might look as
follows:

\tAtlantic\t Quebec\tOntario\tPrairies\tBritish Col unbia
These labels, which may contain embedded blanks (since the tab characters serve as

delimiters) would appear as labels when the user employed the SPSM's crosstabulation
capacity or exported the new variableto a SASfile.

For example --
stradd("uvfancat", "Nomi nal Famly Inconme Category");
stradd("fantat", "\tVery Poor\tPoor\tNear Poor\t Non-

Poor\tRi ch");

Beyond the descriptive definitions of vardef and stradd arguments, appearing about lines
100-115 of the vsdu. ¢ function, vsdu.c aso contains template combinations of the vardef
and stradd calls for al three types of new variables. In typical SPSM fashion, users will
normally find it convenient to modify copies of these templates when defining new variables.
These templates appear at about lines 125-145 of vsdu. c.

*

* A numeric vari abl e:

*

vardef (" _xxxxxxxx", I N, i muv.XXXXXXXX, C NUM V_ANAL);
stradd(" XXXXXxXxx", "Variabl e | abel ");

* An integer analysis variable, with values 0 through 4:

*

vardef (" _yyxxxxxx", IN, i muv.yyxxXxxxx, C_INT, V_ANAL);
stradd(" yyxxxxxx", "Variabl e | abel ");
stradd(" xxxxxx", "NtOVtA\t2\t 3\t 4");

* An integer class variable, with values 0 through 4:

*

vardef (" _yyxxxxxx", IN, imuv.yyxxXxxxx, C_INT, V_CLAS);
stradd(" yyxxxxxx", "Variabl e | abel ");
stradd(" xxxxxx", "\tLABELO\t LABEL1\tLABEL2\tLABEL3\tLABEL4");

The Family Allowance Supplement Example Extended

Although the preceding characterization of adding user-defined variables is complete from a
definitional perspective, it is useful to see how the several steps look in practice. In this

Programmer’ s Guide Page 91
SPSD/M Version 6.0 11/19/97

section we summarize the concrete example that the remaining sections will flesh out. In
essence the example is afurther extension of the Family Allowance exploration introduced in
Quick Start and subsequently enhanced with the addition of user-defined parameters.

Our explicit objective here is to provide aworked example that gives concrete illustrations of
al three types of user-defined variables, and to do so without burdening the reader with the
overhead that would inevitably be associated with a completely new example. In the service
of this objective we have not hesitated to sacrifice some realism (as to institutional
motivation and practice) in favor of a clean, specific example.

We extend the Family Allowance supplement example by adding the following three user-
defined variables:

1. A numeric analysis variable: the new variable is the gross amount of additional Family
Allowance benefit received; we'll name it "uvfasup" (user variable, Family Allowance
supplement). We shall assign this variable to the parent who reports the Family
Allowance benefit for tax purposes.

2. An integer analysis variable: the new variable is the number of children in respect of
whom the supplementary benefit is payable. We'll name the variable "uvncfasup” (user
variable, number of children for Family Allowance supplement). We shall also assign
this variable to the person reporting the FA for tax purposes. Thistype of variable finds a
major use when exported in the SAS format because it takes up less space than a numeric
analysis variable. The variable would also be useful as a tabulated variable to count the
numbers of these children.

3. An integer class variable: the new variable categorizes the family by the number of
children in respect of whom the supplement is payable; we'll name the variable
"uvfclfasup” (user variable, family classification for Family Allowance supplement). We
shall use it primarily as a categorical variable for tables designed to validate our
extensions to the FA supplement code. We shall assign this variable to the nominal head
of the family. Note that this class variable is very similar to the integer analysis variable,
but can be used directly as a row or column variable in a crosstabulation, whereas the
integer analysis variable could not.

Aswe proceed to the actual changes and coding needed to implement these new user-defined
variables, we assume that the relevant files@drv. ¢, vsu.h, vsdu.c, Afa.c, SPSM nek,
SPSM ndp, etc) have been COPIED over to an appropriate new subdirectory; here well
assume that it is named GLASSEX3, this being our third worked glass box example.

Changes to project files and Adrv. c

We begin by including all the relevant filesinto the project and by changing the name of the
executable file in Project: Setting:Links to glassex3.exe.

The changes to adrv. ¢ are simple, consisting entirely of (a) updating the short textual

Page 92 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

descriptions for the model and (b) indicating that Afa (rather than fa) is to be used for Family
Allowance calculations.

Of the two descriptions, the SPSM displays the first on its opening screen, to tell the user
about the nature of the alternative system. The SPSM outputs the second description as part
of the . CPR (control parameter) documentation that it produces when it runs the model.
Recall that the positioning of this text (in the screen and in the output file) prevents the use of
descriptions longer than 20 characters. After adding the new descriptions, the relevant
portion of adrv.c (about line 35) appears as follows:

GLOBAL VARIABLE DEFINITIONS */
/*gl obal */ char ALTNAME[| DSI ZE+1] = "FA Suppl New Vars Ex";
/* G ve global string describing version of this nodule */
/*gl obal */ char FAR Tdrv[] = "FA Suppl New Vars Ex"
#i f def MsC
[" _ TIMESTAMP__ "]"

#endi f

The atered line (about line 106) to indicate that the alternate driver uses Afa.c, rather than
fa.c, appears as --

Af a(hh); /[* conmpute famly all owances

Finally, compile a Debug version in Build:Start:Debug. The required links and compilations
will be identified.

Changes to vsu.h

The file vsu.h serves to define the C language structure that holds the user-defined variables.
The relevant portion of this file, copied from the SPSM\GLASS subdirectory, appears as
follows:

typedef struct uv_ {
NUVBER uvdunmy; [* dummy variable */
}ouv_;

We replace the uvdummy line by three lines that define our new variables, uvifasup,
uvncfasup & uvfclfasup. These new lines indicate the types of the new variables. After the
changes, the new portion of vsu. h appears as follows:

typedef struct uv_ {

NUVBER uvf asup; [* Fam |y Allowance suppl enent
payabl e */
i nt uvncfasup; /* Nunmber Children for FA suppl enent
*/
Programmer’ s Guide Page 93

SPSD/M Version 6.0 11/19/97

i nt uvfclfasup; /* Famly Cass (Qualifying Children)
for FA suppl */
}ouv_;

Note the naming conventions used here. The typedef statement requires that the variables be
prefaced with the uv prefix, but does NOT employ the leading underscore used in the vardef
statements that appear later in the changesto vsdu. c.

One need not always modify, as we have done here, the GLASS version ofvsu. h. If an

already existing (user-defined) version ofvsu. h contains user-defined variables that are to be
retained, simply make a copy of that existing file and modify it as appropriate. Recall,
however, that there is an overall limit of 200 bytes per individual for the user-defined
variables.

Changes to vsdu. c

The necessary changes to the copy of vsdu. ¢ consist of the vardef and stradd invocations

that allow the SPSM to access the new variables and their documentation. Given the
simplicity of these invocations, we use the example templates from the beginning of the file.
We shall make these invocations as the end of thevsdu.c file, just before the final

'DEBUG_OFF("vsdu");' statement. The additions appear as follows:

/* uvfasup: (Analysis) Famly Allowance suppl ement payable */

vardef (" _uvfasup”, [IN, imuv.uvfasup, C NUM V_ANAL);
st radd(" uvfasup”, "Fam |y All owance Suppl enment");

/* uvncfasup: (Analysis) nunber of children for whom suppl enent paid */
vardef (" _uvncfasup”, [IN, imuv.uvncfasup, C INT, V_ANAL);
st radd(" uvncfasup", "# Children for FA Supplenent");
st radd(" ncfasup”, "\NtOVt ANt 2\t 3\t4\t5\te\t 7)) ;

/* uvfclfasup: (Cass) Famly class by nunber of children for FA suppl. */
vardef (" _uvfclfasup”, IN, imuv.uvfclfasup, C_INT, V_CLAS);
stradd("uvfcl fasup", "Famly Cass for FA Suppl enment");
stradd("fcl fasup", "\t0 Ch\tl Ch\t2 Ch\t3 Ch\t4 Ch \t5 Ch\t6 Ch\t7

Ch");

Notice the second stradd call for each of the two integer variables, and the omission of the uv
prefix in that (second) call that defines the number of cases (integer analysis variable) or the
category labels (integer classification variable).

Changes to afa.c (Or, more generally, any new substantive source
code)

The preceding tasks have been preliminary to our central task, revision ofAf a. ¢ to reflect
the new calculation of Family Allowances, inclusive of the possible supplement to the
family. We are using Af a. ¢ here, but, more generally, at this stage, the user is ready to
write/modify the source code necessary to make the desired changes to the calculation of
SPSM variables, whatever modules those changes may involve. Wel'l illustrate the changes
for our Family Allowances example one portion at a time, showing for each portion what the

Page 94 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

unmodified Afa. ¢ file looks like, and then how we have changed it to add our desired
variables. Referencesinvolving line numbers refer to the "original" version of Afa.c foundin
the SPSM GLASS subdirectory.

Identifying String

Documentation isimportant. Aswe proceed through the Af a. ¢ file for our changes, we first
update the description. Where the GLASS version of Af a. ¢ provides (at about line 39) the
placeholder description --

/*gl obal */ char FAR Tfa[] = "Untitl ed"
we substitute a more informative description:
/*gl obal */ char FAR Tfa[] = "New Vars Version"

Local Variables

Intermediate (local) variables can be very useful. Where the GLASS version ofAfa. c
defines and initializes its local variables (about line 131), we add the new lines shown just
below. Theinitialization of NUMBER/float variables with ZERO provides insurance against
an obscure bug that shows up only on afew nonstandard machines.

[* user-defined intermediate (local) variables in support of
gl ass box exanple 3 (user-defined SPSM vari abl es) [using the
"stem nanes" for two of the SPSM vari abl es being created] */
NUMBER fasup = ZERQ /* anmount of new FA suppl enent */
i nt ncf asup; [* nunber of children for whom
suppl enent payabl e */

Calculate and Assign the New Model Variables

We are now ready to calculate the new variables, and to assign them to the appropriate user-
defined SPSM variables. For our Afa.c example, we seek to calculate the amount of the
possible supplement. We do so immediately after taxable and federal Family Allowances
have been defined in the SPSM\GLASS version of Afa.c, but before those values have been
assigned as outputs from the Afa routine. This condition occurs at about line 358. The
relevant original source code appears as --

el se {
DEBUGL("% standard FA cal cul ati on\n");
tfa = nch * MP. STDFA, /* taxable fam |y all owances */
ffa = tfa; /* federal part of fam |y allowances*/

}
DEBUG3("% tfa=% 2f, ffa=% 2f\n", tfa, ffa);

Programmer’ s Guide Page 95
SPSD/M Version 6.0 11/19/97

In the new code that we add, we are careful to make sure that an appropriate value is

calculated for our intermediate variables, no matter what the nuclear family looks like, and
that the taxable and federal Family Allowance variables are updated if the supplement is
relevant. Notice that we are retaining the parametric structure developed in Section 6 of this

guide.

/[* Conditionally apply the Fam |y Al |l owance bonus
for the

* "FASUPFECt h" and subsequent children <18 in the
unit,

* including any necessary updates to taxable and

federal FA */

if ((MP.UM FASUPFLAG == 1) && (nch >=
MP. UM FASUPFEC)) {
ncfasup = (nch- MP. UM FASUPFEC+1) ;
fasup = ncfasup * MP. UM FASUPPC,
tfa += fasup;
ffa += fasup;

}
el se {
ncfasup = O;
fasup = ZERQ,
}

In our FA supplement example it makes sense to assign the family classification value to the
nuclear family head. We do so where (about line 368) thesPSM GLASS version of Afa. c
assigns other values to the eldest member. That original Af a. ¢ code appears as --

/**

* Associate the taxable amount of famly all owances, and the
nunber of

* famly allowance children, wth the eldest in the nuclear
famly.

* The function txinet will reassign to the spouse if
necessary.

**/

nf->nfineld->imintfa = tfa;
nf->nfineld->imingtfa = qtfa;
nf->nfineld-> mimfach = (NUVMBER) nch;

After our addition, the modified code reads --
/**

* Associate the taxable amount of famly all owances, and the
nunber of

Page 96 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

* famly allowance children, wth the eldest in the nuclear
famly.

* The function txinet will reassign to the spouse if
necessary.

**/

nf->nfineld->imintfa = tfa;

nf->nfineld->imingtfa = qtfa;

nf->nfineld-> mimfach = (NUVBER) nch;

[* assign famly classification by nunber of supplenent
children to the

nucl ear famly head */

nf ->nfin-> muv.uvfcl fasup = ncfasup;

Finaly, of course, we need to make sure that the variables for the supplement and the number
of children supplemented are assigned to the mother if feasible (or in the absence of the
mother to the head of the nuclear family). The relevant original SPSM GLASS Afa.c code
appears as follows --

/* assign FA to nother if present */
if (nf->nfspoflg &% (nf->nfinspo->id.idsex == FEMALE)) {
DEBUGL(" % spouse is the nother\n");
in = nf->nfinspo;

}

el se {
DEBUGL(" % head receives FANn");
in = nf->nfineld;

}

Our changes to this are minimal. We add only two new lines to assign the amount of the
supplement and the number of supplemented children. Note that we are assigning the values
of the intermediate variables to the (fully qualified) user-defined variables that we defined
viavsu. h andvsdu. c above. The modified version of the source code reads as follows:

/* assign FA and the supplenent, and # Fa suppl enent children
to the nother when she is present */
if (nf->nfspoflg &% (nf->nfinspo->id.idsex == FEMALE)) {
DEBUGL(" % spouse is the nother\n");
in = nf->nfinspo;

}
el se {
DEBUGL(" % head receives FAN");
in = nf->nfineld;
}
in->iminffa = ffa;
in->iminpfa = pfa;
Programmer’ s Guide Page 97

SPSD/M Version 6.0 11/19/97

i n->i mingaafa = gaaf a; /[* Quebec Availiability
Suppl enment */

i n->i mingnbfa = gnbf a; /* Quebec Newborn All owance */

i n-> muv.uvfasup = fasup; [* assign new suppl enent
*/

i n->i muv.uvncfasup = ncfasup; /* assign # of children */
Compilation

We should debug the model and test if it work properly and then compile the new model
GLASSEX3. EXE.

Validation

Once the compilation is complete and the GLASSEX3. EXE file exists, the user can validate it
to check whether the logic is performing as was intended. Since validation was illustrated in
some length in Section 6, we include here only one illustrative set of crosstabulation outputs.
In everyday operation, the user will want to ensure the correctness of the model before
proceeding on to make production runs of the desired tables.

The mini-validation here consists of one set of tables for a single parameter configuration. It
uses the 1986 version of the SPSM, and models the tax and transfer system existing in 1986.
The user sets up the control parameter file to use C:\ SPSD\ BA86. MPR as the base system
model file. The variant system, the one using the new logic for Family Allowances, is here
named GLASSX3A. MPR. |t calls for a subsidy of $120 per year for the second and subsequent
children aged 0 to 17 in the nuclear family. The relevant X TSPEC appears as follows:

XTSPEC
NF: uvfcl fasup+ *
{units,
inffa: L="New Fam |y All owance",
_inffa: L="Base Fam |y All owance",
uvfasup: L="New FA Suppl enent"};
NF: nf nki ds+ *
{units,
inffa: L="New Fam |y All owance",
_inffa: L="Base Fam |y All owance",
inffa- inffa: L="Fam |y Al lowance |ncrease"};
NF: nftype+ *
{uvfasup: L="New FA Suppl enent",
i mrdi sp- _i mdi sp: L="Di sposabl e | ncone
| ncrease"}

The first table specification illustrates the use of user-defined variables as analysis and
classification variables. Note that the usage is just the same as if the variables had been part
of the original SPSM, even to the ability to use the "+" qualifier to indicate the aggregation
across a categorical variable's dimension.

Page 98 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

The similarity between the first two tables isintentional; it shows that one can use the created

variables to display information that is less conveniently available from SPSM variables.
First, for example, the user does not have to take a difference between two variables to see

the pre-tax impact of the FA supplement. Second, using the uvfaclfasup variable rather than

the nfnkids variable allows the user to collapse across all those nuclear family units that have
no children. The third table then confirms that the supplement is being taken into account by
the rest of the tax/transfer system, so that, in aggregate, the families gains in income are less
than the gross amounts of supplement awarded. The tables that result, edited very slightly as

to

SPSD/ M (Dat abase 4. 00)

Wed Sep 27 08:34:51 1989

Base Description: 1986 actual

[Driver: Version 4.00: 82-89, File: c:\spsd\ba86. npr]
Variant Description: 1986 actual

[Driver: FA Suppl New Vars Ex, File: glassx3a. npr]
Sanpl e: 0.0495

AGENAME=" St andar d adj ust nent'

Tabl e 1U. Selected Quantities for Nuclear Famlies by Famly
Cl ass for FA Suppl enent

| Famly Cass for FA |Unit Count |New Fam |y | Base Fam |y|
New FA |

| Suppl enment | (000) | Allowance | All owance
Suppl enment |

I I I (M I (M I
(M I

Fom e e e e e oo o TR TR TR +--- -
-------- +

|0 Ch | 10621. 5| 564. 1| 564. 1|
0. 0|

|1 Ch | 1196. 5| 1020. 3| 876. 7|
143. 6|

|2 Ch | 521. 8| 758. 2| 633. 0|
125. 2|

| 3 Ch | 81. 1| 160. 3| 131.1
29. 2|

| 4 Ch | 14. 6| 34. 6| 27. 6|
7. 0|

| 5 Ch | 1. 5] 4. 3| 3. 4|
0. 9|

| 6 Ch | 0. 0| 0. 0| 0. 0|
0. 0|

| 7 Ch | 0. 0| 0. 0| 0. 0|
0. 0|

Programmer’ s Guide Page 99

SPSD/M Version 6.0 11/19/97

T
-------- +

| Al

305. 9|

T
-------- +

Tabl e 2U. Selected Quantities for
of children in nuclear famly

Fom e e e e +
e emmoo - +

| Number of children |
Fam |y |

|in nuclear famly |
Al | owance |

| I ncrease (M|

Page 100
11/19/97

Unit Count

(000)

9042.

1579.

1196.

521.

81.

14.

5]

Nucl ear Fam |ies by Nunber

New Fam |y | Base Fam |y |

Al'l omance | Allowance |
(M I (M

____________ o4

0. 0| 0. 0|

564. 1] 564. 1]

1020. 3| 876. 7|

758. 2| 633. 0|

160. 3| 131.1

34. 6] 27. 6]

4. 3| 3. 4|

0. 0| 0. 0|

0. 0| 0. 0|

0. 0| 0. 0|
____________ o4
____________ o4

Programmer’ s Guide
SPSD/M Version 6.0

Tabl e 3U. Selected Quantities for Nuclear Fam lies by Nucl ear

famly type

o e e e e e e Fom e e oo o Fom e e oo o +
| Nucl ear famly type | New FA | Di sposabl e
| | Suppl enent| |ncone |
| | (M | I'ncrease |
I I I (M I
o e e e e e e Fom e e oo o Fom e e oo o +
Wth Kids, 1 Adult	22. 2	17. 8
Wth Kids, 2+ Adult	283. 7	179. 3
Wth Elderly, 1 Adult	0. 0	0. 0
Wth Elderly, 2+ Adult	0. 0	0. 0
X her, 1 Adult	0. 0	0. 0
& her, 2+ Adult	0. 0	0. 0
o e e e e e e Fom e e oo o Fom e e oo o +		
Al'l	305. 9	197. 0
o e e e e e e Fom e e oo o Fom e e oo o +

Note that the first and second tables are completely consistent, except that the first is slightly
more compact (with fewer lines), marginally better labeled, and a bit easier to specify in
XTSPEC. Interms of substance, however, the two are comparable; the rows from "1 Ch" to
"7 Ch" in the first table contain exactly the same information as the "2" to "8" rows of the
second table. This sameness of content is just what we would expect for an option that
subsidizes the second and subsequent children. The first and second rows of the second
table, tabulating families not eligible for any supplement, collapse into a single line in the
first table.

The third table shows that some of the Family Allowance is being recovered, since the
increment in disposable income is less than the full amount of the new supplement. Further,
the fraction "recovered" via the reactions of other programs in the tax/transfer system is, as
expected, greater for two-parent units than for single-parent units.

Once the validation is complete, the user will proceed to the production of the desired tables
and other outputs.

Summary/Conclusions

We summarize this chapter's key points by providing a checklist of the main items required
to add new user-defined variables to an SPSM model.

1. Plan the desired changes "on paper”. Choose the new variable names and lay out the
logic by which they will be derived. Ascertain which specific substantive source code
fileswill be affected (e.g.Af a. ¢). Choose a subdirectory for the new model, creating it if
necessary.

2. Copy over therelevant files to the subdirectory where the work will be done.

Programmer’ s Guide Page 101
SPSD/M Version 6.0 11/19/97

The filessSPSM nak, SPSM mdp, Adrv.c, vsu.h, andvsdu.c will awaysbe
needed, along with the relevant substantive files, e.g. theaf a. ¢ file of our example.
Thefilesnpu. h and anpd. ¢ may also be needed depending on whether parameters
are to be added at the same time.

3. Update project and change the nane of the output file.

4. Update Adrv. c.

Insert appropriate short descriptions for the two documentary string arguments
(ALTNAME and Tdrv).

Change the function calls to refer to the alternate versions of the tax/transfer
calculation functions, e.g. Afa(hh) rather than fa(hh).

5. Update vsu. h. Inside the 'uv_' structure, indicate the types and names of the new user-
defined variables. Remember to usethe 'uv' prefix, but to omit any leading underscore.

6. Updatevsdu. c.

For each new variable, provide a vardef function call to define the nature of the
variable to the SPSM.

Also for each new user-defined variable, invoke stradd to provide a variable
description (text string) for the variable.

For each integer variable, analysis or classificatory, invoke stradd a second time
(using just the stem name) to provide alist of labels for the integer values of the
variable. Remember that for the analysis variables these only indicate the number of
categories (from 0 to n), while for integer classification user-defined variables, the
labels are text of the user's choosing.

7. Make the necessary changes to the substantive tax/transfer routines. Consider using
intermediate variables to simplify things. Be careful to perform appropriate
initializations and to assign the derived values to an appropriate individual.

8. Compile the new model. Don't forget to validate it before using it for any serious
production work.

Page 102 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

Changing Base and Variant Data Variables

This chapter describes how users can, when appropriate, change values in the SPSD/M
database for the analysis of policy options. Such changes stand in contrast to the changes in
model logic, parameters and dependent variables described in chapters, and . Here, we are
looking at changes to the data used as input by the tax/transfer algorithms rather than to the
logic of those algorithms. The kinds of changes discussed here are temporary. They affect
the values "seen" by the user's model in a particular run, but they do not affect the values
actually stored in the SPSD itself.

Typically, but not exclusively, the user's database changes will involve dollar-denominated
amounts -- income or deduction items. The user might wish to grow or shrink income from a
particular source, e.g. shrinking interest income to reflect an assumption about falling interest
rates. However, the user might also want to alter a non-income variable, e.g. the school
attendance variable for older children in selected families.

For SPSM models that simulate two (base and variant) tax/transfer systems, an important

distinction is whether the changes affect the values as "seen” by the user's entire model, or by
just one of the (base or variant) systems within the model. This distinction is so important
that we have organized the structure of this chapter around it. Note, however, that the

distinction is irrelevant for models that simulate only a single tax/transfer system. The
procedures recommended here encourage the user to apply the single system approach
whenever it isfeasible.

The following section describes how to make alterations to the data right after the SPSM has
read it for a model run. The changes discussed there will naturally affect ALL of the
tax/transfer systems appearing in the model. The section describes two subcases -- In the
first subcase, the user makes the data adjustments via the SPSM's built-in data-aging
facilities. In the second, more demanding, subcase, the user crafts his’her own aging logic.
This second subcase may involve the definition of new data-aging parameters for the model.
Section 1 indicates where and how to make "single system” changes, and provides a detailed
worked example.

The subsequent section, in contrast, describes changes that affect only a single system (base
or variant) within an SPSM run. It explains how the use of the SPSM's "results file" facility
can often turn this case into the simpler "single system™ as described in earlier on. However,
for instances in which the results file approach is impossible or inconvenient, this section
also includes a description of where and how to make the necessary changes. It concludes
with aworked example of how to implement system-specific database adjustments.

Making Changes That Affect All Tax/Transfer Systems in a Model:

This section describes how to make data changes that affect al of the tax/transfer systemsin
an SPSM model. It is appropriate both when the model has only a single tax/transfer system
and when the model has two systems, but the user wants the data changes to affect both of
them.

Programmer’ s Guide Page 103
SPSD/M Version 6.0 11/19/97

This section first examines the SPSM's built-in data-aging facilities. Under this method, the
user assigns values to existing aging parameters via APl (Aging Parameter Include) files.

This is followed by adding new data adjustment algorithms. For this type of aging, the user
will define the new aging logic in theadj u. ¢ file, and will probably define new parameters
via changes in theapu. h and apdu. ¢ files. The user may also wish to define new dependent
variables to assist in model validation.

Lastly a detailed worked example for this second subcase is presented followed by a
checklist for making this “global” data aging type of change.

Typical Income and Population Growth Changes Via APR/API Files

The design of the SPSD/M already anticipates the user's typical data-aging needs. The SPSD
subdirectory includes a number of files with names of the fornBAxx_yy. APR that instruct the
SPSM to age the data, other than the underlying demographic structure, from year XX to
year YY. Thus, file BA86_88. APR contains the aging parameters to age the SPSD's non-
demographic variables from 1986 to 1988. The degree of detail for this aging is
considerable. Each of these files contains some 600 plus numeric parameters that are used by
the SPSM's built-in aging algorithms.

If the substance of the parameters in these files is acceptable to the user's needs, then the data
aging is straightforward. The user enters the name of the "most nearly correct” file as the
control parameter file's INPAPR parameter. Any necessary changes to these parameter
values are then implemented viaan ".API" (Aging Parameter Include) file.

The SPD/M Parameter Guide provides the authoritative description of these parameters.
However, it is useful here to characterize broadly the extensive control they provide.

Some parameters specify how imputed/converted incomes are to be treated (i.e. ignored or
either of two synthesis methods adopted). A large block of parameters governs the
"removal" of commodity taxes from family expenditures.

Another parameter block provides the low-income cutoffs for families. It permits the user to
specify a set of "poverty thresholds' for economic families, with the particular thresholds
varying by family size and the size of place of residence. Probably of most value to atypical
user, though, is the large set of growth factors for the SPSD's dollar-denominated data
variables: incomes, deductions, and expenditures. Virtually every such variable has its own
growth factor.

The SPSD/M also provides for convenient demographic aging of its underlying population.

The SPSD directory's "WGT" files provide the user with the capacity to adjust the
population base throughout the interval 1984 to 1991.

Changes Involving New Logic For adj u. c

Page 104 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

The flexibility provided by the aging parameter (APR' & ". API") and population aging

(". war") files will often be sufficient for the user's needs. However, in some circumstances,
the user will wish or need to exercise more direct control over the data to be used for a

simulation. A few examples will indicate the scope of what is possible. The reader should
appreciate that the focus of these examples lies more in quickly conveying that scope than in
maintaining a strict, policy-oriented realism.

1. The user could increase the average education level by adjusting the "idedlev" variable
for selected individuals, perhaps resulting in a distribution of educationa attainments that
fallsin line with some exogenous forecast.

2. The user might wish to grow some income or transfer amount by a factor that is a
function of the unit's characteristics. E.g., based on the assumption that investors
portfolios differ as a function of investor age and income, a user might be unwilling to
model the effect of an increase in interest rates by growing everyone's interest income
using the same proportion. Instead, a smaller factor might be applied to those individuals
felt likely to be conservative and/or to have portfolios that turn over more slowly. This
type of assumption would treat such families as being unable to benefit as quickly from
the higher interest rates.

3. A user might wish to model greater labour force participation by changing the array of
labour force variables relevant for individuals in the SPSD (weeks worked, paid-
employment earnings, unemployment insurance variables, etc.). Changes in such awide
variety of related variables would only be done after considerable, comprehensive
planning.

4. At the extreme, a highly experienced, knowledgeable SPSM user could even alter the
household/family structure of the SPSD, modeling a baby boom by adding "synthetic
children" to appropriate families in the database.

The adj u. ¢ function, found in the\ SPSM GLASS subdirectory, is the means by which the user
can add new data aging logic to SPSM models. That adj u. ¢ function is called immediately
after the SPSM has read in each household, and before any transfers or memo variables have
been computed. The user can insert the logic for hissher own changes immediately after the
"adj(hh)" invocation that the SPSM uses to carry out its own data aging, i.e. its built-in
application of the income growth parameters specified in the relevant " APR' and ". API "
files.

For the implementation of new data aging logic, users may need to define new intermediate
variables (including counters, pointer variables, etc.) and/or to define new, custom, data
aging parameters. The next subsection describes the general procedure for adding such new
data aging parameters, with the attendant specific changes developed in the worked example
that follows it.

Adding New Database Adjustment Parameters

Programmer’ s Guide Page 105
SPSD/M Version 6.0 11/19/97

The addition of new user-defined database parameters closely parallels that of new model
parameters as described in Chapters 6 and 7. However, some minor differences are relevant.

(1) SPSM models have only a single aging parameter file (extension ".APR"); they may have
either one or two model parameter (extension ".MPR") files, depending on whether they

model one or two transfer systems. (2) Correspondingly, users supply the values of user-

defined aging parameters in ".API" (Aging Parameter Include) files that amend standard
".APR" files, rather than via ".MPI" (Model Parameter Include) files that amends standard
".MPR" files. (3) New aging parameters are defined in theapu. h (header) file rather than the

mpu. h header file used for model parameters. (4) Similarly, the function calls that make the
parameters available to the rest of the model occur in apdu. c, rather than the ampd.c file

used for model parameters. However, the structures of the relevant pmaddent and stradd

calls are exactly identical. Note, though, that certain arguments to these functions differ

between aging and model parameters. The worked example highlights these differences. (5)
Finally, the logic changes proper are defined inadj u. c, rather than (typically) the individual

tax/transfer functions, such asAf a. c, that are relevant for changes to the transfer calculation

logic of amodel.

We note in passing that the SPSM's control parameters follow a similar parallel structure,
but, even in glass box applications, users do not need to DEFINE new control parameters.
Instead, they simply alter the values of existing control parameters.

A Worked Example

Our hypothetical user, seeking to reflect a response to some change in federal income tax
treatment, wants to grow RRSP contributions in a model. S/he wants the growth to apply

either for a single system to be analyzed, or for both the base and variant systems in a
comparative model. However, this user is not willing to assume that everyone's contributions
grow by the same rate, and wants to simulate disproportionate growth as a function of

income. The main focus of the model is assumed to lie elsewhere in the tax/transfer system.
That is, the user has no specia interest in the impacts of the RRSP increases themselves.
Rather, the user just wants "better" representations of the deduction amounts to be used in all

of the calculations for the relevant transfer system(s).

To make the example more precise, assume that the user wishes to grow existing

contributions by x% for each (whole or partial) slice of $10,000 of paid employment earnings
and self employment earnings over an initial base amount of $20,000. Thus, an individual
with $45,000 in earnings would see hissher RRSP contribution grown by a factor of (1.0 +
3X), where x is anew user-defined parameter. This growth will be IN ADDITION TO, AND
COMPOUNDED WITH, any growth induced via the standard SPSM growth parameter for

RRSP contributions, GFRRSP.

In apossibility NOT developed here, the user might also have induced the presence of RRSP
contributions for individuals who reported zero such contributions. The example developed
later in Section 9.2 provides an illustration of this sort of synthesis of dollar-denominated
amounts.

Page 106 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

In the remainder of this subsection, we track the individual steps involved in implementing
this conditional growth (beyond the growth implemented via the aging parameters GFRRSP).
We assume that the user has created the subdirectory GLASSEX4 for the purpose, and

"COPIED IN" al of the relevant files. (SPSM mak, SPSM ndp, apu. h, apdu.c, and

adj u. c, plus the SPSM parameter files relevant for running the new model). In this
directory the user will create an ". API file to provide a value for the new user-defined

parameter.

Because the parameter addition process for aging parameters so closely paralels the
procedure described in chapters and for model parameters, our commentary on these
changes is kept to a minimum. The user is assumed to have modified the project to include
all the relevant files and changed the output name of the compilation toOGLASSEX4. EXE

We include the aging documentation in the relevant string defined in adju.c as described
below.

(A) Changesto apu. h

We begin by defining a user-defined parameter for the user-defined RRSP contributions
growth factor, the "x" factor in the description above. As a mnemonic, UDGFRRSP (User-
Defined Growth Factor, RRSP contributions) seems appropriate. The SPSM provides for up
to 100 bytes worth of user-defined aging parameters, with this allocation independent of the
600 bytes allocated for any model parameters that the user may wish to define.

The additions to apu. h indicate the kind of parameter being defined. They go just before the
function prototype specifications, replacing the dummy user aging parameter UADUMMY in
the apu. h code.

typedef struct UA {

i nt UADUMWY; [* dummy entry */
}
UA ;
In our example, we replace the single UADUMMY line with --
NUVBER UDGFRRSP; /* User-defined gromh factor for

RRSP Contr. */
(B) Changesto apdu. c

In the apdu.c function we add invocations to the pmaddent and stradd functions to give the
broader SPSM access to the value of the new parameter. The details of these functions
appear in chapters and . We make the additions at the end of the apdu. ¢ function, right
before the statement --

DEBUG _OFF(" apdu") ;
Our two invocations look as follows:
pmaddent (pap, "UDGFRRSP", (char *)&AP.UA UDGFRRSP, NULL, P_SCL, C NUM 0, 0, NULL, 0);

and

Programmer’ s Guide Page 107
SPSD/M Version 6.0 11/19/97

stradd(" UDGFRRSP", "User-defined gromh factor for RRSP
Contr.");

The explanatory text at the beginning of apdu. ¢ function describes the AGING-ORIENTED
arguments for pmaddent and stradd. It also provides the templates for our utilization here (a
scalar parameter).

There are two critical differences in the pmaddent utilization as compared with the definition
of new model parameters. (1) The first argument is pap rather than pcp. (2) The third
argument

differsin that the new parameter residesin the UA (User Aging) structure within the SPSM's
AP (Aging Parameter) structure. This stands in contrast to the "& MP.UM" reference used
for user-defined model parameters (User Model within Model Parameters).

(C) Changesto adj u. c

The first change updates the documentary text string relating to data aging. The original
SPSM GLASS function defines this string at about line 43 as

/*gl obal */ char AGENAME[| DSI ZE+1] = "Unnaned";
We modify it here to read --
/ *gl obal */ char AGENAME[| DSI ZE+1] = "RRSP Contr (Earni ngs)";

With the parameter value available throughout the SPSM, we make the source code additions

to implement the RRSP contribution growth. The first thing we need is some local variables
to aid us in stepping through the individuals in the household being analyzed and possibly
assigning modified RRSP contributions. Thus, we add the following four declarations to the
adj u. ¢ function, inserting them just after the function's opening brace.

NUMBER ear n; /* total paid and self-enpl oynent earnings
*/

i nt group; [* nunmber of UDGFRRSP nultiples to use */
register P_.inin; /* pointer to data for current person */
int ini; /* persons processed */

For the aging assignments themselves, the relevant location is near the very end of the
adj u. ¢ function, inside the code segment --

DEBUG ON("adj u");

/[* Just call the standard adjustnment algorithm*/

adj (hh);

DEBUG_CFF("adj u");

Our addition goes between theadj (hh) ; and DEBUG _OFF("adj u") ; Statements.
/* Gow RRSP contributions as a function of total earnings */
for (ini=0, in=&h->in[0]; ini<hh->hhnin; in++, ini++) {

if (in->id.idrrsp == (NUMBER) 0. 0) {
conti nue;

Page 108 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

}

earn = in->id.idienp + in->d.idisefm+ in->id.idisenf;
if (earn <= (NUMBER)20000.0) {

conti nue;
}

group = (int)(ONE+(earn-
(NUMBER) 20000. 0) / (NUMBER) 10000. 0) ;

i n->id.idrrsp*=(ONE+AP. UA. UDGFRRSP* (f | oat) gr oup) ;
}

The new code, headed by an explanatory comment, breaks out into components that are
relatively straightforward.

(1) The control portion of the "for" statement has been copied, in its entirety, from the
menol. ¢ function (computing totals for individuals) in thesPSM GLASS subdirectory. It
steps across the individuals in the household. The local variables defined earlier are used
in this stepping.

(2) Growing RRSP contributions multiplicatively is not meaningful if there are none to begin
with. Thus, the "if-continue" statement of the next three lines skips the remainder of the
four statements if the individual has no RRSP contributions. The typecast "NUMBER,"
here and later, indicates the user's

(3) intentions as regards variable types; it prevents compiler warnings.

(4) If RRSP contributions are positive, the next line calculates the individual's earnings from
paid employment and from farm or non-farm self-employment. If the tota does not
exceed $20,000, then the remainder of the for statement is skipped; Another "if-continue"
statement performs this function.

(5) The assignment to the "group" variable computes the number of multiples of
UDGFRRSP relevant for the growth. The final statement in the body of the loop applies
the growth via a multiplicative assignment. These two statements will only be executed
if some growth is appropriate. The (int) and (NUMBER) casts they contain indicate the
user's explicit intentions as to variable type conversions; they serve to prevent
meaningless warnings during the compilation stage.

(D) Compiling the model enhancement

The model should be debugged before the compilation of GLASSEX4. EXE executable file.
Only then can the model be run for validation testing and production work.

(E) Providing a parameter value

For any particular run of the model, the user must provide a value for the new parameter, e.g.
avalue of 0.01. Normally the user will do this "on the fly" during the run of the new model,
orviaan". APl " (Aging Parameter Include) file that will modify the contents of theaPR file
specified in the model's control file (" CPR"). In our example, the . API " file would consist

Programmer’ s Guide Page 109
SPSD/M Version 6.0 11/19/97

of thesingleline --
UDG-RRSP 0.01

if no existing aging parameters were to be modified.
(F) validating the model

Before using the model at all serioudly, the user would want to validate the model to be sure
it is performing as intended. Though we shall not carry out such a validation in detail here
for reasons of space, normally one would generate a few selected tables for different runs,
checking to ensure that the model produces the expected results. For example, inputting a
UDGFRRSP factor of zero should leave the total amount of the RRSP unchanged. Similarly,
a small value, say 0.01, should have a small or zero effect on low-income units, but should
have a larger effect on higher income units. A table, defined at the level of the individual,
that showed the increase in the RRSP contributions variable as a function of individua
earnings would go along way toward deciding whether the algorithm yields the right amount
of RRSP increase. It could be generated by using a results file based on the unmodified
database, and comparing numbers of individuals and amounts of RRSP contributions to the
counterparts of these variables after the new RRSP contribution aging.

When one uses the 5% sample SPSD, together with the 1986 population, aging parameters,
and model parameters, one gets the following summary results for a UDGFRRSP factor of
0.01:

Before Growth After Growth Difference

RRSP Contributions (M$) 11,134.3 11,329.2 194.9
Federal Income Tax (M$) 41,173.3 41,118.0 55.3
Prov. Income Tax (M$) 24,190.6 24.160.5 30.1

Total RRSP contributions have risen by about 1.75%, and federal and provincial income
taxes have correspondingly dropped by somewhat less than the amount of new RRSP
contributions.

Checklist for Changing Database Variables "Globally"

(A) Check to see whether the SPSM's existing facilities are sufficient to implement the
desired data aging, so that no new logic is required.

Can the desired population aging be implemented via a selection among existing case weight
files? If so, then specify the relevant case weight file ('WeT" extension) via the INPWGT
(Input Weight) control parameter. Usea™. cPl " file to provide the desired INPWGT value,
or enter it on the fly in response to the model's prompts.

Can the adjustment of the data values be accomplished via changes to the values of the
SPSM's data aging parameters, in conjunction with the SPSM's normal data aging algorithm
(adj(hh))? If so, then provide the relevant aging parameter values to the SPSM viaan " APl "
file. Specify it to the SPSM either interactively or via a batch file being used to coordinate
execution of the model.

Page 110 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

(B) If the desired adjustments to the data cannot be handled via the built-in data aging
procedures, then some new logic will be required. The steps for adding this new data aging
logic are as follows:

1. Copy all of the relevant files to a new directory established for the analysis. The files
\ SPSM GLASS\ adj u.c, SPSM nmak, and SPSM ndp are always relevant. The files
\ SPSM GLASS apu. h and \ SPSM GLASS\ apdu. ¢ will be relevant when new aging
parameters are required.

2. Alter the project environment to include all the relevant files and change the name of the
compiled model. Alterapu. h if new data aging parameters are being defined.

3. Alter apdu. ¢ if new data aging parameters are being defined. The changes will consist of
adding new pmaddent and stradd invocations so that the substance of the new parameters
is available throughout the SPSM. Debug the model.

4. Alter adj u. c. First change the function’'s documentary text string, AGENAME[| DSI ZE+1] .
Then implement the new data aging logic. This step will often involve declaring useful
local variables and stepping through individuals or families in the household.

5. Compile and validate the model before using it for production runs. Parallel tabulations
of relevant individuals and amounts before and after the data aging alterations are
recommended.

6. Carry out production runs using the new, validated aging logic.
Making Changes That Affect Only the Base or Only the Variant

Building a model in which data aging differs between a base system and a variant system is
inherently more complicated than building one in which the two systems are treated
identically. When it is possible, the user should avoid such complication. The SPSM's
capacity for using "results files' (extension ".MRS") provides the maor mechanism for
avoiding data aging that is system-conditioned.

The basic approach is to divide the problem into two parts, one for each system. Then,
within each such system, a single data aging algorithm applies, and the methods described
earlier in this chapter. The user first creates a results file for one of the two systems,
choosing the variables necessary for any system specific tabulations and for any comparisons
to be made. In creating this first system, the user applies the data aging assumptions relevant
to that system. Subsequently, the second system is simulated, with the appropriate,
aternative, data aging applied to it. Theresultsfileisread-in, in parallel with the processing
of the second system, so that the two systems, with their different data aging assumptions, are
available simultaneously for all required comparisons. Chapter 5 of thelntroduction and
Overview Guide provides, in its first example, an illustrative application of resultsfiles.

The remainder of this section is relevant when the results file approach is somehow judged
inappropriate or inadequate to the task at hand. A few examples will illustrate such

Programmer’ s Guide Page 111
SPSD/M Version 6.0 11/19/97

circumstances.

1. The user may place a high premium on having a model that is self-contained, and, once it
has been validated, relatively easy to use interactively.

2. Theintended application of the model may involve sensitivity analysis that would require
several MRS files, with an inherent possibility that confusion might arise. It might
require, for example, investigation of the impact of altering the aging of one specific
variable, with avariety of other variables repeatedly changed in parallel between the base
and variant systems.

3. The intended application might involve complicated comparisons requiring large .MRS
files (or many of them simultaneously) when disk storage is at a premium.

We believe, however, that these kinds of situations, while occurring occasionally, will be the
exception rather than the rule. We encourage users to seek to avoid parallel system models
in which data aging differs across the two systems.

In broadest outline, the method for making system-specific data changes is similar to that
used to make changes to the TAX/TRANSFER LOGIC of a system. Any new system-

specific data aging parameters are added, via thenpu. h and npdu. ¢ files, as MODEL

parameters, and NOT as data adjustment parameters per se. As described below, the user

may wish to add new MODEL dependent variables to track the changes being made.
Although, if new parameters and dependent variables are not required, the procedure applies
equally to SPSM base and variant models, we shall explain the procedure in terms of the
more common situation of variant models.

The MODEL-oriented approach just summarized is mandated by the design of the SPSM.

Since thereis only asingle " APR" file, its parameters inevitably affect the data aging for all
systems within a model. In contrast, changes made via " MPI " files, and via the system-

specificAdrv. ¢ and drv. ¢ functions, apply only to a single designated tax/transfer system.
The user can take advantage of this system-specificity to implement system-specific data
adjustments.

The key to the system-specific data aging changes lies with alterations made to the Adrv.c (or
drv.c) file. In essence, the user "intercepts’ a household's data record just before it is used by
the functions in that procedure, makes the desired changes, and later restores the data record
to its original state just before execution leaves that procedure. Section 9.2.2 explores these
Adr v. c-oriented stepsin greater depth.

Implementing Changes in Adrv. c

The focus in this section rests almost exclusively with the details of changes made within
Adrv.c. Because of the similarity of system-specific data adjustments to the kinds of
tax/transfer system revisions described earlier in thisProgrammer's Guide, certain topics are

not repeated here. Specifically, users are expected to add any new parameters using the
methods documented in Sections 6 and 7; and they are expected to add any necessary new

Page 112 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

dependent variables using the procedures described in Section 8. For example, a user might
wish to add a new model variable to indicate whether the original database value for a
variable has been changed by the system-specific adjustments.

WEe'll take up the required changes in the order in which areader would encounter them when
reading Adrv. c's source code. Later, in Section 9.2.3, a worked example provides a
concrete application of the changes.

(A) Declare New Local (to Adrv. c) Variables

Recall that the general procedure requires the user to save the values of the variables to be
adjusted. The storage permits the values to be restored again before leavingAdrv. c. Thus,
the user must include in Adrv.c appropriate local declarations to provide the needed storage.
Typically, the variables to be adjusted will be defined at the level of the individual. Thus, the
new variables should typically be defined as vectors of length MAXIND. (MAXIND isthe
maximum number of individuals in afamily; version 4.0 of the SPSM setsit to 9.) The user
may also wish to define other local, working, variables. Normally, the user will declare these
variables just before the opening brace for the function, at about line 99 of the unmodified
version of Adrv. ¢

(B) Save the Values to Be Changed

As the very first thing within the executable portion of Adrv. ¢, the user should store away
the original values of the variables that will be changed. If thisis done, none of the other
functions invoked inside Adrv.c can alter the value first or use the unaltered value.
Typically, the storage is accomplished via a "for" statement that steps across the individuals
in a household and copies them, one at a time, into the elements of a vector declared in step
(A). One of the elementsin the bestiary provides the relevant stepping control. The user will
do this at about line 101 of the unmodified code, just after the statement -

DEBUG ON("drv");
(C) Change the Database Vaues

Immediately after the values have been stored, and still before the household's pointer has
been passed to any of the tax/transfer or roll-up functions, the user should make the desired
changes to the values of the relevant variables. These changes will constitute the bulk of the
"real programming”, i.e. logic that cannot necessarily be conveniently adapted from
elsewhere in the SPSM.

(D) Usethe Now Adjusted Values

This step is the easiest of al, since it requires no special effort on the part of the user. It

consists of RETAINING the calls to the several tax/transfer and memo functions. Since the
values of the relevant variables have already been adjusted at this point, all of those functions
will perform their calculations using the adjusted household.

(E) Replace the Original Values

Programmer’ s Guide Page 113
SPSD/M Version 6.0 11/19/97

The final step consists of restoring the original values to the variables that were adjusted. It
will typically be done at about line 125 of the unmodified version ofadrv. ¢, just before
control passes out of the function, i.e. just before the statement --

DEBUG _COFF("drv");

Execution of the replacement is important from the perspective of the code's generality,

maintainability, and reusability. The user programs the changes without knowing whether
the system programmed will be a base or variant system. By putting things back the way
they were, the user can minimize the possibility of unwanted side effects elsewhere in the
model. Equally important, this procedure minimizes the potential for unwanted side effects
should the new adjustments be used again in another model.

A Worked Example

(A) The Substance to be Modeled

We begin with a description of the substantive logic used in the example. It will be obvious
that the same data-aging goals could have been achieved using the "avoidance" techniques
described above; however, since our documentary objective here is the illustration of system-
specific data aging techniques, we arbitrarily deem those avoidance techniques to be
"inappropriate” for our immediate purposes.

Suppose that some exogenous analysis relating to new income tax reporting requirements

suggests that individuals will be reporting more self-employment income. More specificaly,
suppose that 5% of those individuals (1) not reporting more than $100.00 of self-employment

income (farm and non-farm combined) and (2) who are aged both over 25 and under 60 and

(3) who further have half ayear or more without work and looking for work, really have non-

farm self-employment income that has not previously been reported, but now will be
reported. Moreover, suppose the amounts of "new" self-employment income for these

personsis believe to be distributed uniformly between zero and $4000 per year.

The user seeks to estimate the additional income taxes collectible from these persons and also
to assess the impact of this "discovered” income on reducing the poverty rate as measured
against the LICOs. To carry out this investigation the user plans, in the variant tax/transfer
system, to impute appropriate amounts of these new incomes to randomly selected persons
who satisfy the three conditions.

(B) Relevant New Parameters and Variables

Following recommended SPSM practices for avoiding hard-wired values in a model, the user
establishes the following new user-defined aging parameters:

Parameter Description: Value:

NSEFLAG "New Self-Employment Income Flag" 1

NSEAMT "New Self-Employment "Trivial Amount™ 100.0

NSEFRC "New Self-Employment Fraction” 0.05

NSEWKS "New Self-Employment Weeks Requirement" 26

Page 114 Programmer’ s Guide

11/19/97 SPSD/M Version 6.0

NSEMINAGE "New Self-Employment Minimum Age" 25
NSEMAXAGE "New Self-Employment Maximum Age" 60
NSEMAXINC "New Self-Employment Maximum New Income" 4000.0

Similarly, the user defines new variables that will permit convenient counts of the numbers
of eligible persons and of the number for whom new incomes are synthesized. It will also be
useful to have an additional new variable for the amounts of synthesized income.

Variable: Description:

uvnseef "Eligible New Self-Empl"
uvnsesf "Received New Self-Empl"
uvnseamt "New Self-Empl Amount”

(C) Setting Up for the Analysis

The user begins by creating a new subdirectory for the analysis,GLASSEX5. S/he copies in
the required template files: SPSM.mak, SPSM.mpd (to control the compilation), npu. h and
Ampd. ¢ (to make the new parameters available), vsu. h and vsdu.c (to make the new
variables available), and Adrv.c (to implement the new system-specific database
adjustments).

We look at the changes in the order in which the user would be encouraged to make them.
(D) Changesto project

All the relevant files should be include in the project and the name of the output model
changed to GLASSEX5.EXE.

(E) Changesto npu. h

The user provides declarations for al of the new parameters described above.

i nt NSEFLAG, /* New Sel f - Enpl oynent | ncone Flag */
NUMBER NSEAM; /* New Sel f-Enpl oynment 'Trivial Amunt' */
NUVBER NSEFRC, /* New Sel f - Enpl oynent Fraction */

NUMBER NSEVKS; /* New Sel f - Enpl oynent Weeks Requi renent */

NUMBER NSEM NAGE; /* New Sel f - Enpl oyment M ni mum Age */
NUMBER NSEMAXAGE; /* New Sel f - Enpl oynment Maxi mum Age */
NUMBER NSEMAXI NC, /* New Sel f - Enpl oyment Maxi mum New | nconme
*/

(F) Changesto Anpd. ¢

The user aters the Anpd. ¢ file by providing pmaddent and stradd invocations for al of the
new parameters. Appropriate new pmaddent calls would be as follows:

pmaddent (pcp, "NSEFLAG', (char *)&NP. UM NSEFLAG, NULL, P_SCL, CINT, E_FLAG 0, NULL,
0):

prmaddent (pcp, " NSEAMI™, (char *) &MP. UM NSEAMT, NULL, P_SCL, C NUM O, 0, NULL,
0):

prmaddent (pcp, " NSEFRC', (char *)&MP. UM NSEFRC, NULL, P_SCL, C NUM E_FRCT, 0, NULL,
0):

Programmer’ s Guide Page 115

SPSD/M Version 6.0 11/19/97

praddent (pcp, " NSEWKS', (char *)&MP. UM NSEVKS, NULL, P_SCL, C NUM O, 0, NULL,
0);

praddent (pcp, "NSEM NAGE', (char *)&WP. UM NSEM NAGE, NULL, P_SCL, C NUM O, 0, NULL,
0);
praddent (pcp, "NSEMAXAGE', (char *)&WP. UM NSEMAXAGE, NULL, P_SCL, C NUM O, 0, NULL,
0);
praddent (pcp, "NSEMAXINC', (char *)&WP. UM NSEMAXINC, NULL, P_SCL, C NUM O, 0, NULL,

0);

The associated stradd invocations would appear as follows:

stradd(" NSEFLAG', "New Sel f - Enpl oynent | ncone Flag");

st radd(" NSEAMT" , "New Sel f - Enpl oynent ' Trivial Amount'");
st radd(" NSEFRC', "New Sel f - Enpl oynent Fraction");

st radd(" NSEVKS", "New Sel f - Enpl oynent Weeks Requirenent");

stradd(" NSEM NACE", "New Sel f - Enpl oynent M ni num Age");
st radd(" NSEMAXACGE", "New Sel f - Enpl oynent Maxi num Age") ;
st radd(" NSEMAXI NC', "New Sel f - Enpl oynent ©Maxi num New | ncone");

(G) Changesto vsu. h

In this file the user declares the new variables that will contribute to more convenient
validation and tabulation of the individuals for whom new income is considered or actually
synthesized.

i nt uvnseef; [* Eligible for New Sel f-Enpl Synthesis */
i nt uvnsesf; [/* Received New Sel f-Enpl I|ncone */
NUMBER uvnseant; /* New Sel f-Enpl Amount */

(H) Changesto vsdu. ¢

Invsdu. ¢ the user invokes vardef and stradd to make the new variables avail able throughout
the new model. As indicated above, there are two classificatory variables to be used for
crosstabulation outputs, and a NUMBER float value for the amount of synthesized self-
employment income.

/* uvnseef: (Cass) Flag: Individual eligible for NSE
synt hesi s? */

vardef (" _uvnseef", IN, imuv.uvnseef, C_INT, V_CLAS);
stradd("uvnseef", "Eligibility for Synth Self-Enpl");
stradd("nseef", "\tNot Eligible\tEligible");

/* uvnsesf: (dass) Flag: Individual Got Synth. NSE? */
vardef (" _uvnsesf", IN, imuv.uvnsesf, C_INT, V_CLAS);
stradd("uvnsesf", "Synth Sel f-Enpl Receipt");
stradd("nsesf", "\t No Receipt\tReceipt");

/* uvnseant: (Analysis) NUMBER Anount of synthesized NSE */
vardef (" _uvnseant", IN, imuv.uvnseant, C NUM V_ANAL);
stradd("uvnseant ", "Synth Sel f-Enmpl Amount™);

(I) Changesto Adrv. ¢

i) The changes begin with the declaration of new variables critical to the data adjustment

Page 116 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

process. We use standard SPSM notation for the pointer to an individual, and for the number
of persons processed (for the stopping rule within households). In addition, there is a vector
declared to hold the original values of the individuals' non-farm self-employment income.

register P_.in in; /* pointer to data for current
person */

int ini; /* persons processed */
NUMBER ori gnf se[9] ; [* original non-farm self-enpl
i ncome */

i) The changes continue with the code to store the existing non-farm self-employment
income so that it can later be restored to its origina state. We use one of the standard
elements of the bestiary, stepping across individuals in the household, to implement this
archival.

/* Archive original database values for non-farmself-
enpl oynent */

for (ini=0, in=&h->in[0]; ini<hh->hhnin; in++, ini++) {
orignfse[ini]=in->id.idisenf;
}

A dlightly more efficient version of this code would make the execution of the storage
instructions conditional upon the NSEFLAG parameter being set to a value of 1 to activate
the synthesis facility. The version here is simpler and slightly safer.

iii) Implement the conditionally augmented self-employment income

[Work in the use of existing pseudo-random variables for both the choice of new persons to
report self-employment earnings (non-farm) and the amount of it to report. Explain how this
is central to replicability given selection of subsets of the data.]

/* Selectively synthesize non-farm sel f-enpl oynent incone
*/

for (ini=0, in=&h->in[0]; ini<hh->hhnin; in++, ini++) {
in->muv.uvnseef=0; /* assign values to new vars */
i n->i muv. uvnsesf =0;
i n->i muv. uvnseant =(NUMBER) 0. O;
i f (MP. UM NSEFLAG==0) {
continue; /* don't synthesize if facility is off */
}

if (((in->id.idisefmtin->id.idisenf)>MP. UM NSEAMI) | |
(1 n->id.idnage<MP. UM NSEM NAGE) | |
(1 n->i d.idnage>MP. UM NSEMAXAGE) | |
(in->id.idlyun<(int)MP. UM NSEVKS)) {
conti nue; /* ignore ineligible individuals
*/

Programmer’ s Guide Page 117
SPSD/M Version 6.0 11/19/97

in->muv.uvnseef=1; /* mark indiv. as potentially
eligible */

if (in->id.idrand[2] >MP. UM NSEFRC) ({
conti nue; /* individual was not selected to get
i ncome */

}

in->muv.uvnsesf=1; /* mark indiv. as recipient */ in-

>i m uv. uvnseant =i n- >i d. i dr and[3] * MP. UM NSEMAXI NC; /*synt hesi ze
ant */ in->id.idisenf+=in-> muv.uvnseant; /* add syn ant to
non-farm sel f-enpl */

}
The preceding code, though a bit lengthy, is straightforward. Inside the loop through
individuals, one performs the following actions:

Assign default values to the new user-defined variables.

Skip the rest of the loop if the facility was not activated.

Skip the rest of the loop if the individual doesn't meet the qualifying conditions for
synthesis of new self-employment income.

Mark the individual as potentially eligible for synthesis; then skip the rest of the loop
if theindividual is not "chosen" to receive income.

If execution reaches this stage, mark the individual as a recipient of synthesized
income and impute the amount, adding the new amount to the person’'s non-farm self-
employment variable.

Once the loop has been executed, the synthesis of new non-farm self-employment income is
complete for all members of the household. At this point the "regular” statements of Adr v. ¢
follow, calculating the tax/transfer amounts and the several memo items.

iv) Finally, after the adjusted household has been processed through all of the tax/transfer
and memo functions, the new code restores the original non-farm self-employment income
values.

/* Restore original database values for non-farmself-
enpl oynent */

for (ini=0, in=&h->in[0]; ini<hh->hhnin; in++, ini++) {

in->id.idisenf=orignfse[ini]; }

A dlightly more efficient version of this code would make the execution of the restoration
instructions conditional upon the NSEFLAG parameter being set to the value of 1 that

Page 118 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

activates the synthesis facility. The version here is simpler and slightly safer.
(J) The new MPI and CPI files

It still remains to provide values to the several parameters so that the SPSM, during a
particular run, can implement the desired adjustments. An aging parameter "include file"
(extension ".API") with the following entries performs this function.

NSEFLAG 1
NSEAMT 100. 0
NSEFRC 0. 05
NSEVKS 26.0
NSEM NAGE 25.0
NSEMAXAGE 60. 0
NSEMAXI NC 4000. 0

Similarly, it is necessary to make sure that the relevant independent streams of pseudo-
random variates are generated to serve as inputs to the "random” choices of synthetic income
recipients and the associated amounts of synthesized income. These control parameters
would be provided viaa". cpl1 " file containing the following statements --

SEED 4
0123

The parameter above indicates that the user is requesting 4 independent streams. As noted

above, streams 0 and 1 are used for GIS calculations; the non-farm self-employment income
synthesis algorithm uses streams 2 and 3. See the "SEED: Random Number Generator Seed"

entry in the SPSD/M Parameter Guide for an explanation of this facility and its usage.

(K) Compiling and Validating the Model

With all of the source code changes complete, the user should first debug the model and then
compile the desired executable file, GLASSEX5. We conclude this worked example by
characterizing a very quick and dirty set of validation tables. For a serious application, the
user would normally undertake a much more rigorous validation of the changes. Recall too,
that this kind of system-specific data adjustment could more easily have been accomplished
using results files (" MRS"). Under that mechanism an equivalent income assignment logic
would have been applied via the adju.c file, and the relevant parameters would have been
supplied viaanArI file.

Assume, for purposes of this quick and dirty illustrative validation, that the user's exogenous
source has already indicated roughly how many individuals should display new self-
employment income, perhaps as a function of some relevant policy variable.

The user will first want to tabulate the numbers of individuals according to the values
of the two user-defined classificatory variables, uvnseef, and uvnsesf. Then the
entries in this table can be compared to the exogenous source to confirm (1) that the

numbers of eligible individuals agrees with those specified in the "exogenous source,"
(2) that an appropriate proportion of these individuals have had new self-employment
income imputed.

Programmer’ s Guide Page 119
SPSD/M Version 6.0 11/19/97

Next, the user would want to confirm that the average amount of new imputed self-
employment income is appropriate (i.e. half of the $4,000 NSEMAXINC parameter
value). It would also make sense to tabulate the total amount of new income imputed,
so that this amount can be compared to the increases in federal and provincial income
taxes. Thus the user can confirm whether an appropriate proportion of the new
income is flowing to the government sector as income taxes.

Even for the validation runs, it makes sense to look at the degree of change in the
incidence of units below the relevant LICOs. Given the relatively tight conditions for
the eligibility to receive the synthesized income, and the relatively small portion of
the eligible population selected to receive new self-employment income, the user
should expect only asmall change in that incidence.

Here we show the first part of this validation, verifying the amounts of new self-employment
income. We use the SPSD/M for 1986 with the 5% sample. The changes in "poverty rate,"
not shown here, would be derived using the SPSM's "efpovthr" (poverty threshold) and
"impovinc" (income for comparison against the relevant poverty threshold) variables. The

validation is most conveniently performed via crosstabulations. The relevant control
parameters, input viaa". cPl " file, are asfollows:
XTFLAG 1
XTSPEC
IN: { units }
* uvnseef
* uvnsesft;

IN: { uvnseant,
uvnseant/units }
* uvnsesft;

IN: { uvnseant,
it xf-_imxf,
imtxp-_imxp }
* uvnsesf

The resulting tables then appear as --

Table 1U. Unit Count (000) for Individuals by Eligibility for
Synth Sel f-Enpl and Synth Sel f-Enpl Recei pt

Synth Sel f-Enpl Recei pt

"y - - +
|Eligibility for Synth Self-Enpl | No Recei pt| Receipt |
"y - - +

| Not Eligible | 23351. 7| 0. 0|

| EI'i gi bl e | 809. 6| 47. 2|
"y - - +

Tabl e 2U. Sel ected Quantities for Individuals by Synth Self-
Enpl Recei pt

Page 120 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

Synth Sel f-Enpl Recei pt

| Quantity | No Recei pt| Receipt

| Synth Sel f-Enpl Amount (M | 0. 0|
92. 5]
| uvnseant/units | 0]
1962|

Tabl e 3U. Sel ected Quantities for Individuals by Synth Self-
Enpl Recei pt

Synth Sel f-Enpl Recei pt

o Fom e e oo o Fom e e oo o +
| Quantity | No Receipt| Receipt |
o Fom e e oo o Fom e e oo o +
| Synth Sel f-Enmpl Amount (M | 0. 0| 92. 5|
[imxf-_imxf (M | 1. 0| 12. 9|
[imxp-_imxp (M | 0. 5] 9. 5]
o Fom e e oo o Fom e e oo o +

As regards the substance of these tables, we'll assume that the 809.6 thousand persons in
table 1U agrees reasonably well with the hypothesized "exogenous data source." Since 47.2
thousand of these persons received some new self-employment income. the 5% objective has
been roughly met; presumably the proportion would be closer to 5% were we to use the full

SPSD.

Table 2U confirms that our new algorithm assigns new self-employment income only to
those eligible to receive it. The total amount of new income, and the associated average
amount, confirm that the expected amounts of the new income are being synthesized
(roughly $2000 per selected individual).

Table 3U then indicates how much of the new income, a bit more than a quarter of it, is being
captured by the tax system. As expected, most of the capture is directly from the recipient

individuals, though there is some from non-recipients, primarily because some recipient
individuals become less valuable as personal exemptions due to their new income. Clearly,
with income of less than $100M being distributed across the whole personal sector, we do

not expect any major impacts on the proportion of the population below the LICOs.

Finaly, once the user is satisfied as to the correctness of the adjustment procedures, she
would run the full SPSD through the model in one or more production runs. To meet the
illustrative goals described at the start of this section, outputs would have to include the
federal and provincial income tax totals, and the numbers of families above and below the

Programmer’ s Guide Page 121
SPSD/M Version 6.0 11/19/97

LICOs, with these outputs being produced both with and without the synthesis of new non-
farm self-employment income. Normally, the user would also include breakouts of these
variables by relevant classificatory variables such as family type.

Checklist for System-Specific Database Changes

(A) Create a new subdirectory for the analysis. Copy into it templates for all of the files that
will needed for the analysis. Items that are likely to be required include SPSM.mak,
SPSM.mdp, npu. h, Anpd. ¢, vsu.h, vsdu.c, Adrv.c, and acontrol (". CPR") file. The
user will also create, in this same subdirectory, other files required for the analysis for
which there are no obvious templates, e.g. the". MPI " file that will provide values for the
system-specific data aging parameters, or a batch file to control the SPSM session.

(B) Change the project environment to include all the relevant files and change the name of
the executable output file.

(C)Change npu.h and Anpd.c to declare any new system-specific data adjustment
parameters, and to make them available, via invocations of pmaddent and stradd, to the
rest of the SPSM.

(D)Change vsu.h and vsdu.c as required to declare any new system-specific model
variables, and to make them available, via invocations of vardef and stradd, to the rest of
the SPSM.

(E) Change Adr v. ¢ to save the original values of the variables to be adjusted, to effect the
adjustments, and then, after the household has been processed, to restore the original
values before leaving the procedure. These steps will typically require the definition of
local VECTORS of values dimensioned for the numbers of possible individuals in a
household.

(F) Compile the new model and correct any problems identified by the compiler.

(G) Supply values for the new system-specific data adjustment parameters viaan'. MPl " file
or files. When the aging depends on the use of pseudo-random variables, provide a
". cPl " file with appropriate changes to the SEED parameter. The model will gain access
to these control and model parameter values at model execution time either interactively
or viaan SPSM batch file.

(H)Validate the model carefully, and then make production runs.

Page 122 Programmer’ s Guide
11/19/97 SPSD/M Version 6.0

