

SPSD/M
Programmer’s Guide

This guide describes how to use the SPSM in glass
box mode. Glass box mode allows users to add new
variables and parameters to the SPSM as well as the
ability to alter the SPSM algorithms or implement new
algorithms. The Microsoft C compiler is required for
using the glass box mode.

Table of Contents
Introduction ...1

Purpose of the Glass box Mode ...1
Hardware and Software Requirements for the Glass box Mode3
Programming Knowledge Required ...4

Operating System Knowledge Required..4
Fundamental Programming Concepts (Not Language Specific)........5
Knowledge of the C Programming Language....................................5

Quick Start Example ...5
Preliminaries ..6
Changing the project environment ...7
Changing the Alternative Driver Function (Adrv.cpp)7
Changing the Alternative Family Allowances Function (Afamod.cpp)8
Testing the Resulting Alternative SPSM Model..10
Summary..13

SPSD/M and Glass Box Directory Structure ...14
The SPSD Household/Individual Structure ...16

The SPSD/M's Data Structure..17
Introduction to Pointers in the SPSD/M..18
The Bestiary ...18

Examples of Looping: ..19
References With Respect to an Individual:..21

Summary..21
SPSM Function Calling Structure..22
Glass Box Development: Adding Typical Scalar Parameters23

General Procedure for Making Glass box Changes: A Recapitulation24
Create Task Sub-directory...24
Identify Files to be Changed..24
Copy Relevant Files to Task Sub-directory24
Edit Those Relevant Files..25
Compile the new version ...25
Test the New Version of the Model ...25
Carry Out the Intended Analysis..25

Introduction to Parameter Addition...25
Copy Files Adrv.cpp, Mpu.h, Ampd.cpp, Afamod.cpp, SPSMGL.dsw..........27
Update the project..27
Update the Algorithm Description in Adrv.c..27
Modify Mpu.h to Define the new Parameters ...28
Modify Ampd.cpp to Make the Parameters Available to the SPSM..............28
Modify the Functions that Use the New Parameter(s)..................................30
Validate and Make Black-Box Production Runs ...31
Summary/Conclusion ...32

Glass Box Development: Adding Less Typical Parameters33
pmaddent: The Function and its Arguments...33
Characterizing Scalar Parameters ...37

REAL/float/NUMBER Parameters ...38
INTEGER/int Parameters ..38
FLAG Parameters..38
FRACTION Parameters...38
OPTION Parameters ...38
EDIT-FRACTION Parameters ...39
DUMMY Parameters ...39

Vectors of User-defined Parameters ..39
Additions to Mpu.h, Cpu.h or Apu.h...40
Additions to Ampd.cpp...41
User-Defined Parameter Vector References in the Source Code42
Specification of Parameter Vector Values ...42
Summary ...43

User-defined Schedules for Lookups ...43
Schedule Types and Lookup Functions...44
Appearance in SPSM Header Files ...45
Appearance in pma ddent Calls in Ampd.c..45
Employing Schedule References in User Code.................................46
Appearance in Parameter Files ...47
Key Points for Adding Schedule Parameters.....................................48

Adding Matrices of Parameters ..48
Appearance in Mpu.h ..49
Appearance in Ampd.c ..49
Referencing Matrix Elements in Source Code...................................50
Appearance in Parameter Files ...50

Summary/Conclusion ...51
Glass Box Development: Adding New Variables ..52

Overview for Adding Variables ...53
Dependent Variable Types and Characteristics ...53
The vardef and stradd Functions and their Arguments54

Vardef "Name" Argument (and Definition of Variable "Stem"
Name):...55
Vardef "Home Structure" Argument:..55
Vardef "Variable Location" Argument: ...55
Vardef "C-Type" Argument (C_NUM & C_INT):55
Vardef "Usage" (Type) Argument (V_ANAL & V_CLAS):55
Stradd Calls for Numeric Analysis Variables:56
Stradd Calls for Integer Analysis Variables:56
Stradd Calls for Integer Classification Variables:...............................57

The Family Allowance Supplement Example Extended58
Changes to project files and Adrv.cpp..59
Changes to vsu.h ...59
Changes to vsdu.c ...60
Changes to Afamod.cpp (Or, more generally, any new substantive
source code) ..60

Identifying String..61

Local Variables..61
Calculate and Assign the New Model Variables61
Compilation ...63

Validation ...63
Summary/Conclusions ...65

Changing Base and Variant Data Variables..66
Making Changes That Affect All Tax/Transfer Systems in a Model:.............67

Typical Income and Population Growth Changes Via APR/API
Files...68
Changes Involving New Logic For adju.cpp68
Adding New Database Adjustment Parameters69
A Worked Example..70
Checklist for Changing Database Variables "Globally"......................74

Making Changes That Affect Only the Base or Only the Variant..................75
Implementing Changes in Adrv.cpp...76
A Worked Example..78
Checklist for System-Specific Database Changes85

Introduction

The Programmer's Guide describes how users can alter the SPSM in order to model
tax/transfer systems or policy options not directly addressable by the SPSD/M as
distributed; e.g. they might make an alteration to the logic of the tax/transfer system
in order to assess the static distributional impacts that would result from a policy
proposal.

This chapter introduces a variety of preliminary topics critical for understanding the
use of the SPSM in its glass box mode. Specific chapter topics include:
(1) a description of the glass box mode, especially in contrast to the black box

mode,
(2) the hardware and software requirements for using the glass box mode,
(3) the degree of programming knowledge required.
Subsequent sections in the guide then take up the details of actually developing
glass box applications. Thus, the following section describes a "Quick Start"
procedure that tests the success of the SPSM installation by effecting a simple glass
box modification to the SPSM as distributed. The Section entitled SPSD/M and
Glass Box Directory Structure characterizes the subdirectory structure relevant to
the various aspects of glass box operations. The SPSD Household/Individual
Structure provides critical details on the key SPSD data structures used by the
SPSM. SPSM Calling Structure describes the calling structure of the SPSM
modules that make up a specific model. Glass Box Development: Adding Typical
Scalar Parameters addresses the mechanism for adding user-defined model
parameters to an SPSM model, treating the most common forms of scalar
parameters. Glass Box Development: Adding Less Typical Parameters then takes
up the addition of less typical kinds of scalar parameters, as well as the addition of
vectors and matrices of new model parameters. Glass Box Development: Adding
New Variables describes the addition of new variables to a model. Changing Base
and Variant Data Variables provides the definitive statement on managing standard
and alternate algorithms within the context of glass box operations.
PURPOSE OF THE GLASS BOX MODE

A simplified systems view of the process of simulating taxes and transfers may be as
follows:

Programmer’s Guide Page 1
SPSD/M Version 9.2

Reports
Parameters

A user specifies a series of inputs (parameters and data) which are then processed
through a system of algorithms (the Black Box) which in turn produces a system
outputs (tables and microdata). The user may create many different simulations by
varying the inputs and then analyzing the outputs. He may even deduce some of
the contents of the black box through repeated testing. However, the simulations
possible are limited by the contents of the black box. If, for example, the rules of the
Manufacturer’s Sales Tax are not included in the system of algorithms (with
provisions for appropriate input data and parameters) then this program can not be
simulated without actually opening up and changing the black box. This ability to
look inside the black box and alter its contents is like turning the black box into a

Microdata
Microdata

INPUTS OUTPUTS

Family
Allowance
Algorithm

GLASS BOX
User

Changes

Old
Version

Parameters

Microdata Microdata

Reports

New SPSM
BLACK BOXINPUTS OUTPUTS

C++ Compiler

TEXT EDITOR

SPSM
BLACK BOX

Programmer’s Guide Page 2
SPSD/M Version 9.2

glass box.

This guide explains how to use the SPSM in its glass box mode. Specifically, the
term "glass box mode" refers to a method of modifying versions of the executable
SPSM program to accomplish analyses that are not possible with the original,
unmodified SPSM. Glass box mode may be used to add or modify parameters,
variables, and algorithms. Using the “glass box” mode always entails altering the
C++ Language source code and recompiling an executable version of the program.
The "black box mode" refers to the subsequent execution of an executable version,
either as shipped by Statistics Canada or as modified by user’s in “glass box” mode.
It is always through the black box mode that a user carries out a variety of policy
relevant simulations via parameter changes, user variables, and tabulation
expressions.

Because of the extra steps involved, users should attempt to avoid the glass box
mode wherever possible. The SPSM provides a number of devices that enable
analysts to achieve many desired results without re-programming. The most
common technique is to alter the default sets of program parameters that drive the
SPSM. The analyst could simulate the impact of an increase or abolition of Family
Allowances by changing the numeric values of the relevant parameters. In a second
example, the analyst can define their own variables in the control parameter file, and
can use the resulting variables in a whole range of SPSM outputs. The Introductory
Guide provides an extensive detailed example in which an analyst uses the user-
defined variables to simulate an earned income tax credit. Similarly, the analyst can
create variables “on-the-fly” as expressions and export or tabulate them just as if
they had been full-fledged variables, and can conveniently represent differences
between a given variable in the base and variant tax/transfer systems. The XTab
User’s Guide provides several examples of this type of on-the-fly definition.

The Glass box mode must be used under the following conditions:
(1) Adding any new parameters.
(2) Adding new variables that require reference to other specific family members.
(3) New proposals which are designed to interact with the tax/transfer system. For

example, a taxable newborn allowance.
(4) New proposals that alter the logic of existing programs in ways that have not yet

been parameterized.
When users need to make such changes in the SPSM to reflect alternative
tax/transfers systems, they need to be familiar with the techniques described in this
guide.
HARDWARE AND SOFTWARE REQUIREMENTS FOR THE GLASS BOX MODE

The Installation Guide provides the definitive statement on hardware and software
requirements. For most users, a printer is a practical necessity. The discussion
here assumes that one is present.

The key aspects of software requirements are as follows:

Programmer’s Guide Page 3
SPSD/M Version 9.2

1. Use of the SPSD/M in the glass box mode requires the availability of Visual C++
that serves to compile the user's C language source code statements into the
machine language format required by the SPSM.

2. The SPSM itself requires an operating system compatible with the version of
Visual C++.

3. The user must have an appropriate editor for entering or altering C language
source code, such editing being central to glass box usage

4. It is suggested to use an efficient text editor compatible with C++ code.

Users expecting to use the SPSM heavily in the glass box mode will probably also
want the added efficiency provided by "utility" software such as the MKS toolkit that
makes many Unix style features available within the operating system.
PROGRAMMING KNOWLEDGE REQUIRED

Because use of the SPSM in the glass box mode requires the user to do some
programming, glass box user will have to be somewhat more knowledgeable than
the typical black box user. This section characterizes the kinds of things that a glass
box user will either have to know or be prepared to learn.
Operating System Knowledge Required

Using the SPSM in its glass box mode requires that the user be fairly comfortable
with a number of areas relating to the operating system. A user needs to know
about disk drives, files, and file naming conventions, and about directories and
subdirectories.

The user should be familiar with the concept of the DOS environment and with
environment variables such as the PATH variable. Effective operation in the
SPSM's glass box mode also requires that users be proficient with a number of DOS
commands. The DOS commands most critical include:

DIR
TYPE

List directory contents
List file contents

MKDIR
CHDIR
RMDIR

Make new directory
Change current directory
Remove directory

COPY
XCOPY

Copy files
Copy files and/or directories

DEL Delete file
SET
PATH

Set/display environment variables
Display current path

Users who are not at ease with the concepts and commands described here will
probably avoid a great deal of frustration by spending some time with the DOS
manual or develop some ability to do it in Windows environment before tackling
actual glass box applications.

Programmer’s Guide Page 4
SPSD/M Version 9.2

Fundamental Programming Concepts (Not Language Specific)

The SPSM glass box is not the place to learn your first programming language.
Users should be familiar with at least one high-level computer language prior to
using the Glass-Box (e.g. FORTRAN, BASIC, PASCAL, and SAS). Because glass
box applications involve programming in a compiled language, it is desirable that
glass box users come to the task already familiar with the key concepts. A user
should be comfortable with the idea of using a text editor to write or revise source
code, and with the idea of using a compiler to produce the desired executable file.
The user will benefit from a familiarity with the notions of libraries, macros, modular
programming and program validation.

More critically, a user's experience with these concepts should be applied.
Preferably, before tackling SPSM glass box applications, a user should already have
written and debugged several non-trivial computer programs, not necessarily using
the C language. Although it may be possible for a user to learn to program by using
the SPSM, we recommend against the attempt. For prospective SPSM users
needing to build or reinforce basic programming skills, a wide variety of
programming texts are available.
Knowledge of the C Programming Language

Because SPSM glass box applications involve programming in the C language, a
user must also program in C. Although the structure of the SPSM means that
certain things like input/output are done for the user, the prospective user will be
most efficient if the basics are previously understood. Users have to understand the
purpose of defining constants and declaring variables, and must appreciate the
scopes of these declarations. They must understand variables and variable types,
specifically including pointer variables and structured variables, and how the C
language uses them. They must understand the nature and structure of functions
and the variety of statements that comprise them. They must be familiar with C's
major flow of control statements (if-else, switch, while, for, do-while), as well as C's
table of assignments and operators, including the increment operator. For users
who have worked in other programming languages and are capable of absorbing
this information in a concentrated form, Kernighan and Ritchie's book, "The C
Programming Language" is the standard reference. Similarly, the C language
manual that comes as part of the Microsoft C Optimizing Compiler is a very useful
and authoritative source for information about C and its implementation.

Finally, of course, SPSM users must understand the basics of the Microsoft C
Compiler. It is also necessary to understand the thrust of what is going on, and the
various error messages that the compiler may give in response to the user's code.
The authority on these topics is, of course, Microsoft's set of manuals for the C
compiler.

Quick Start Example

As its title suggests, this chapter provides the user with a quick start at using the

Programmer’s Guide Page 5
SPSD/M Version 9.2

SPSM in its glass box mode. The chapter serves three main functions. First, it
allows the user to check the installation of the compiler and SPSD/M. If the user can
carry out the chapter's simple example successfully, then all of the major portions of
the installations were performed properly. Second, the example introduces key
glass box concepts and terminology. Third, the example illustrates, in an integrated
manner, the general flow of glass box applications.

The chapter's approach is primarily narrative. Taking the reader through all the
steps of a simplified glass box application, it concentrates on the general approach.
It describes the key details of the exercise, but does not attempt to be exhaustive.
The particular illustration used here was selected for its simplicity; it addresses the
most critical aspects of glass box applications, but doesn't get bogged down in the
additional requirements associated with more ambitious applications.

Substantively, the example models a relatively simple change to a single transfer
program, Family Allowances, in the tax/transfer system. Our hypothetical analyst,
intrigued by the practice of Prince Edward Island in the 1970's, seeks to ascertain
the aggregate and distributional impacts that would be associated with giving
additional Family Allowance benefits to larger families. More specifically, in the
variant system, the analyst wants to increase the amount of the federal Family
Allowance by $10 per month per child for selected children in selected families.
When a family has three or more children currently aged 0 through 17 years of age,
then it receives, over the year, an additional amount equal to $120 times the number
of these "excess" children, i.e. $120 for a three child family, $240 for a four child
family, etc. We assume that this additional Family Allowance benefit would be paid
by the federal government to the usual recipient and that the benefit would be
treated just like the regular federal Family Allowance benefit.

As regards the narrative, readers should not worry about the "whys" of the
implementation. Subsequent sections in this Programmer's Guide will address all of
them more fully. However, it is highly desirable that the user work through the
example to the point of actually carrying out all of the tasks described. Only in this
way can the first purpose, confirmation of the installation processes, be realized.
PRELIMINARIES

The user should begin by selecting a subdirectory in which to work. This is the hard
disk subdirectory in which the user will edit copies of the relevant C++ language
source code files and describe the nature of the alternative system. We strongly
recommend that the user employ a directory other than those that the SPSD/M
installation establishes for the SPSD/M itself. The user can make a new
subdirectory if necessary. For purposes of this narrative, we'll assume that a
subdirectory named GLASSEX1 is available as the working subdirectory.

The user begins the process by copying, from the SPSD/M's GLASS subdirectory, to
the GLASSEX1 work subdirectory, all of the relevant template files. Template files
are files that already contain most of the necessary information for a glass box
application, and which the user will modify to create the final versions necessary for

Programmer’s Guide Page 6
SPSD/M Version 9.2

the application. For this example, the relevant template files are as follows:

1. Adrv.cpp, the alternate "driver" template that invokes all of the SPSM's
tax/transfer functions in the correct order. This template, distributed as part of
the SPSM, is effectively a duplicate of the base driver function (the user should
copy it in its working subdirectory).

2. Afamod.cpp, the alternate Family Allowances template that effects the
computation of the Family Allowance benefit. This template, distributed as part
of the SPSM, is effectively a duplicate of the base system's famod.cpp function
that computes Family Allowance benefits. (the user should copy it in its
working subdirectory).

3. SPSMGL.dsw and SPSMGL.dsp carry out the compilation and linking of the
user's new model (copy these files from /spsm/glass to your working
subdirectory).

For other glass box applications the user may also need to copy other tax/transfer
templates and/or C language header files. In this example, however, the user does
not need to alter any of the header files because the new model creates no new
variables and uses no new formal parameters.

The general procedure for our illustrative glass box application is straightforward.

1. Working on COPIES of Adrv.cpp, Afamod.cpp, and SPSMGL.dsw, we make the
small number of changes as described below.

2. Then we invoke/execute the SPSMGL.dsw utility in C++ to generate a working
space. To work with the new model, the project should be recompiled to produce
a new executable file (We assume the user knows how to proceed).

CHANGING THE PROJECT ENVIRONMENT

Project environment should be modified if the user wants to change the name of the
compiled SPSM.exe associated with the project in Project: Setting: Link to
GLASSEX1.EXE.

The new files Adrv.cpp and Afamod.cpp must be included in the project (Project: Add to
project: Files).

The key subdirectory \SPSM\DEFS should all be added in Tools: Options:
Directory, since definitions relevant to glass box applications reside there.
CHANGING THE ALTERNATIVE DRIVER FUNCTION (ADRV.CPP)

Adrv.cpp contains two kinds of information that the glass box user will want to alter.
The first kind consists of labeling information that the SPSM uses in its reports and
error messages. When the user makes appropriate changes here, the resulting
output becomes more informative. The second kind consists of the function calls

Programmer’s Guide Page 7
SPSD/M Version 9.2

that effect the substance of the model's tax/transfer calculations.

The user makes the labeling changes in the portion of the code, starting at about line
50, that looks as follows:
==================== GLOBAL VARIABLE DEFINITIONS ============== */
/*global*/ char ALTNAME[IDSIZE+1] = "Unnamed";
/* Give global string describing version of this module */
/*global*/ char FAR Tdrv[] = "Untitled"

The ALTNAME[IDSIZE+1] string provides an identifying name for the
alternative driver; the user replaces the placeholder "Unnamed" with the more
informative name "FA Quick Start". The new name must not exceed 20 characters
in length. This alternative name will then appear in the greeting screen. The Tdrv[]
string provides a title for the alternative driver; the user replaces the placeholder
"Untitled" with the more informative title "FA Quick Start". The new title may not
exceed 20 characters in length. TDrv's contents appear as information in the control
parameter file as an algorithm description. Upon completion of these substitutions,
the revised "labeling section" appears as follows:
/* ==================== GLOBAL VARIABLE DEFINITIONS ============== */
/*global*/ char ALTNAME[IDSIZE+1] = "FA Quick Start";
/* Give global string describing version of this module */
/*global*/ char FAR Tdrv[] = "FA Quick Start"

In the substantive portion of the code, the user needs to make only a single
change to indicate that the calculation of benefits for the variant system
should use an alternate Family Allowance calculation.

The relevant portion of the code, a single line appearing at about line 125, appears
as follows:
famod(hh); /* compute family allowances */

Unmodified, it invokes the regular Family Allowance calculation. The user changes
the line to invoke, instead, the alternative Family Allowance calculation that we shall
describe shortly. The modification consists solely in the substitution of the new
function name, and the revised source code appears as follows:
Afamod(hh); /* compute family allowances */

For this quick start example, these three simple changes constitute the entire set of
modifications for the Adrv.cpp function.
CHANGING THE ALTERNATIVE FAMILY ALLOWANCES FUNCTION (AFAMOD.CPP)

The Afamod.cpp function carries out the calculation of Family Allowances for the
alternative system. In a manner analogous to the Adrv.cpp changes, the user's
changes fall into two categories, labeling changes and substantive changes.

The labeling change is very straightforward. At about line 54, the function provides
for a title, Tfa[], for the module, with the title being used in the report in which the
SPSM indicates the functions used to calculate the taxes and transfers. As with the
title for the driver, this title appears as an algorithm description in the control
parameter file. The relevant portion of the code appears as follows:

Programmer’s Guide Page 8
SPSD/M Version 9.2

=============== GLOBAL VARIABLE DEFINITIONS ================== */
/* Give global string describing version of this module */
/*global*/ char FAR Tfa[] = "Untitled"

The user changes the "Untitled" string to something rather more informative. The
resulting section then appears as follows:
=============== GLOBAL VARIABLE DEFINITIONS ================== */
/* Give global string describing version of this module */
/*global*/ char FAR Tfa[] = "FA Quick Start"

The substantive portion of the Afamod.cpp changes is a bit more complicated, but
not extremely so. The option to be examined affects directly three of the calculated
variables,
1. taxable Family Allowances (tfa),
2. federal Family Allowances, (ffa) and
3. Family Allowances, (fa).
(Of course other variables in the model, e.g. calculated taxes, are also affected
indirectly.) When the number of children in the census family (the variable "nch") is
three or more, we wish to increment each of the three Family Allowance variables by
$120 times the number of "excess" children. Everything else relating to the impacts
of this policy change, e.g. the tax impacts, will be taken care of automatically by
other portions of the SPSM. In any event, the variables in the routine are temporary,
ceasing to exist once execution leaves the Afamod function; only items that have
been saved into the relevant portions of the household structure will be able to affect
calculations elsewhere in the system.

With the nature of the desired change clear, the major remaining issue is where in
the Afamod.cpp function to make the change. For purposes of logical correctness
and clarity, the change should be made after the three variables have already had
assigned to them the "base system" amounts of Family Allowances, but before any
calculations such as assigning the amounts into variables in the data structure for
the household. In this example, the changes can all be made, in parallel, at the
same location.

The example is not valid anymore and will be revised

The critical portion of the source code, as it exists before the implementation of our
changes, appears as follows: (The DEBUG statements shown here are irrelevant to
the normal calculation of Family Allowance benefits. Their presence permits
detailed tracing to be performed when needed, but is irrelevant here except as it
identifies the portion of Afamod.cpp, about line 366, where the Family Allowance
changes will go.)
else {
 DEBUG1("%s standard FA calculation\n");
 tfa = nch * MP.STDFA; /* taxable family allowances */
 ffa = tfa; /* federal part of family allowances */
 }

DEBUG3("%s tfa=%.2f, ffa=%.2f\n", tfa, ffa);

Programmer’s Guide Page 9
SPSD/M Version 9.2

Substantively, we wish to add the expression "(nch-2) * 120.0" to each of the three
key variables, taxable Family Allowances (tfa), federal Family Allowances (ffa), and
Family Allowances (fa). Further, such increments are appropriate only when the
number of children aged 0 through 17 in the census family is at least three. C's "if"
statement and its "+=" operator provide a very convenient way to do this.
else {

DEBUG1("%s standard FA calculation\n");
tfa = nch * MP.STDFA; /* taxable family allowances */
ffa = tfa; /* federal part of family allowances */
/* $120/yr bonus for 3rd and subsequent children <18 */
if (nch >= 3) {
tfa += (nch-2) * 120.0;
ffa += (nch-2) * 120.0;

 }
 }

 DEBUG3("%s tfa=%.2f, ffa=%.2f\n", tfa, ffa);

With the completion of the changes to Afamod.cpp, the user's real work in
implementing the changes is now essentially done. All of the relevant substance
and labeling changes are complete and, assuming there have been no errors during
their entry, all that remains is the compilation of the new model and then its
validation. Most important, though, it is the resulting executable file from C++
compile, in this example GLASSEX1.EXE, that the user runs to analyze the impacts
of the change that was modeled.
TESTING THE RESULTING ALTERNATIVE SPSM MODEL

With all of the changes made, and the resulting files compiled and linked to create
the new executable file, we are ready to test the new model. The two related goals
of this step are:

1. to seek evidence about whether we have successfully made the desired change,
and

2. to generate outputs that will help us diagnose errors should we have made any.

A very natural form of evidence takes the form of crosstabulations from a
comparative run that uses the unmodified tax/transfer system as its base system
and the modified form as its variant system. Later in this section we offer examples
of two such crosstabulations.

In order to make the desired comparative run of the new model and get the output
we need, we must alter the control parameters for the model. The Parameter Guide
provides the authoritative description of SPSM control parameters; here we simply
list the key parameter values for our purposes: (The "glassx1a" portion of the two
file names is an acronym for "Glass box example 1, version a".)
OUTCPR glassx1a.cpr # Name of control parameter file (out)
VARALG FA Quick Start # Name of variant algorithm
VARMETH 3 # Method of creating variant variables
BASMETH 2 # Method of creating base variables
OUTTBL glassx1a.tbl # Name of report file (out)

Programmer’s Guide Page 10
SPSD/M Version 9.2

Two tables will suffice for validation in this example:

1. tabulate number of census families, variant federal Family Allowances, base
federal Family Allowances, and their difference, all by number of children aged 0-
17 (to show that we are giving the new Family Allowances to the right units in the
right amounts) and

2. tabulate "delta Family Allowances" and "delta disposable income" by census
family type to show both that we are giving the new FA to only the right kinds of
units and that a part of it is being recovered via the tax system, with the recovery
fraction higher for two-parent families than for one-parent families.

The XTSPEC parameter to generate these tables will look as follows:
XTSPEC
CF: cfnkids+ *
 {units,

_imffa: L="Base Family Allowance (M)",
imffa: L=“New Family Allowance (M)”,
imffa-_imffa: L="Family Allowance Increase (M)”,
(imffa-_imffa)/units: L=“Average Family Allowance Increase”};

CF: cftype+ *
{imffa-_imffa: L="Family Allowance Increase (M)",
immdisp-_immdisp: L="Disposable Income Increase (M)",
(immdisp-_immdisp)/units: L=“Mean Disposable Income Increase”};

The highlights of this request are as follows:

1. The first table uses "cfnkids" (number of children 0-17) as the row control
variable. Note that cfnkids is an SPSD classificatory variable, while the variable
"nch" used above to effect the changes inside Afamod.cpp is a local variable that
is defined as a "float" variable and could not be used here for tabulation
purposes, even if it were classificatory.

2. The tabulated variables used in the first table are precisely those described
above, numbers of families, new and old Family Allowance benefits and their
difference.

3. The second table simply tabulates, for another existing classificatory variable, the
differences in Family Allowances and in disposable income, with the
"underscored" variables referring to the base system and the non-underscored
variable names to the variant system.

The tables that result when one executes the new GLASSEX1 model with
\SPSD\ba88t.cpr appear as follows:
Table 1U: Selected Quantities for Census Families by Number of children in census family
+-------------------+------------+------------+-----------+-------------+
Number of children	Unit Count	New Family	Base Family	Family
in census family	(000)	Allowance	Allowance	Allowance
		(M)	(M)	Increase (M)
+-------------------+------------+------------+-----------+-------------+				
0	6401.6	0.0	0.0	0.0

Programmer’s Guide Page 11
SPSD/M Version 9.2

1	1454.2	516.5	516.5	0.0
2	1430.7	1061.7	1061.7	0.0
3	612.9	850.0	776.5	73.5
4	111.9	229.5	202.6	26.8
5	36.8	83.7	70.4	13.3
6	5.3	28.4	25.8	2.5
7	0.0	0.0	0.0	0.0
8	0.0	0.0	0.0	0.0
9	0.0	0.0	0.0	0.0
+-------------------+------------+------------+-----------+-------------+				
All	10053.4	2769.8	2653.6	116.2
+-------------------+------------+------------+-----------+-------------+

Table 2U: Selected Quantities for Census Families by Census family type
+-----------------------+----------+----------+
Census family type	Family	Disposable
	Allowance	Income
	Increase	Increase
	(M)	(M)
+-----------------------+----------+----------+		
With Kids, 1 Adult	16.7	15.6
With Kids, 2+ Adult	99.4	72.3
With Elderly, 1 Adult	0.0	0.0
With Elderly, 2+ Adult	0.0	0.0
Other, 1 Adult	0.0	0.0
Other, 2+ Adult	0.0	0.0
+-----------------------+----------+----------+		
All	116.2	87.9
+-----------------------+----------+----------+

The values in Tables 1U and 2U result from running the new model on the 5%
subset of the SPSD in 1988 (ba88t.cpr) and requesting the tables described above.
The first table confirms that we seem to be giving the additional Family Allowances
to the right kinds of census families. Increased benefits, some $116 million of them,
appear only for census families with more than two children aged 0-17, and the
gross amounts are $120 times the number of such "excess" children in those
families.

The second table offers more evidence that the new benefits are being given only to
the right kind of census families and, further, that the new benefits are being partially
taxed back. Moreover, the degree of tax recovery is lower for one-parent families
than for two-parent families; this is to be expected since (1) those reporting Family
Allowance benefits in two-parent families tend to have higher incomes and to be
subject to higher marginal tax rates, and (2) the Income Tax Act requires that the
higher net income spouse report the Family Allowance benefits.

We conclude from the values appearing in these tables that the changes made
above have quite probably been successful in implementing our intentions.

The testing just described completes our quick start example. Because of the
example's focus we have perhaps not been quite as careful and methodical as
would be warranted in the case of a real application. Thus, we mention briefly here
a number of things that we might have chosen to do in implementing our
hypothetical change.

Programmer’s Guide Page 12
SPSD/M Version 9.2

We might have added "revision history" comments to the files Adrv.cpp and
Afamod.cpp to document the nature of the changes and our reasons for
implementing them as we did. This form of documentation is an element of sound
professional practice for software development and maintenance.

We might have created an intermediate (local) floating point variable in Afamod.cpp
to store the increment in a family's Family Allowance benefit. This increment, once
computed, could then have been assigned directly to the tfa, ffa and fa variables so
that we would not have been computing the identical expression three times in
parallel. Possible minor efficiency gains aside, the resulting code would probably
have been slightly easier to understand.

We might have made a parameter out of the $10 per month ($120 per year) value, in
case we wanted to repeat the analysis later for a different value of the
supplementary Family Allowance benefit. Similarly, we might have made a
parameter out of the number of children NOT eligible for the additional benefit;
perhaps someone would want to know the impacts of restricting the extra benefits to
families with four or more children, or relaxing them to admit families with only two
children aged 0-17.

We might have chosen to create a new variable that would contain just the pre-tax
increment for the family, making this variable part of the structure for the household
so that we could more conveniently tabulate this "difference" variable in
crosstabulations or export it for subsequent analysis in SAS.

We might have chosen to conduct more ambitious tests to ensure that the desired
changes had been implemented. For example, we might have produced a table
showing the relative sizes of the changes in federal and provincial income taxes to
ensure that the new benefits were being appropriately considered at both the federal
and provincial levels. We might have tabulated the size of the change in the child
tax credit to assess whether the new Family Allowance benefits were being properly
taken into account in that credit's definition of income.

In general, the style of alteration and the degree of testing conducted here are
appropriate for the limited goals of this introductory example. However, for a more
serious glass box application the user will probably wish to be more methodical in
making the necessary changes, devoting more attention to issues of documentation,
labeling, validation and possibly to efficiency of computation.
SUMMARY

This chapter has provided a first-pass description of glass box applications in the
SPSM, illustrating them with a specific example. Section topics included changing
the substantive calculations in a variant Family Allowance function, altering the
SPSM driver function that coordinates the calculation of taxes and transfers, and
using the C++ compiler to create a new version of the model. A short section on
validation illustrated the generation of tables to assess the success of the change.

Programmer’s Guide Page 13
SPSD/M Version 9.2

SPSD/M and Glass Box Directory Structure

This chapter provides for glass box users an explanation of the hard disk directory
structure within which the SPSM operates. The information it contains is relevant
because it tells the user where certain items are located, which ones must be left in
place untouched, which ones are designed to serve as templates for changes, which
ones are to serve purely as examples for code that the user will build, etc.

Consider the following representation of user's hard disk directory structure:
C: [Root directory]
|--- MSC [Microsoft C compiler, with its own subdirectories]
|--- SPSD [Data for the SPSD/M, with no subdirectories]
|--- SPSM [SPSM proper, subdirectories as shown]
| |--- DEFS
| |--- EXAMPLE
| |--- GLASS
| |--- MODEL
| |--- WIN32
|--- GLASSEX1 [Glass box task subdirectory 1]
|--- GLASSEX2 [Glass box task subdirectory 2]
etc.

At the top of the figure we see the user's root directory, with two first-level
subdirectories MSC and SPSD. The MSC subdirectory contains the user's compiler,
absolutely necessary for the creation of glass box applications; MSC contains a
number of lower level subdirectories not shown here. The SPSD subdirectory
contains all of the SPSD/M's raw data and a number of default parameter files; it has
no lower-level subdirectories.

Of more direct applicability to the glass box user is the SPSM subdirectory and its
lower-level subdirectories. These were created automatically for the user during the
SPSM installation; the names used here are the recommended defaults. We
provide here brief descriptions of each of these directories -- their major contents
and relevance to glass box applications.

An initial, general-level comment is in order -- THE USER SHOULD NOT CHANGE
ANYTHING IN ANY OF THESE SPSM SUBDIRECTORIES. (1) Glass box
applications will always involve working with COPIES of some of the files in these
subdirectories. (2) All of the user's glass box work will be done in one of the
SEPARATE SUBDIRECTORIES that the user has created to contain the working
files for glass box applications. It might even be useful for the user to switch on the
read-only attribute for all of the files in these subdirectories.
DEFS This subdirectory contains a number of header files that define

structures and constants used throughout the SPSM. Of greatest
interest to the glass box user will be the vs.h file that defines the
hierarchical data structure that holds the SPSD/M's information about
households and individuals. Recall, however, that the user will never
have occasion to modify this structure. The user's addition of user-
defined variables is accomplished via a COPY of the vsu.h file.

Programmer’s Guide Page 14
SPSD/M Version 9.2

EXAMPLE This subdirectory contains various "INCLUDE" files that serve to
specify parameters for the sample runs described in the tutorial
portion of the Introduction and Overview Guide. Although they are
potentially very useful in testing for the successful installation of the
SPSM and in learning how to use models that have already been
developed, these files are not directly relevant to the development of
glass box models, and can be ignored for purposes of this glass box
oriented discussion.

GLASS This subdirectory contains templates that the user will use as starting
points for the code that s/he writes to create variant tax/transfer
systems and models. (1) It contains the source code for all of the
SPSM's tax and benefit functions; the user will probably find it most
efficient to create any new functions by modifying COPIES of these
elements. (2) It contains functions that make the user defined
parameters and variables accessible to the broader SPSM, together
with associated header files that define the relevant structures to hold
the user-defined variables and parameters.

MODEL This subdirectory contains examples of the definitions of model
variables and parameters. The elements in the subdirectory are
intended ONLY to serve as concrete examples for the user when s/he
begins to define new parameters and variables for glass box
applications. The user will never have occasion to modify the
contents of these files, nor even to use or alter copies of the files.

WIN32 This subdirectory contains a small number of WINDOWS 32 bits
"controlling object files" that govern the form of the overlay structure
that the SPSM uses. At a very general level, these items are similar
to those in LIB in the sense that SPSMGL.dsw needs them and
knows how to use them in the compilation of a new version of the
model. It also contains some executable files used in the modification
of SDSD in a project.

At the very bottom of the representation of the user's hard disk subdirectory structure
is a glass box application "task" subdirectory GLASSEX1 and two sub-subdirectory
WINREL and WINDEBUG. Users may have as many such task subdirectories as are
required for the glass box applications they build. This one corresponds to the Quick
Start example described in Chapter 2. It contains all of the files that the user creates
in replicating that example. The specific files are as follows:
ADRV.CPP
AFAMOD.CPP
FAQSTST1.CPR
FAQSTST1.TBL
SPSMGL.DSP
SPSMGL.DSW
SPSMGL.NCB
SPSMGL.OPT
SPSMGL.PLG
GLASSEX1.EXE
GLASSEX1.PDB
WINREL
WINDEBUG

Programmer’s Guide Page 15
SPSD/M Version 9.2

ADRV.CPP and AFAMOD.CPP are the C++ source code files copied from the
GLASS subdirectory and then modified to reflect the desired new program logic;
their OBJ counterparts are the object files produced as outputs when the ".CPP" files
are compiled in WINDEBUG and WINREL. GLASSEX1.EXE and GLASSEX1.pdb were
created by the compile command. Finally, FAQSTST1.CPR is the control parameter
file for runs of the FAQSTST1 program, and FAQSTST1.TBL contains the
crosstabulations that the associated run of SPSMFAQS produced.

The critical information in this chapter can then be summarized as follows:

1. No SPSM user should change ANYTHING in the SPSM subdirectory or in
any of its subdirectories created during the SPSM installation. (Note
however that certain files that may be definitely unnecessary can be deleted in
their entirety.)

2. The glass box user will establish separate "task" subdirectories for glass box
applications. Preferably these will not be subdirectories under SPSM.

3. The glass box user will copy the relevant elements from the SPSM\GLASS
directory, using them as templates for the changes to be made. The
changes themselves are then made to these COPIES. Subsequent sections in
this Programmer's Guide indicate in considerable detail what the user must
change and where the relevant templates are located.

4. The key subdirectories \SPSM\DEFS should all be added in Tools: Options:
Directory, since definitions relevant to glass box applications reside there.

The SPSD Household/Individual Structure

This chapter has three major goals, each of them developed in a separate section,
but all of them relating to the general topic of the SPSD/M's data structures and their
usage.

This following section provides a snapshot overview of the SPSM’s framework for
storing data about the household, its families, and their component individuals. An
appreciation of this structure is crucial to the glass box user as he/she seeks to refer
to or alter the values of existing data variables and modeled variables, and to create
such new variables as would be necessary for a customized version of the SPSM.

The second section develops the use of pointer variables as a major tool by which
the user accesses individual elements of the data. It also describes the major
naming conventions relevant for glass box applications. These topics are relevant
both for users building their own glass box applications, and those seeking to
understand the standard SPSM algorithms. The underlying "philosophy" for this
development is consistent with the rest of this guide -- in many respects it is
considerably more important for the glass box user to know how, mechanically, to do

Programmer’s Guide Page 16
SPSD/M Version 9.2

something in a standardized, robust fashion, than to understand all of the design-
oriented reasons behind the structures and techniques. In other words, the section's
focus is determinedly practical; it concentrates much more on the mechanics of
"how-to" than the niceties of "why”.

The third section provides a "bestiary" of code fragments for performing common
glass box tasks, particularly as regards to data structures. The idea is not only that
the user should be able to copy an existing wheel rather than re-inventing it, but that
the copied wheel should further exist in a standardized format, and not require
debugging. The section's code fragments include (a) processing relevant
individuals/families via "for" statements, (b) referring to other family members, (c)
accessing existing database and modeled variables, and (d) assigning new values to
variables.
THE SPSD/M'S DATA STRUCTURE

The SPSD is a file whose order is fixed. It cannot be sorted by the user. The sort
order of the database is critical to understand when attempting to loop through
households. The database is clustered into households that are randomly sorted in
a stratified way. Each individual household is then sorted as follows:

Household

Economic Families

Census Families

Nuclear Families

Head of Family

Spouse if present

Youngest Child to Oldest Child

Within a household, individuals are grouped into economic families. Within an
economic family, individuals are grouped into census families. Within the census
family, individuals are grouped into nuclear families. Within the nuclear family, the
head is always first followed by the spouse if present. Children then follow sorted
according to their age.

An entire household is loaded into the data structure specified above. Loops may
then be established to process any of the units of analysis within a household.

Detailed descriptions of the substance of individual SPSD/M variables themselves
appear in the Variable Guide. Much of the detail with respect to the content of the
several structures can be found in vs.h. The key items required to define variables
can be found in spsm.h. Some of the macros allow the user to do things
symbolically to make their meanings clearer, or for consistency in numerical

Programmer’s Guide Page 17
SPSD/M Version 9.2

precision:
#define LOGICAL int /* type used to store true or false values */
#define TRUE 1 /* manifest constants to make code more readable */
#define FALSE 0
#define NUMBER float
#define ZERO (float) 0.0
#define HALF (float) 0.5
#define ONE (float) 1.0
#define THOUSAND (float) 1000.0
#define MILLION (float) 1000000.0
INTRODUCTION TO POINTERS IN THE SPSD/M

The uv structure is one whose contents are defined by the user, in terms of both
substance and variable names. A chapter describes how the user creates new
variables, e.g. defining a new tax or transfer program. The user controls the
substance of "uv" via the vsu.h header file, and the vsdu.cpp file, but can alter the
values of the defined elements themselves anywhere inside Adrv.cpp. These
definitional and assignment capacities are the essence of glass box applications
when the user needs to add new variables. Of course the user must be careful to
give any new variable/tax to the right individual(s) so that roll-ups will work properly
throughout the remainder of the SPSM.

The C language makes heavy use of pointer variables, i.e. variables that point to a
particular area of memory, and especially to a specific data structure. Although the
portions of the SPSM's source code dealing with tax/transfer algorithms make less
use of pointers and pointer arithmetic than those portions closed to the user, the
glass box user will still have to employ pointers. Even though the usage of pointers
is essential, the design of the SPSM has made it as simple as the designers could
manage. A variety of macros and code fragments are provided to make the pointer
usage as simple and often as mechanical as was feasible. The Bestiary section
briefly shows how these pointers are applied for typical glass box tasks such as
looping and referencing. Note, however, that this section is in no way intended to
provide a comprehensive course in pointer usage more generally outside the SPSM.
THE BESTIARY

A bestiary is a "collection of descriptions of real or imaginary animals”. The
particular "animals" collected and described here are real. They are fragments of C-
language source code likely to be useful to the glass box user as s/he reads and
writes the code for tax/transfer programs. The code fragments described here are
all included in the file BESTIARY.CPP so that the user can copy the segments
without having to retype them.

The elements of the bestiary are provided in support of a philosophy emphasized
throughout this guide. More precisely, users should not have to reinvent the wheel,
but should be given every assistance in taking advantage of things that already exist
within the SPSM. Being able to copy existing code, perhaps modifying it in the
process, provides four major advantages.

1. The existing source code is known to be correct, and thus doesn't have to be

Programmer’s Guide Page 18
SPSD/M Version 9.2

debugged.

2. There will be greater consistency between the user's code and that of the
distributed SPSM.

3. Copying is much faster than re-entry.

4. The user can often get the needed job done, safely, without having to understand
all of the underlying detail. The general format used is that of a heading,
followed by the code itself, and, sometimes, a short comment or explanation.

Examples of Looping:

One of the most common tasks in reading, modifying or writing code is looping
through the relevant units in a household or one of its substructures. The following
set of code segments probably come close to being exhaustive as regards the
looping required by the user. Note that the source code segments include the
relevant definitions required. E.g. in the first example below, the user must declare
the pointer 'in' of type 'P_in,' and the integer, 'ini' so that they can be used in the
operation of the loop. In practice, the definitions will appear in the source code prior
to the loop itself.
/** * PROCESS ALL INDIVIDUALS IN HOUSEHOLD hh **/

register P_in in;
int ini;

for (ini=0, in=&hh->in[0]; ini<hh->hhnin; ini++, in++) {
 DEBUG2("%s processing individual %d in household\n", ini);
 /* code here, using pointer 'in' */
 }

In the preceding loop, and the others that follow, the C 'for' statement is used. Items
before the initial semicolon initialize variables for the looping. The condition between
the two semicolons specifies when the loop is to continue. The items still within the
parentheses, but after the second semicolon specify the incrementing necessary for
the next iteration. Also included in the code fragment is a 'code here' comment. It
indicates where the SPSM's code, or the user's code, should go to act on the unit
through which the loop cycles. The 'code here' comment also identifies that unit in
terms of the pointer that the loop controls.
/*** PROCESS ALL INDIVIDUALS IN ECONOMIC FAMILY ef **/

 register P_in in;
 int ini; for (ini=0, in=ef->efin; ini<ef->efnpers; ini++, in++) { DEBUG2("%s processing individual %d
in economic family\n", ini);
 /* code here, using pointer 'in' */
 }

 /*** PROCESS ALL INDIVIDUALS IN CENSUS FAMILY cf **/

 register P_in in;
 int ini;
 for (ini=0, in=cf->cfin; ini<cf->cfnpers; ini++, in++) {
 DEBUG2("%s processing individual %d in census family\n", ini);

Programmer’s Guide Page 19
SPSD/M Version 9.2

 /* code here, using pointer 'in' */
 }

 /*** PROCESS ALL CHILDREN (including 18+) IN CENSUS FAMILY cf **/

 register P_in in;
 int ini;
 for (ini=0, in=cf->cfinch; ini<cf->cfnchild; ini++, in++) {
 DEBUG2("%s processing child (including 18+) %d in census family\n", ini);
 /* code here, using pointer 'in' */
 }

 /*** PROCESS YOUNG CHILDREN IN CENSUS FAMILY cf **/

 register P_in in;
 int ini;
 for (ini=0, in=cf->cfinch; ini<cf->cfnkids; ini++, in++) {
 DEBUG2("%s processing child (<18) %d in census family\n", ini);
 /* code here, using pointer 'in' */
 }

 /*** PROCESS ALL INDIVIDUALS IN NUCLEAR FAMILY nf **/

 register P_in in;
 int ini;
 for (ini=0, in=nf->nfin; ini<nf->nfnpers; ini++, in++) {
 DEBUG2("%s processing individual %d in nuclear family\n", ini);
 /* code here, using pointer 'in' */

 }

 /*** PROCESS CHILDREN IN NUCLEAR FAMILY nf **/

 register P_in in;
 int ini;
 for (ini=0, in=nf->nfinch; ini<nf->nfnkids; ini++, in++) {
 DEBUG2("%s processing child %d in nuclear family\n", ini);
 /* code here, using pointer 'in' */

 }

 /*** PROCESS ALL ECONOMIC FAMILIES IN HOUSEHOLD hh **/

 P_ef ef;
 int efi;
 for (efi=0, ef=&hh->ef[0]; efi<hh->hhnef; efi++, ef++) {
 DEBUG2("%s processing economic family %d\n", efi);
 /* code here, using pointer 'ef' */

 }

 /*** PROCESS ALL CENSUS FAMILIES IN HOUSEHOLD hh **/

 P_cf cf;
 int cfi;
 for (cfi=0, cf=&hh->cf[0]; cfi<hh->hhncf; cfi++, cf++) {
 DEBUG2("%s processing census family %d\n", cfi);
 /* code here, using pointer 'cf' */

 }

Programmer’s Guide Page 20
SPSD/M Version 9.2

 /*** PROCESS ALL NUCLEAR FAMILIES IN HOUSEHOLD hh **/

 P_nf nf;
 int nfi;
 for (nfi=0, nf=&hh->nf[0]; nfi<hh->hhnnf; nfi++, nf++) {
 DEBUG2("%s processing nuclear family %d\n", nfi);
 /* code here, using pointer 'nf' */

 }
References With Respect to an Individual:

Another common glass box task involves referring to other individuals in a structure
or substructure, or to units of analysis "higher up" in the structure. It is via such
references that the user can refer to characteristics such as the province of
residence for an individual, the income of the spouse of the eldest member of a
census family (if that spouse exists), or the age of the second oldest child living in
any of the census families within a common economic family.
 /*** REFERENCE SPOUSE OF INDIVIDUAL in **/

 if (in->id.idspoflg) {
 P_in inspo;
 inspo = in->id.idinspo;
 /* code here, using pointer 'inspo' */
 }

 Notice here that there will not always exist a spouse.

 /*** REFERENCE HOUSEHOLD OF INDIVIDUAL in **/

 P_hh hh;
 hh = in->id.idhh;
 /* code here, using pointer 'hh' */

With the pointer to the household retrieved, the user then has access to household
characteristics such as province of residence. In contrast to the situation with the
spouse of an individual, the household will always exist.
 /*** REFERENCE ECONOMIC FAMILY OF INDIVIDUAL in **/
 P_ef ef;
 ef = in->id.idef;
 /* code here, using pointer 'ef' */

Similarly, the individual's economic family will always exist, and will be relevant for
ascertaining whether the individual lives in a below - LICO unit.
 /*** REFERENCE CENSUS FAMILY OF INDIVIDUAL in **/
 P_cf cf;
 cf = in->id.idcf;
 /* code here, using pointer 'cf' */
 /*** REFERENCE NUCLEAR FAMILY OF INDIVIDUAL in **/
 P_nf nf;
 nf = in->id.idnf;
 /* code here, using pointer 'nf' */

These key references, coupled with the looping fragments of the previous section,
permit the user to do, relatively conveniently, almost anything likely to be needed for
tax/transfer simulation.
SUMMARY

Programmer’s Guide Page 21
SPSD/M Version 9.2

The first part of this chapter described the data structure used for SPSD/M. That
part also identified the most important manifest constants and function macros the
user will encounter in the SPSM's source code. The later portions described the role
of pointer variables in the SPSM and characterized the major pointer types used.
They concluded with a bestiary of code fragments for common glass box tasks,
looping through individuals and family units, and referring to an individual's spouse
or to the units of analysis that contain him/her.

The next chapter builds on this foundation by describing how the SPSM processes
households in terms of calculating taxes and transfers. That description is in turn a
foundation for the later chapters that indicate how to add user-defined parameters
and variables in the course of modifying the logic of the tax/transfer system.

SPSM Function Calling Structure

The calculation of taxes and cash transfers for a household is controlled by a
function whose only task is to call all other individual tax/transfer algorithm functions.
The sequence of calls is critical to the simulation due to the informational
requirements of the tax/transfer functions. For example, net income must be known
before GIS can be calculated. The following list gives the functions called by drv
and adrv in the order in which they are called.

Function Description
ui(hh)
famod(hh)
oas(hh)
dem(hh)
txinet(hh)
gis(hh)
senben(hh)
samod(hh)
txitax(hh)
txhstr(hh)
txcalc(hh)
txprov(hh)
gist(hh)
txctc(hh)
txfstc(hh)
gai(hh)
memo1(hh)
ctmod(hh)
memo2(hh)
cceopt(hh, drv)
classu(hh)

Compute Unemployment Insurance benefit
Compute family allowances
Compute old age security
Compute new demogrants
Compute net income
Compute guaranteed income supplement for elderly
Compute senior benefit
Compute social assistance
Compute taxable income
Compute child & spouse deductions
Compute federal tax
Compute provincial taxes and credits
Compute provincial elderly top-ups
Compute child tax credit
Compute federal sales tax credit
Compute new guarantees, refundable credits
Compute disposable income, etc.
Compute commodity taxes and allocate to persons
Compute consumable income, etc.
Zero CCE for young kids if optimal
Compute user-defined reporting variables (in \glassbox)

The calling order of the component functions of drv reflects the logical precedence

Programmer’s Guide Page 22
SPSD/M Version 9.2

between them.

• The first functions, ui, famod and oas, simulate programs whose benefits are
determined by factors other than income and as such are called first.

• dem is a stub routine for glass box applications that require calculations to occur
before entering the tax system routines.

• txinet calculates net income prior to certain transfers.
• gis calculates transfers to the elderly.
• samod calculates social assistance or guaranteed income transfers.
• Federal and provincial taxes are calculated next in the next four functions with

the tx prefix (txitax, txhstr, txcalc, and txprov).
• gist, txctc, and txfstc calculate income tested transfer programs.
• gai is another stub routine that is intended for use by glass box users who wish to

simulate options requiring information on all personal income taxes and cash
transfers. For example, users may use this function to simulate an income
supplementation program.

• The memo1 and memo2 functions create aggregate variables for reporting.
• In the ctmode function, sales and excise taxes are calculated by applying

Input/Output based effective sales tax rates to observed family expenditures.
• cceopt optimizes income by maximizing the childcare expense credit and the

child tax credit.
• classu is a stub routine that allows the glass box user to compute and assign

values to new or re-defined variables.
The functions called by drv call other functions and sub-functions in order to
complete their calculations. The following page contains a complete list of the
names of functions and sub-functions along with a short description in the order in
which they are called by drv. Please refer to the specific function in the Algorithm
Guide for a more detailed description. Sub-functions can be found listed under the
function that calls them. Thus for a complete understanding of the calculation of net
income one would have to consult both the txinet and txccea functions.

Function names are printed in lower case, bold, courier font (e.g. txinet, txcalc) and
correspond to a single C language source code file (e.g. tixnet.cpp, txcalc.cpp).
Sub-functions are defined within the function (file) that calls them and are shown in
lower case, courier font (e.g. uisqz, gissub). The following example is a call of a
sub-function uiclm() in ui.cpp where uiclm is defined in a section of ui.cpp.
valid_claim = uiclm(in, &in->id.uc1, in->id.uc1.ucy1, &in->im.ub1,
 hh->hd.hdprov, hh->hd.hdurb, wctb);

Glass Box Development: Adding Typical Scalar Parameters

As its title suggests, this chapter explains to the glass box user the mechanics of the
programming tasks associated with adding typical scalar parameters during the
development of glass box applications. Structurally, the chapter communicates this
information via a detailed worked example. The first section reviews the general

Programmer’s Guide Page 23
SPSD/M Version 9.2

procedure for developing glass box applications, describing the steps that are
fundamental to any model alteration, be it changing code, adding parameters or
adding variables. The second section takes up several preliminaries to parameter
addition. It also describes the nature of the example to be used, an extension of the
Family Allowance supplement example used in this Guide's Quick Start Chapter.
The remaining sections then use the example to explain in detail the steps involved
in adding the most common kinds of scalar parameters to a model. Finally, the last
section summarizes the key points regarding the addition to a model of these
common forms of parameters.
GENERAL PROCEDURE FOR MAKING GLASS BOX CHANGES: A RECAPITULATION

The previous section has already described the general procedure for developing
glass box applications, including the reasoning behind the steps. We summarize the
key points here in capsule form.

• Create Task Sub-directory

• Identify Files to be Changed

• Copy relevant Files to Task Sub-directory

• Edit Relevant Files

• Compile the new version

• Test the New Version of the Model

• Carry Out the Intended Analysis
Create Task Sub-directory

The user creates a new "task subdirectory" to hold the files relevant for the new
glass box application. She/he will edit files in the task subdirectory, leaving all of the
other SPSD/M files alone.
Identify Files to be Changed

The user identifies those files in c:\spsm\glass for which variants will have to be
created. For example, in the Quick Start example, we identified Afamod.cpp,
Adrv.cpp and SPSMGL.dsw. The example appearing in this chapter indicates how
other files, e.g. Mpu.h and Ampd.cpp, are relevant to adding new parameters to a
glass box application. A section will explain how still other files, Vsu.h and
Vsdu.cpp, are relevant when the user wishes to add new variables to a model.
Clearly, the tax/transfer function files that use the new parameters must also be
changed. At times, the user may find it more efficient to use files already developed
in a previous application as templates, rather than going all the way back to the
glass subdirectory's template files.
Copy Relevant Files to Task Sub-directory

Programmer’s Guide Page 24
SPSD/M Version 9.2

The user copies all of the identified-relevant files across to the task subdirectory.
The user will work only with these copies, leaving the originals unchanged.
Edit Those Relevant Files

The user makes appropriate changes in each of the files identified as relevant. We
recommend that the changes be made in the following order:

1. Include all relevant files into the project and change the output file name in
Project: Setting: Link.

2. Edit the Adrv.cpp file, as necessary.

3. Edit the Mpu.h and Ampd.cpp files, when appropriate, to add any new
parameters to the model.

4. Edit the Vsu.h and Vsdu.cpp files, as appropriate, to add any new output
variables to the model.

5. Edit the source code files to add the desired new substantive logic to the
tax/transfer system.

We shall follow this prescribed order in the examples we present in this and
subsequent sections.
Compile the new version

The user should activate the Debugging setting in Build: Set Active Configuration
and then run a debug execution of the project. When the program changes are
properly implemented then the new model should be compiled.
Test the New Version of the Model

The user tests the new version via a set of validation analyses designed to reveal
any problems with the logic that has been added or modified. This step may require
going back to some of the earlier ones to remedy any deficiencies that are
discovered.
Carry Out the Intended Analysis

Finally, once the validation is complete, the user can proceed with "production runs"
of the new executable code to simulate the consequences of the change that was
modeled.
INTRODUCTION TO PARAMETER ADDITION

This section takes up a few critical preliminaries to the procedure for adding typical
scalar parameters. First, it illustrates why a user might wish to add one or more
parameters to a model. In addition, it describes the substance of the new
parameters we use to illustrate the addition of typical parameters.

Programmer’s Guide Page 25
SPSD/M Version 9.2

As noted at the end of the Quick Start example, our hypothetical analyst there took a
few shortcuts that might be done differently in a real-world policy development
exercise, especially if the new model was intended to be used repeatedly or by
multiple analysts. One of these shortcuts was to "hardwire" the $120 per year
Family Allowance increment right into the Afamod.cpp function. Although this might
be acceptable if the user would never want to try another value for the increment, it
is not particularly efficient should there be any interest in examining the impacts of
other values. The user would need to re-edit the code and then to recompile the
model for each separate value to be examined; the user might, for example, seek to
confirm a belief that the impacts are generally proportional to the amount of the
increment, and wish to try multiple values by way of investigation. With appropriate
parameters added to the model, no additional editing is required, and the user can
investigate multiple values without re-compilation by simply supplying new
parameter values to the modified model.

Consequently, several sections in this chapter describe the steps necessary to add
new parameters to the model, cleaning up the Quick Start example by way of a
specific illustration. This chapter restricts itself to the most commonly used forms of
scalar parameters. We believe that the kinds of additions described here will meet
perhaps 80% of the parameter addition needs of glass box users. We leave the
definition of more esoteric scalar parameters, and of vectors and matrices of
parameters, to the last sections. Whatever the type of new parameters, once added
to a model, they are available to all functions called by Adrv.c; they are not restricted
to the function for any single transfer program.

Substantively, we shall add three parameters to a variant of the Quick Start model.
The three additions correspond to the three most common forms of parameters that
glass box users will have occasion to use.

1. The first parameter, a scalar "float" or "real" value, will provide the value of the
Family Allowance increment given in respect of certain children; it will eliminate
the hardwired $120.00 value. We'll call this parameter fasuppc (Family
Allowance Supplement Per Child).

2. The second parameter, a scalar integer value, will indicate the number of
children at which the supplement begins to be payable; it will eliminate the
hardwired value of "3" used in the Quick Start example. We'll call this parameter
fasupfec (Family Allowance Supplement's First Eligible Child).

3. The third parameter, a "flag" variable that is effectively a boolean switch, will
indicate whether any attention is to be paid to the first two parameters. In this, its
function parallels that of the many "flag" variables used throughout the SPSM.
When turned "on" it will enable the computation of the supplement; when turned
"off" the model will calculate Family Allowances with no provision for the
supplement. We'll call this parameter fasupflg (Family Allowance Supplement
Flag).

Programmer’s Guide Page 26
SPSD/M Version 9.2

Our description assumes that the user has chosen to use \glassex2 as the task
directory, creating it if necessary.
COPY FILES ADRV.CPP, MPU.H, AMPD.CPP, AFAMOD.CPP, SPSMGL.DSW

The user copies to the new task subdirectory all of the files for which changes are
required.. Similarly, the user will wish to modify Adrv.cpp to update the description
used for the substantive files (here only Afamod.cpp) being changed. Thus,
Adrv.cpp needs to be copied.

Two other files, Mpu.h and Ampd.cpp, are always relevant when the user wishes to
add a new model parameter. Mpu.h (Model Parameters, User) is a C language
header file that defines the nature of the new parameter. Ampd.cpp (Alternate
Model Parameter Definitions) contains the function invocations that make the user's
parameters known throughout the rest of the SPSM, e.g. so that they can be
referenced by name for purposes of changing values "on the fly" when the user
executes an SPSM executable file.

The user must copy these Mpu.h and Ampd.cpp files across from the glass
subdirectory or some equivalent source. If, for example, the user has already,
elsewhere, modified these files to define other parameters, and wishes to retain
those previous modifications, s/he can copy templates for Mpu.h and Ampd.cpp from
the subdirectory in which they exist. By the term "templates" we refer to existing
files, or pieces of text or code, that serve as a convenient starting point for making
any desired modifications. For example, it would make no sense at all for the user
to enter, from scratch, completely new versions of the relevant files. In this example,
we'll assume that these are the first parameters being added, and will copy the
templates from glass.

Finally of course, the user must copy the substantive tax/transfer function or
functions that will use the new parameter. For our purposes the only relevant
substantive function is the Afamod.cpp function. Rather than copying it from glass
and then having to start from scratch, we'll copy it from glassex1 so that some of our
work is already done, e.g. locating where the assignment of the increment should be
made.

The user will have to copy SPSMGL.dsw that describes the project
environment.
UPDATE THE PROJECT

All the required files should be included in the project and the name of the output
executable changed in Project: Setting: Link to glassex2.exe.
UPDATE THE ALGORITHM DESCRIPTION IN ADRV.C

Recall from the Quick Start example that the altname[] and Tdrv[] global variables
received new values to reflect and document the nature of the changes to be made.
Here, with a new version of the model being created, a corresponding substitution is

Programmer’s Guide Page 27
SPSD/M Version 9.2

in order. The two substitutions, consisting exclusively of the contents of the two
strings, result in the following code:
==================== GLOBAL VARIABLE DEFINITIONS ============== */
/*global*/ char ALTNAME[IDSIZE+1] = "Parameterized FA Supplement";
/* Give global string describing version of this module */
/*global*/ char FAR Tdrv[] = "Parameterized FA Supplement"

At this point we can carry out a debugging compilation to check our modification.
Such a check helps a user to identify syntax errors while the nature of the
modification is still fresh in the memory. To do so, select Win32Debug project in
Project:Set Active Project and then do Build:Start Debug. If compilation and links
are required, C++ will let you know.
MODIFY MPU.H TO DEFINE THE NEW PARAMETERS

The user next needs to change the file Mpu.h to define the type of the new
parameters. When the change is made in the glass version of Mpu.h, the line
containing the string "UMDUMMY" is replaced with definitions of the new
parameter(s). The name "UMDUMMY" refers to "User Model Dummy parameter."
We're calling the first new parameter FASUPPC to indicate that it is the amount of
the FA supplement per relevant child. Before the change the indicated line (about
line 62) reads:
int UMDUMMY; /* dummy entry */

Because, as the label indicates, this entry is only a placeholder, dummy, entry so
that the SPSM will have something to work with if the user has not yet defined any
user parameters, we delete this line completely. We replace it with the lines:
NUMBER FASUPPC; /* Family Allowance Supplement per Child */
int FASUPFEC; /* FA Supplement, First Eligible Child */
int FASUPFLAG; /* FA Supplement, Activation Flag */

In the first line, "NUMBER" is a macro used by the SPSM to ensure portability
across machines; it corresponds to the type "float". FASUPPC is the name of the
new parameter. The SPSM convention is such that parameter names are
capitalized. The other two parameters are naturally integers. For readability, we
have also added comments on the right to indicate the nature of the parameter
values.

These simple additions complete our changes to Mpu.h. Typically, if we were
adding new parameters to a non-empty set of user parameters already in place, we
would simply add the new definitions to the bottom of the existing list in Mpu.h, just
as the FASUPFEC and FASUPFLAG parameters here follow the FASUPPC
parameter.

The SPSM allocates space for up to 500 such new parameters, easily enough for
typical glass box user applications. Even more parameter additions are possible
when some of them are of the smaller "int" type. Any attempt to exceed this limit
will result in a compile-time error message that will make the problem
apparent.
MODIFY AMPD.CPP TO MAKE THE PARAMETERS AVAILABLE TO THE SPSM

Programmer’s Guide Page 28
SPSD/M Version 9.2

The user also needs to change the Ampd.cpp file to make the new parameter
"visible" throughout the portions of the SPSM that may need to reference it. The
SPSM provides a function "pmaddent" (Parameter Module, Add Entry) to carry out
this task. The user calls the function once for each new parameter, just before the
"DEBUG_OFF (Ampd)" statement near the end of Ampd.cpp, at about line 138.

If the user is working on a copy of Ampd.cpp that already contains invocations of
pmaddent for other parameters, those other calls can be used as templates. In our
example though, since there are, as yet, no other parameters added, we copy a
pmaddent template from the file C:\SPSM\MODEL\Mpd1.cpp (Model Parameter
Definition File 1). For our first parameter, FASUPPC, we recognize that this
NUMBER type parameter should be very similar to the STDFA parameter appearing
at about line 252. We simply copy that pmaddent invocation and make appropriate
substitutions. This, practice, copying something generally similar that already exists
and works, and then modifying it, is standard practice in glass box development.
The invocation, as copied, looks like:
pmaddent(pcp, "STDFA", (char *)&MP.STDFA, NULL, P_SCL, C_NUM, 0, 0, NULL, 0);

We modify it for our purposes by changing the two references to STDFA to
correspond to our new parameter. Replacing "STDFA" by "FASUPPC" and "(char
*)&MP.STDFA" by "(char *)&MP.UM.FASUPPC", because the new parameter is an
element of the substructure UM (User Model) that lies within the MP (Model
Parameters) structure, we obtain the result:
pmaddent(pcp, "FASUPPC", (char *)&MP.UM.FASUPPC, NULL, P_SCL, C_NUM, 0, 0, NULL, 0);

For the moment we simply retain all of the other arguments to the function without
having to worry about what they represent. As long as we have chosen an
appropriate template to steal from, there is no problem. Later, we'll look at the
meaning of each of the arguments to pmaddent so as to facilitate more informed
judgements about appropriate sources for pmaddent templates, and more effective
recovery from any incorrect choices.

We choose UIWAITWKS (the integer number of weeks in the Unemployment
Insurance waiting period) as our template for our integer parameter specifying the
"position" of the first child in the family to be granted the supplement. Similarly, we
choose an existing flag parameter to serve as the template for our new FA
supplement flag; FAFLAG, which controls whether Family Allowances are computed
at all, seems a good choice. Before our modifications, these two invocations
appear as follows:
pmaddent(pcp, "UIWAITWKS", (char *)&MP.UIWAITWKS, NULL, P_SCL, C_INT, 0, 0, NULL, 0);
pmaddent(pcp, "FAFLAG", (char *)&MP.FAFLAG, NULL, P_SCL, C_INT, E_FLAG, 0, NULL, 0);

As with the FASUPPC parameter above, we modify each of these templates in two
places, substituting the name of the parameter and its relation to the MP structure.
The modified pmaddent invocations appear as follows:
pmaddent(pcp, "FASUPFEC", (char *)&MP.UM.FASUPFEC, NULL, P_SCL, C_INT, 0, 0, NULL, 0);
pmaddent(pcp, "FASUPFLAG", (char *)&MP.UM.FASUPFLAG, NULL, P_SCL, C_INT, E_FLAG, 0, NULL, 0);
These simple additions complete the modification of Ampd.cpp as regards making

Programmer’s Guide Page 29
SPSD/M Version 9.2

the VALUES of the new parameters available throughout the SPSM, once we have
somehow assigned those values. Later in this section we address some of the
mechanisms by which the user can make the assignments. However, we still need
to provide clear labels for the parameters so that the SPSM can use them to give
meaningful documentation of the model parameters as appropriate.

Once again, the design of the SPSM renders our job easy. There is a ready-made
function. stradd, to implement the labeling. Just after the pmaddent statements we
insert three lines to invoke this function, stradd --
stradd("FASUPPC", "Family Allowance Supplement per Child");
stradd("FASUPFEC", "FA Supplement, First Child Payable");
stradd("FASUPFLAG","FA Supplement, Activation Flag");

The stradd (String Add) function, when executed, "attaches" the descriptor string to
the parameter so that the descriptor will automatically appear in all relevant SPSM
documentation and labeling. With the (stradd) function's arguments this simple, i.e.
one string identifying the name of a new parameter, with a second string providing
the associated description, we do not even need to resort to a template.

The final item within this step, partial compilation of the Ampd.cpp function, is
optional, but we recommend it as conducive to the orderly development of glass box
applications. This type of partial compilation enables the user to have the compiler
check for syntax errors while the nature of the modifications is still fresh in one's
mind. It does not ensure that the modified source code meshes with the rest of the
SPSM. Note that one has to have modified any relevant header files, here the
Mpu.h header file, first in order for the Debug compilation to work.
MODIFY THE FUNCTIONS THAT USE THE NEW PARAMETER(S)

To complete the programming changes involved in adding the parameter, we next
need to alter the Afamod.cpp function so that it makes use of the new symbolic
parameters rather than the "hardwired" values that appeared in the Quick Start
example. We begin by adjusting the label defined for the function; more specifically
we modify the code defining the label so that it reads --
/*global*/ char FAR Tfa[] = "Afamod.cpp Parameterized"

With this label supplied, the SPSM can use it whenever it has occasion to use the
function's description in its documentation.

The substantive changes to the Afamod.cpp function are simple to implement.

Where the Quick Start example used "120.0", we substitute the symbolic
representation "MP.UM.FASUPPC". This naming convention, exactly identical to
the one used in the "pmaddent" function invocation in the Ampd.cpp change above,
reflects FASUPPC's location within the UM (User Model) substructure of the MP
(Model Parameter) structure that the SPSM uses to store all of the model
parameters.

Where the Quick Start example used 3 to represent the number of children required

Programmer’s Guide Page 30
SPSD/M Version 9.2

in the family for the supplement to be paid, we substitute MP.UM.FASUPFEC. All
relevant formulae are adjusted accordingly.

We make the calculation of the supplementation, and its addition to the fa, tfa, and
ffa variables conditional on the value of the new flag variable, fasupflag.

Thus, the key Quick Start example source code that appeared as:
/* $120/yr bonus for 3rd and subsequent children <18 */
if (nch >= 3) {
tfa += (nch-2) * 120.0;
ffa += (nch-2) * 120.0;
}

becomes, in its glassex2 incarnation:
/* Conditionally add a Family Allowance bonus for the
"FASUPFECth" and subsequent children <18 in the unit */
if ((MP.UM.FASUPFLAG == 1) & (nch >= MP.UM.FASUPFEC)) {
tfa += (nch-MP.UM.FASUPFEC+1) * MP.UM.FASUPPC;
ffa += (nch-MP.UM.FASUPFEC+1) * MP.UM.FASUPPC;
}

The underlying logic remains unchanged, but now it is specified parametrically. In
addition we have modified the comment to reflect the generalization to symbolic
parameters. In writing the source code in this fashion, we have trusted that users of
the model will supply only reasonable values of the parameters. For example, we
trust here that no user will inadvertently supply a value of zero (0) for
MP.UM.FASUPFEC and unintentionally create a Family Allowance supplement for
those families with zero children aged 0 through 17. Later, we'll show how the user
can use the SPSM's edit-check facilities to guarantee that the parameters values are
reasonable.

Once again we perform a Debug compilation to catch any syntactic errors before
compiling the new model.
VALIDATE AND MAKE BLACK-BOX PRODUCTION RUNS

As with the Quick Start example, we still need to test the new variant of the model to
ensure that it gives reasonable results. With SPSM runs being essentially free, and
not terribly time consuming, two particular validation runs immediately suggest
themselves.

1. The first is a run with the FASUPPC parameter set to zero, using the same tables
generated in the Quick Start example. For this run we set the FASUPFEC
parameter to 3, and the FASUPFLAG parameter to 1. We expect that there will
turn out to be no differences between the base and variant systems because the
zero value for the parameter renders the change nil.

2. We modify the first test to supply a value of 120.0 for the FASUPPC parameter,
leaving the FASUPFEC and FASUPFLAG parameters at 3 and 1. Again we
request the Quick Start tables as output, expecting to observe the same results
we obtained from the original Quick Start example with its hardwired 120.0 value.

Programmer’s Guide Page 31
SPSD/M Version 9.2

3. We modify the FASUPFEC to take on a value of 2, expecting that this will
considerably increase the cost of the hypothetical option, since there are
relatively many two-child families. The specific tables allow us to ascertain
easily, at least for the gross amount of the supplement, whether the right
amounts of supplement have been calculated for each of the family types by
number of children.

4. Finally, we add a fourth test to turn the supplement off via the FASUPFLAG
parameter. In making this validation test, we leave the FASUPPC and
FASUPFEC parameters at 120.0 and 2 so that we can be sure that any effect is
caused by resetting the flag parameter to zero. As with the first validation run
described above, we expect that there will be no differences between the base
and option Family Allowances, the computation of the supplement having been
suppressed.

For carrying out the validation tests, it remains only to assign the desired values to
the new parameters. The design of the SPSM makes this easy. If we simply run the
new model without having bothered to specify a needed parameter value, the SPSM
notes the omission, allowing us to provide the value via the "on-the-fly" parameter
editing facility. Or, to be functionally equivalent, we could have placed an
appropriate entry in the MPR (Model Parameter) file, since such files hold model
parameters generally, whether the parameters are defined by the user or are built
into the SPSM as distributed. Similarly, the new parameter file could have been
specified in an MPI (Model Parameter Include) file. Authoritative descriptions of
these latter two methods may be found in User's Guide.

Upon making the tests described above, we are encouraged that our change, the
addition of the three new parameters, has been properly implemented because all of
the sets of outputs appear as anticipated. The results of the third test, where we
shift the FASUPFEC (first eligible child) parameter, are especially important. There
we can check to see if appropriate amounts of supplement benefits are added to
families classed by number of children aged 0 to 17. Now, with the model changes
validated, we are ready to make the relevant set of production runs. For example, a
client might ask us to use a FASUPPC parameter value of 60.0 to confirm our his
expectation that the same number of families would be affected as with a value of
120.0, and that the costs, in aggregate and as an average per affected family, would
be only half as great as for that 120.0 value. Similarly, we might substitute a much
larger value, say 5000.0, to confirm our expectation that, with such a large transfer,
the proportion of the supplement recovered through the tax system would rise
somewhat as some families move into higher tax brackets.
SUMMARY/CONCLUSION

It is useful to conclude by highlighting, but without any redevelopment, the key points
relevant for adding typical scalar parameters to a model. In noting these points, it is
taken as given that the analyst is working with COPIES of the relevant files, and is
performing all of the modifications in a task subdirectory dedicated to the analysis at
hand. We also assume that the user has updated the project to include all of the

Programmer’s Guide Page 32
SPSD/M Version 9.2

relevant source code files. In terms of technique, we assume that the user will most
often be grabbing a chunk of similar existing code as a template, and then modifying
it as required.

1. Modify the Mpu.h header file, adding one statement for each new parameter.
The statement indicates the name of the parameter and its type, with NUMBER
used for float values.

2. Modify Ampd.cpp source code file, adding two statements for each new
parameter.

• Add one "pmaddent" invocation for each parameter so that the SPSM can
make its value available to all functions called by Adrv.cpp. Normal practice
is to copy the invocation from an existing invocation and then modify it in two
places -- the name of the parameter and its address.

• Add one stradd invocation for each parameter so that the SPSM attaches the
parameter's label to that new parameter.

3. Modify the relevant substantive function(s) to make use of the new parameter(s),
changing the labeling as well as the internal logic of the function.

4. Debug and Compile the new model. Make the necessary "production runs" of
the model and then interpret the results.

Glass Box Development: Adding Less Typical Parameters

This chapter describes in greater detail the arguments for the pmaddent function and
that function's use when the user adds scalar, vector and matrix parameters to glass
box applications. To do this, it builds on the foundation established in the previous
section(Adding typical scalar parameters), developing the new considerations for
less typical scalar parameters, for vectors and lookup schedules, and for matrices.
Finally, the last section summarizes the key points for regarding the addition, to a
model, of these less common forms of parameters.

The first section of this chapter presents the set of arguments for the key pmaddent
function, describing the key features of each of them. The following section then
presents a list of the types of scalar parameters the user might wish to add. For
each type, it indicates briefly the purpose of that specific type, describes the key
pmaddent arguments for the type, and identifies an appropriate pmaddent template
to use when creating a parameter of that type. Also included are sections that takes
up the special considerations involved in adding vectors of parameters, following
with schedule "lookup" parameters, and matrices of parameters.
PMADDENT: THE FUNCTION AND ITS ARGUMENTS

Programmer’s Guide Page 33
SPSD/M Version 9.2

Recall from section on description of adding typical parameters that the most
complicated aspect of making a new parameter available to a model lies with the
changes to Ampd.cpp, the changes to Mpu.h being very straightforward definitions
of the parameters' types. Within the Ampd.cpp changes, the only significant
challenge, and not by any means a particularly onerous one, comes from the
invocation of the pmaddent function. We noted that the glass box user can usually
sidestep the complexities of that function simply by choosing an "appropriate"
template invocation, one copied from an "appropriately similar" parameter already
defined. In this section we explain more fully the sense of the various pmaddent
arguments, so that the glass box user will be able to use the pmaddent function
confidently, even when there is no obvious template to be copied and modified.

Our starting point for the description of the pmaddent arguments is the explanatory
comment that appears in Ampd.cpp itself (at about line 150 of the GLASS version).
We'll take up each of the ten arguments in sequence. We emphasize, however, that
the user should have relatively little occassion to require this information. Most of
the time, the parameter to be added will be well understood, and an appropriately
similar template parameter readily identifiable. In all those cases the user should
simply modify the relevant templates and get on with the modeling, leaving the
intricacies of pmaddent to those doing non-standard tasks.

Ampd.c's summary of the pmaddent arguments is as follows:
/**
* pmaddent(
* pcp, <= parameter chain being extended (leave as is)
* "XXXXX", <= name by which the parameter will be known
* (char *)&MP.UM.XXXXX, <= address of the parameter
* Format, <= printing information for the parameter
* Agg_Type, <= Aggregate type (scalar, vector, etc.)
* C_Type, <= C-type (integer, number, string)
* Edit, <= Edits to be performed
* Row_max, <= Maximum number of rows, or option edit limit.
* Rows_addr, <= Address of int holding current number of rows
* Limit, <= Number of columns);
**/

The first argument (pcp) is particularly straightforward; the user ALWAYS enters the
variable pcp. The argument identifies the specific parameter chain that the user is
extending. Although the SPSM employs other parameter chains in its operations,
the user may add parameters ONLY to the pcp chain.

The second argument, characterized by the "XXXXX" placeholder in the comment, is
the user’s name for the parameter. The name here will be the same one that the
user employed in the Mpu.h definition. Users should be careful to choose
reasonable mnemonics for these names, e.g. the FASUPFLAG name we used
previously. The SPSM convention is that these names should start with an upper-
case letter and should contain only upper-case letters and digits.

The third argument, characterized by the (char *)&MP.UM.XXXXX placeholder, is
the address for the parameter. The initial (C language "cast") portion of the

Programmer’s Guide Page 34
SPSD/M Version 9.2

argument, '(char *)' is invariant. Similarly, the 'MP.UM' portion is invariant because
the user's parameters are always added to the "Model Parameter, User Model"
structure. The 'XXXXX' portion represents the name of the user's parameter; it is set
to the string used as the second argument, but without the delimiting quotes.
Finally, reflecting C's treatment of variable's addresses, the ampersand (&) is
present if the parameter is a scalar, and typically absent if it is not (i.e. absent if the
parameter is a vector, lookup parameter or a matrix). The common C-language
device of specifically referring to the first element of an array is taken up later as a
special topic. For the special case of a 'DUMMY' parameter, described below, this
third argument takes on the value of 'NULL'.

The fourth argument, characterized in the description above as 'Format', is a string.
It contains information about how the SPSM should display the value of the
parameter when documenting it. Typically, the user will use the predefined format
'NULL', indicating that the SPSM is to print the parameter as it sees fit. Another
predefined format, "F_FRACT", contains the string "8.5" and is particularly suited for
printing out the value of a fraction. The user can also enter an explicit string for the
argument; e.g. using "8.0" specifies that the value should occupy 8 characters, and
that it should not include a fractional part. An argument of "7.2" would specify a
string occupying 7 characters, with two digits beyond the decimal point. When
appropriate, e.g. for the lookup style parameters, the argument can include multiple
format indicators, e.g. "8.0 8.2 8.2". The predefined format F_LKTUR, used for
P_LKPXY type parameters provides a concrete example of this usage.

The fifth argument, characterized in the description above by 'Agg_Type', indicates
the type of the parameter. This argument reflects a forced choice among the six
integer values 0 through 5. Each of the six values has a mnemonic counterpart that
the user can employ, for clarity, in place of the numeric value itself. The six values,
their mnemonic counterparts, and their interpretations are as follows:

The value 0, represented mnemonically by P_SCL, is the most common value. It is
used for a parameter that is a scalar value (integer, float, fraction, etc.).

The value 1, represented mnemonically by P_VCT, is used when the parameter is a
vector. Other key information about the vector, e.g. the number of elements it
contains, is given by other pmaddent arguments.

The values 2 and 3, represented by the mnemonics P_LKPXY and P_LKPSL, are
used within the SPSM for two special kinds of schedules in which lookups are
performed, one with an X-Y format and the other with a range-slope format. In the
event that the user wishes to create parameters of these types, the GISST and FTX
parameters provide operational examples. These two parameter types define
schedules that correspond to functions LKUP1 and LKUP2 respectively; the LKUP1
and LKUP2 functions themselves are documented in the Algorithm Guide. The use
of schedules in the SPSM is documented more fully in this chapter. The value 4,
represented by the mnemonic P_TBL, is used when the parameter is a two
dimensional matrix (table). Other key information about the matrix, e.g. the numbers

Programmer’s Guide Page 35
SPSD/M Version 9.2

of rows and columns, is given by other pmaddent arguments. The commodity tax
matrix CTTXRM provides a good example.

The value 5, represented by the mnemonic P_DUMMY, will not generally be used by
glass box users. This parameter type corresponds to a dummy entry used to hold
the name of a header string for documentation purposes.

The sixth argument, characterized in the description above by 'C_Type', indicates
the type of the parameter. There are three possible entries for this argument. The
value C_INT is appropriate when the parameter value is inherently an integer, i.e.
consists of a number with no fractional part, and has a value within the C language's
bounds for integer values. The user will employ a value of C_INT for this argument
when the Mpu.h entry for the parameter used an 'int' declaration. Parameters that
are "flags" or "options" will naturally be integers.

The value C_NUM is appropriate when the parameter value may have a fractional
part, or when it is too large to be stored as an integer. The user will employ a value
of C_NUM for this argument when the Mpu.h entry for the parameter used a
'NUMBER' declaration.

The value C_STR is used when the parameter value is a dummy entry used for a
header string. Glass box users will not generally have occasion to use C_STR.

The seventh argument, characterized in the description above by 'Edit', indicates the
edit checks to be imposed on the value of the parameter. The activation of these
edit checks will force the value of the parameter to obey various constraints that may
be appropriate. In addition, they may constrain a user's ability to modify the
parameters' values at execution time via the SPSM's parameter editing facilities.
The pmaddent argument governing such edit checks is an integer value. Typically,
the user will choose a value by entering an element from a set of predefined
mnemonic values (described below).

The codes and their interpretations are as follows:

E_NONE (value 0) indicates that no edit checks are to be performed on this
parameter.

E_FIXL (value 1) applies only when the parameter is a vector, lookup table or array
(and thus has a known maximum number of rows). This edit code prevents the user
from attempting to change the actual number of rows from the maximum value. The
mnemonic here indicates that the row limit is regarded as fixed.

E_FLAG (value 2) indicates that the parameter is a flag. Under SPSM conventions,
this means that the parameter is treated as a binary variable (defined as an integer)
that must take on either the value 0 (zero) or the value 1 (one).

E_FRCT (value 4) indicates that the parameter is a fractional value that must fall in
the domain 0.0 and 1.0, inclusive.

Programmer’s Guide Page 36
SPSD/M Version 9.2

E_NOCH (value 8) indicates that the user is not allowed to make any changes to the
value of the parameter via the SPSM's built-in parameter editor. This edit check can
apply to any of the types of parameters, C_INT, C_NUM or C_STR.

E_OPT (value 16) indicates that the parameter is of a special "option" type,
corresponding to a forced (integer) choice of values from 1 to the maximum option
number permitted. The maximum number itself is provided, for option parameters,
by the eighth pmaddent argument.

Should multiple codes be relevant, the user can simply add the relevant component
values together. E.g. a value of 12 indicates a parameter that must be a fraction,
and that the user is not permitted to edit dynamically at run time.

The eighth argument, characterized in the description above by 'Row_max',
indicates the maximum number of rows for certain types of parameters (P_VEC,
P_LKPXY, P_LKPSL, or P_TBL). (Note however, the SPSM's flexibility, in that the
actual number of rows used in a specific application may be less than this
maximum.) For the other parameter types (P_SCL and P_DUMMY) this argument
should take on a value of 0 (zero), except for OPTION parameters, where it
indicates the number of legitimate option values. (A value of N for an OPTION
parameter indicates that the legitimate values range from 1 to N inclusive.) Since
scalar parameters (P_SCL) are the norm, this argument will most often take on the
value 0.

The ninth argument, characterized in the description above by 'Rows_addr',
contains the address of the integer variable corresponding to the current (actual)
number of rows for certain kinds of parameters, P_VEC, P_LKPXY, P_LKPSL, and
P_TBL. When the number of rows is irrelevant, e.g. for a scalar or DUMMY
parameter, the user enters a value of 'NULL' for this argument; thus, this argument
will typically take on the 'NULL' value.

The tenth and last pmaddent argument, characterized in the description above by
'Limit', indicates, for parameters of type P_TBL, the number of columns in the table.
In contrast to the flexibility provided for rows, where the actual number of rows may
be smaller than the maximum number, the SPSM requires that the actual number of
columns be fixed beforehand. For all other parameter types, this argument takes on
the value of 0 (zero).
CHARACTERIZING SCALAR PARAMETERS

With the description of pmaddent's arguments complete, we turn first to the kinds of
scalar parameters that the user may wish to add. The discussion here treats them in
roughly descending order as regards expected frequency of use. For each of the
types the description indicates (1) the general nature of the parameter, (2) the key
pmaddent arguments, and (3) an appropriate pmaddent template. Even though this
chapter deals primarily with more specialized types of parameters, we have, for
completeness, included in this scalar parameters section instances of the more
common parameter types already described in previous section of this

Programmer’s Guide Page 37
SPSD/M Version 9.2

Programmer's Guide.
REAL/float/NUMBER Parameters

The analyst uses this type of parameter when needing to supply a real value, e.g.
some program guarantee expressed in dollars and cents. The Mpu.h definition will
use the NUMBER specification. In the pmaddent call, the key argument is the
C_NUM entry for C_Type. An appropriate template is --
pmaddent(pcp, "STDFA", (char *)&MP.STDFA, NULL, P_SCL, C_NUM, 0, 0, NULL, 0);
INTEGER/int Parameters

The analyst uses this type of parameter when needing to supply a value that is
inherently an integer, e.g. the typical number of weeks in the waiting period for
unemployment insurance. The Mpu.h definition will use the int specification. In the
pmaddent call, the key argument is the C_INT entry for C_Type. An appropriate
template is --
pmaddent(pcp, "UIWAITWKS", (char *)&MP.UIWAITWKS, NULL, P_SCL, C_INT, 0, 0, NULL, 0);
FLAG Parameters

The analyst uses this type of parameter when wishing to supply a "switch" value,
e.g. an indicator that will specify whether certain other calculations are to be
performed or not. The Mpu.h definition will use the int specification for such a
parameter. In the pmaddent call, the key arguments are the C_INT entry for C_Type
and the E_FLAG entry for Edit. An appropriate template is --
pmaddent(pcp, "FAFLAG", (char *)&MP.FAFLAG, NULL, P_SCL, C_INT, E_FLAG, 0, NULL, 0);
FRACTION Parameters

The analyst uses this type of parameter when wishing to supply a value that is
inherently a fraction, and thus more constrained in value than a float. Tax rates and
contribution rates are good examples of this type of parameter. The Mpu.h definition
will use the NUMBER specification for such a parameter. In the pmaddent call, the
key arguments are the C_NUM entry for C_Type and the F_FRACT entry for
Format. In the template call we suggest for this type of parameter, the user has
chosen NOT to require an Edit check that will constrain the value between zero and
unity; the template itself is --
pmaddent(pcp, "UIBASRATE", (char *)&MP.UIBASRATE, F_FRACT,P_SCL, C_NUM, 0, 0, NULL, 0);
OPTION Parameters

The analyst uses this type of parameter when the parameter reflects a forced choice
among a small fixed number of alternatives; a numerical value is used to indicate a
nominal or qualitative selection. As an example of such a qualitative distinction, one
might consider a parameter that indicates whether CPP/QPP deductions are to be
treated as (1) a deduction in computing taxable income, or (2) a non-refundable
credit in the calculation of taxes, or (3) a tax credit refundable at the federal income
tax level, but not at the provincial income tax level. The Mpu.h definition for a FLAG
parameter will use an int specification. In the pmaddent call, the key arguments are
the C_INT entry for C_TYPE, the E_OPT entry for Edit, and the numeric entry giving
the number of legitimate categories for the Row-max argument. An appropriate

Programmer’s Guide Page 38
SPSD/M Version 9.2

template is --
pmaddent(pcp, "MDCROPT", (char *)&MP.MDCROPT, NULL, P_SCL, C_INT, E_OPT, 2, NULL, 0);
EDIT-FRACTION Parameters

The analyst uses this type of parameter when it is desirable to constrain any user-
supplied value to fall in the interval from zero to unity. For example, the parameter
might represent a taxback rate that would be considered unreasonable if it
corresponded to a rate of less than zero percent or greater than one hundred
percent. The Mpu.h definition for an editable fraction parameter will use a NUMBER
specification. In the pmaddent call, the key arguments are the C_NUM entry for
C_Type and the E_FRCT entry for Edit. The user might wish also to specify a
Format specification of F_FRACT. An appropriate template is --
pmaddent(pcp, "CHATR1", (char *)&MP.CHATR1, NULL, P_SCL, C_NUM, E_FRCT, 0, NULL, 0);
DUMMY Parameters

The user will not typically specify DUMMY parameters, which are intended for
conveying labeling and sectioning information when parameter configurations are
being documented. An illustrative template is -
pmaddent(pcp, "2.3.1", NULL, NULL, P_DUMMY, C_STR, 0, 0, NULL, 0);

For all types of scalar parameters, the user has the choice among mechanisms for
supplying values to them:

1. specification via inclusion of the parameter in a parameter file (MPR, CPR and
APR files),

2. specification via presence in a supplementary inclusion parameter file (MPI, CPI
and API), and

3. specification via the SPSM's dynamic parameter editing facility. (Note, however
that the ability to use the third option may be constrained by the parameter's
pmaddent entry for the Edit argument.) This approach is automatic if the user
chooses not to specify a value; the Edit argument permitting, the SPSM will
prompt for a value.

VECTORS OF USER-DEFINED PARAMETERS

The preceding portions of this chapter have focused primarily on scalar parameters,
in part because they are the most common types, and in part because they are
easiest to describe. However, the SPSM also offers the user the capacity to create
vectors of parameters. Such vectors will be most relevant when the user wants to
create a set of related parameters with the members of the set occurring in a natural
"indexable" order along a single dimension.

As an example, consider the case of an analyst modeling some proposed housing
supplement program. For each family size up to ten this hypothetical program has
an income limit beyond which a family becomes categorically ineligible to receive
benefits. Unfortunately, these limits, though increasing with family size, are not

Programmer’s Guide Page 39
SPSD/M Version 9.2

related to that family size in any smooth or readily calculated manner. Instead, the
user wants to have ten different parameters, corresponding to families of size one to
ten-plus, to represent the benefit cutoff levels. It makes much more sense to have a
vector of parameters, indexed on family size, than to develop code that treats each
of the ten possibilities as a separate, independently developed case.

In this section then, we characterize the key points the user must understand to
define vectors of user parameters for SPSM models. Our earlier comments about
parameter addition in general continue to hold (order of changes to files, use of
mnemonic values, validation, etc.), but we focus on those aspects specific to the
effective use of vectors of user-defined parameters.
Additions to Mpu.h, Cpu.h or Apu.h

Just as the user declares scalar parameters in Mpu.h (or Cpu.h or Apu.h), s/he must
also declare any user-defined parameter vectors in these files. The scalar and
vector declarations look very similar, except that the vector declaration indicates, via
an expression in square brackets, the length of the vector. The SPSM treats
parameter vectors as column vectors; thus the length of the vector is its number of
rows.

For our housing program example, suppose that the user has declared a (manifest)
constant HHPYCOMR (Hypothetical Housing Program, Income Cutoff Maximum
Rows). The user has assigned it the value 10 because there will be a distinct cutoff
for each family size up to ten-plus. The definition would be accomplished via a
statement of the form --
#define HHPYCOMR 10 /* maximum # of number of rows in the HHPYCO vector */

See the Mp.h file in the SPSM\DEFS subdirectory (starting at about line 40) for
illustrations using parameter vectors that are part of the black box SPSM, rather than
being user-defined.

The vector itself is to be named HHPYCO, with the value of the i'th entry
corresponding to the cutoff for a family of size i+1. (Recall that the C language starts
all vectors with the zero'th entry.) The Mpu.h entry for the new vector will then look
something like --
NUMBER HHPYCO[HHPYCOMR]; /* Hypothetical Housing Program Income Cutoffs */

Although it is possible to "hardwire" the length directly into the declaration, e.g. using
something like HHPYCO[10], we strongly discourage it. We recommend instead the
manifest constant approach described above. The reason behind this
recommendation stems from the need, in the corresponding Ampd.c's pmaddent
invocation, of an entry for the maximum number of rows. Using a given manifest
constant in both locations precludes the possibility of a later revision leading to one
value being used in Mpu.h while another is used in Ampd.cpp. If the user should
create a discrepancy between the Mpu.h (or Apu.h or Cpu.h) and Ampd.cpp values,
the errors that result could be infuriatingly difficult to track down.

Recall that the actual number of rows present in the (column) vector for a given

Programmer’s Guide Page 40
SPSD/M Version 9.2

SPSM execution may be different from (less than) the maximum number possible for
that parameter. Thus, the user must also declare, in the same header file, a variable
in which the SPSM will store the actual number of rows being used (a value that may
vary from run to run of a given executable version of a glass box model). The user
provides a variable for the SPSM to store the actual number of rows via an
additional declaration in the header file. Following the SPSM convention that these
length variables are named as the parameter name with a suffix of "rows", the Mpu.h
file should also contain a declaration of the form --
int HPPYCOrows; /* number of rows in HPPYCO */

The mp.h file in the SPSM\DEFS subdirectory provides many examples in its section
on array limits (about line 580). Later on, Ampd.cpp's pmaddent call for HPPYCO
will refer to the address of the HPPYCOrows variable.
Additions to Ampd.cpp

So that the SPSM can make the values in the new parameter vector available to the
user's substantive code, the user must set up the appropriate linkages via an
invocation of pmaddent, just as with scalar parameters. The invocation would look
like one of the following:
pmaddent(pcp, "HHPYCO", (char *)MP.UM.HHPYCO, NULL, P_VCT, C_NUM, E_NONE, HHPYCOMR,
&MP.UM.HHPYCOrows, 0);

or
pmaddent(pcp, "HHPYCO", (char *)&MP.UM.HHPYCO[0], NULL, P_VCT, C_NUM, E_NONE, HHPYCOMR,
&MP.UM.HHPYCOrows, 0);

In the first illustrative invocation the third argument uses no ampersand because the
reference is to the new parameter vector; C treats such a reference as the address
of the first element. In the second illustrative invocation the user has elected to refer
more explicitly to the address of the first element by including the ampersand and
the [0] index. The MpdX.cpp files in the SPSM\MODEL subdirectory contain
examples of both types of reference.

Three other pmaddent arguments deserve special comment for our description of
the highlights for user-defined parameter vectors. The Agg_Type argument (#5)
necessarily takes on the value P_VCT. The Row-max argument (#8) is the manifest
constant created in Mpu.h to specify the maximum number of rows; in our housing
program example this corresponds to the HHPYCOMR entry. Finally, the Rows-
addr entry (#9) corresponds to the name of the variable declared to store the actual
number of rows, preceded by an ampersand; in our housing program example this
corresponds to the &MP.UM.HHPYCOrows entry.

Note that other capacities activated by pmaddent's arguments remain available to
the user. Thus, C_Type is used to indicate whether the variable is a float value or
an integer. The user can use the Format argument to specify, if desired, a format for
each of the individual values in the vector. And the user employs the Edit argument
to impose any relevant edit checks.

Programmer’s Guide Page 41
SPSD/M Version 9.2

Just as with scalar parameters, the user will also wish to modify the Ampd.cpp file to
add an invocation of stradd for each new user-defined parameter vector. This
addition will ensure that when the SPSM documents the new user-defined
parameter, the user's textual description of the parameter will form part of that
documentation.
User-Defined Parameter Vector References in the Source Code

Once the user has completed the header file and Ampd.cpp changes necessary to
make the parameter vector available to the substantive functions, it remains to refer
to the relevant parameter values in those substantive functions. To continue with
the hypothetical housing program example, suppose that the user has available an
integer variable, HHPFS, (Hypothetical Housing Program Family Size) that gives the
family size as defined by the anticipated regulations governing the program.
Suppose too, that the user is absolutely confident that HHPFS's value will lie in the
domain 1 through 9 inclusive. To refer to the relevant income cutoff for benefits from
the hypothetical program, the user, recognizing that the C language always numbers
a vector's elements starting with 0, would employ an expression of the following
form:
MP.UM.HHPYCO[HHPFS-1]
Specification of Parameter Vector Values

In order for the user's new code to accomplish anything, the values of the vector's
elements must be made available to the SPSM so that it, in turn, can make them
available to the user's code. Typically, the user will specify these values in an
".MPR" or ".MPI" file (or their ".CPR", ".CPI", ".APR" or ".API" counterparts). The
UIREPUER vector, specifying key regional unemployment as they apply to UI entry
requirements for repeaters, provides a good example.
UIREPUER 5 # Regional unemployment rate
 6.0
 7.0
 8.0
 9.0
 11.5

The format is clear. The first line contains the name of the parameter, followed by
the number of ACTUAL elements to be used; an optional documentary comment
should be added to make the nature of the parameter obvious to any reader of the
file. Successive lines specify, one value per line, the values for the vector. It is
important that the number of elements entry not exceed the maximum rows value
specified in the pmaddent entry, and that the number of additional lines in the
parameter file be equal to the number on the parameters first line; the SPSM will
check to ensure that these requirements are met.

To continue with our hypothetical housing program example, the user might enter, in
the ".MPR" or ".MPI" file, something like the following:
HHPYCO 10 # Income cutoffs for housing program, by family size
 5000.0
 6120.0
 7250.0

Programmer’s Guide Page 42
SPSD/M Version 9.2

 8400.0
 9500.0
 10600.0
 11600.0
 12500.0
 13300.0
 13900.0
Summary

The key factors in adding vectors of user parameters to an SPSM glass box model
can be summarized in the following checklist:

1. Make appropriate changes in the header file (e.g. Mpu.h).

• Use a manifest constant for the maximum length of the vector, e.g.
• #define HHPYCOMR 10 /* maximum # of rows for HHPYCO */
• Declare the vector itself,
• NUMBER HHPYCO[HHPYCOMR]; /* comment */
• Declare a variable to hold the actual length of the vector, e.g.
• int HPPYCOrows; /* actual number of rows in HPPYCO */

2. Make appropriate changes in the Ampd.cpp file; remember the benefits of partial
compilation.

• Insert an appropriate pmaddent invocation, usually by modifying a copy of
an existing one.

• Enter an invocation of stradd so that the SPSM can label the new
parameters when appropriate.

3. Write the C-language source code that uses the parameters. Remember C's
convention that vectors begin with the zero elements. Debugging compilation is
often useful here too.

4. Supply values for the elements of the vector via a multi-line entry in an
appropriate parameter file.

5. Don't forget the need for validation and testing to make sure that the new code is
doing what is intended of it.

USER-DEFINED SCHEDULES FOR LOOKUPS

Parameters in the form of schedules are useful primarily when one needs to perform
some sort of a lookup, i.e. given a x-value, find the corresponding y-value. This
section employs as examples two schedules already present in the SPSM, and one
hypothetical new user-defined schedule to be added as a parameter. Together, the
three examples cover the major forms of schedule parameters that a glass box user
might normally need.

The first of the existing schedule examples involves federal taxes -- given taxable
income, calculate the corresponding tax from the tax table/schedule.

The second existing schedule example addresses program take-up rates --

Programmer’s Guide Page 43
SPSD/M Version 9.2

assuming that the decision of whether to apply for benefits in a program is believed
to depend on the benefit that could be claimed (the higher the benefit that would be
received, the more likely a unit is to file to claim that benefit), given a unit's potential
benefit, look up its probability of applying for (taking up) those benefits.

The third, new parameter, example involves a totally hypothetical earnings
supplement based very loosely on the U.S. Earned Income Tax Credit, but applied
to individual earnings. In it, a hypothetical earnings supplementation program
subsidizes initial earnings, up to $10,000 annually, at a rate of 15%, does not further
subsidize any earnings from $10,000 to $15,000, and then, beyond $15,000,
reduces the subsidy previously given at the rate of 10% of earnings above $15,000,
so that there is no subsidy payable to individuals earning $30,000 or more. The new
parameter will describe the subsidy payable as a function of the individual's
earnings. The relevant coordinate pairs are thus (0, 0), (10000, 1500), (15000,
1500), and (30000, 0).

In terms of their specification as SPSM parameters, schedules are very similar to
vectors. The main exception is that schedules have a fixed number of columns,
three, rather than the single column for a vector. (In use, the schedules employ the
SPSM's lkup1 and lkup2 functions.) Thus, with the relatively minor exceptions
highlighted in this section, one adds a schedule to a glass box application very much
as one would add a vector of parameters. Consequently, the vector-oriented
prescriptions about mnemonic names, stradd labeling, partial compilation, validation
etc. are not repeated here.
Schedule Types and Lookup Functions

An appreciation of two separate dichotomies is absolutely critical for the effective
use of schedules in the SPSM.

The first dichotomy involves the type of schedule. The user makes the choice as to
type via the fifth argument of the pmaddent call.

If the argument is P_LKPXY, then lookups in the schedule are done in X-Y format,
using the first (x-values) column of the schedule and the second (y-values) column;
the slope values of the third column (the slopes across the successive segments of
the schedule) are present, but ignored (that information being redundant because it
could be calculated from the X-Y pairs). If the fifth pmaddent argument is P_LKPSL,
then lookups in the schedule are done in slope format, using the information in the
first (x-values) column and the third (slopes) column, plus the first value in the
second (y-values) column. The remaining values in the second column are ignored
in the sense that they are redundant because they could be calculated using the rest
of the information in the schedule.

The second dichotomy reflects whether or not the user wishes to apply interpolation
in the calculation when performing the associated lookup with the schedule. When
interpolation is desired (when the desired value might lie BETWEEN entries in the y-
values column), the user invokes the lkup1 function from the SPSM algorithm library.

Programmer’s Guide Page 44
SPSD/M Version 9.2

When no interpolation is desired, the user invokes the lkup2 sister function. The
Algorithm Guide provides the authoritative description of these two algorithms.
Appearance in SPSM Header Files

Exactly as with vectors of parameters, user-defined parameters that are schedules
require certain entries in an appropriate header file (Mpu.h, Cpu.h, or Apu.h).

One of these is (usually) a manifest constant to define the maximum length of the
schedule. The federal tax schedule (FTX) uses the maximum length FTXMAX. The
GIS single pensioner take-up schedule (GISST) uses GISSTMAX. For our earnings
supplement schedule, ESS, we'll use ESSMAX. The corresponding definitions (in
Mp.h for FTXMAX and GISSTMAX, and in Mpu.h for ESSMAX) are as follows:
#define FTXMAX 15 /* maximum of number of rows in FTX table */
#define GISSTMAX 8 /* maximum of number of elements in GISST table */

and
#define ESSMAX 5 /* maximum number of rows in ESS schedule */

The second of these is a variable in which the SPSM stores the actual number of
rows used by the schedule in a given run; it must, of course, be less than or equal to
the maximum number. Following SPSM conventions, the Mp.h definitions for
variables to contain the actual numbers of elements are as follows:
int GISSTrows; /* number of rows in GISST table */
int FTXrows; /* number of rows in FTX */

In mpu.h, we'll follow this convention and define a variable ESSrows for the actual
number of rows in ESS --
int ESSrows; /* number of rows in ESS schedule */

Mp.h (for the FTX and GISST schedules) and Mpu.h (for the ESS schedule) also
need to contain the definitions for the schedules proper. Typically, these are carried
out using the manifest constants defined earlier. The SPSM provides a constant,
LKP_COLS, that indicates clearly its role as defining the number of columns for
lookup schedules. The definitions themselves are straightforward:
NUMBER FTX[FTXMAX][LKP_COLS]; /* Federal tax table [taxable income,basic federal tax] */
NUMBER GISST[GISSTMAX][LKP_COLS]; /* GIS take-up rate: single pensioner by benefit level [benefit,rate] */
NUMBER ESS[ESSMAX][LKP_COLS]; /* Earnings supplement schedule [earnings, benefit level] */
Appearance in pma ddent Calls in Ampd.c

The user defining schedule parameters will need to modify the Ampd.cpp file, adding
invocations of pmaddent, to enable the SPSM to make the parameter available to
the substantive source code. We begin by looking at the relevant pmaddent entries
for the SPSM's existing FTX and GISST schedules.

The FTX example, drawn from the Mpd2.cpp file, appears as follows:
pmaddent(pcp, "FTX", (char *)&MP.FTX[0][0], NULL, P_LKPSL, C_NUM, 0, FTXMAX, &MP.FTXrows, 0);

Note that the third argument indicates clearly that the schedule has both rows and
columns, and that the fifth argument denotes this as a slope-oriented schedule; the

Programmer’s Guide Page 45
SPSD/M Version 9.2

eighth and ninth arguments make use of the manifest constant and actual-number-
of-rows entries defined in Mp.h.

The GISST example, drawn from the Mpd1.cpp file, appears as follows:
pmaddent(pcp, "GISST", (char *)&MP.GISST[0][0],F_LKTUR, P_LKPXY, C_NUM, E_FRCT, GISSTMAX,
&MP.GISSTrows, 0);

Here the fifth argument indicates that this is an X-Y type schedule. Again, the eighth
and ninth arguments make use of the elements defined for the schedule in the mp.h
file.

For the hypothetical earnings supplementation program, we would add to the
Ampd.cpp file an invocation of pmaddent (probably copied from an existing call and
then modified as appropriate) that appears as follows:
pmaddent(pcp, "ESS", (char *)&MP.UM.ESS[0][0], NULL, P_LKPXY, C_NUM, 0, ESSMAX, &MP.UM.ESSrows,
0);

The strong parallels with the existing GISST schedule should be apparent. Note,
however, the key differences that mark a user-defined parameter schedule: the UM
qualifier in the third and ninth arguments, and the user-defined (maximum rows)
constant and (actual rows) variable address for the eighth and ninth pmaddent
arguments.
Employing Schedule References in User Code

Glass box applications that use schedules will reference them almost exclusively via
the SPSM's two lookup functions, lkup1 and lkup2. This makes source code
expressions using the parameters very straightforward. Illustrations using our three
examples indicate the nature of these references.

The GLASS subdirectory's ATXCALC.CPP function serves to calculate federal
income taxes. This computation involves looking-up, for an individual, that
individual's tax as a function of his/her taxable income. The user chooses whether
or not to apply interpolation (via the choice between lkup1 and lkup2), supplies the
schedule, the actual number of rows, and the relevant x-value, and the lookup
function does all the rest automatically. Here, the user does want interpolation,
applied in a schedule. The relevant source code appears as follows:
if (isnzero(in->im.imitax)) {
/* calculate federal tax */
in->im.imfedtax = (NUMBER) lkup1(MP.FTX, MP.FTXrows, in->im.imitax);
DEBUG2("%s fedtax =%.2f\n", in->im.imfedtax);
}

The GLASS subdirectory's AGIS.CPP function calculates GIS benefits. This
computation involves looking-up, as a function of the potential benefit that would be
payable, the probability that the unit will take-up (i.e. apply for) the benefit. Here the
user chooses not to invoke interpolation -- the desired takeup rate is the one in the
last row in which the potential benefit is at least as great as the row's x-value. The

Programmer’s Guide Page 46
SPSD/M Version 9.2

user provides the schedule, the actual number of rows, and the potential GIS
benefit, and the lookup function returns the takeup probability. (Once again, the
schedule itself appears in the next sub-section,) The expression to ascertain the
takeup probability appears as
lkup2(MP.GISST, MP.GISSTrows, (double) gis))

For the earnings supplement illustration, assume that the user has assigned the
appropriate definition of earnings for an individual to a (double) variable named
iearn. Then the expression for looking up the individual's corresponding earnings
supplement would be --
lkup1(MP.UM.ESS, MP.UM.ESSrows, iearn)

Note the necessity for the UM qualifier indicating that ESS is a user-defined
schedule.
Appearance in Parameter Files

As with any other parameter, the user is responsible for defining schedule
parameters in the appropriate parameter file (.MPR/I, .CPR/I, or .APR/I). In parallel
with the specification of a parameter vector, the first line provides the parameter
name and number of rows, along with a comment identifying the parameter. The
remaining rows for the schedule are the x-value, y-value, slope triplets. Probably the
only non-obvious characteristic is that the redundant items (those that will not be
used for the computations) are enclosed in parentheses.

The slope-oriented FTX schedule describes tax payable (before tax reform) as a
function of taxable income --
FTX 10 # Federal tax table
 0

1238
2476
4952
7428
12380
17332
22284
34664
59424

0
(74)
(272)
(693)
(1139)
(2080)
(3070)
(4209)
(7304)
(14732)

0.060
0.160
0.170
0.180
0.190
0.200
0.230
0.250
0.300
0.340

The X-Y type GISST schedule describes takeup probabilities as a function of
amount of GIS benefit available. The use of the lkup2 function with this schedule
means that these takeup rates are modeled as jumping sharply at the key benefit
levels.
GISST 5 # GIS take-up rate: single pensioner by benefit level
 0

169
419
919

0.365
0.510
0.660
0.820

(0.0009)
(0.0006)
(0.0003)
(0.0001)

Programmer’s Guide Page 47
SPSD/M Version 9.2

3169 1.000 (0.0001)
The X-Y type ESS schedule describes the earnings supplement benefit as a function
of an individual's earnings; it is used with the lkup1 function because interpolation is
desired.
ESS 4 # Hypothetical earnings supplement schedule
 0 0 (0.15)
 10000 1500 (0.00)
 15000 1500 (-0.10)
 30000 0 (0.00)
Key Points for Adding Schedule Parameters

Most of the key points for schedule parameters are identical to those for vector
parameters.

1. Modify the relevant header file to include a manifest constant for the maximum
number of rows, an integer variable to store the actual number of rows, and the
definition for the schedule itself.

2. Modify the Ampd.cpp file to include appropriate pmaddent and stradd
invocations, generally ones copied from elsewhere and then modified.

3. Provide the schedule via an appropriate parameter file or parameter inclusion
file, and don't forget to validate the addition.

Two other key points are specific to schedule parameters.

1. Be absolutely sure, in the parameter file, that the x-value column of the schedule
contains values that are in strictly ascending order.

2. Don't forget to "mark" the redundant values in the schedule by enclosing them in
parentheses.

ADDING MATRICES OF PARAMETERS

For some specialized purposes involving groups of parameters, even vectors or
schedules of parameters are not sufficiently convenient. For example, rather than
managing several equal-length vectors in parallel, it may be much more efficient to
perform lookups in a matrix of values. The design of the SPSM permits the
definition and utilization of such matrices, though it limits the number of dimensions
to 2 (rows and columns). This section will describe the use of matrices of
parameters via two examples, one drawn from the black box version of the SPSM,
and a second involving the specification of a new user-defined matrix of parameters.
Given the close relationship between parameter vectors and parameter matrices,
there is no special highlights division for this section.

The black box illustration uses the CTPRST matrix specific to the commodity tax
capacities of the SPSM. This parameter provides a large (48 commodities (rows) by

Programmer’s Guide Page 48
SPSD/M Version 9.2

10 provinces (columns)) matrix of factors relevant for the calculation of the provincial
sales tax.

The second example, in which the user adds a new matrix of parameters to the
SPSM, involves a matrix of income cutoffs levels for an (hypothetical) experimental
poverty measure. To facilitate the classification of families as in or out of poverty,
the user wants to have a matrix that provides the relevant cutoffs as a function of
integer variables specifying the families' structures (rows) and the sizes of place of
residence (columns). Thus, the matrix's (3,2) entry will contain the poverty line for a
family whose structure index is 3 and whose size of place of residence index is 2.
The user has elected to name this matrix EPMCO (experimental poverty measure
cutoffs). For the sake of this example, we'll assume that the user has chosen a
measure defined in terms of 18 family structures (involving, say, combinations of the
numbers and ages of family members) and four categories of size of place of
residence.
Appearance in Mpu.h

Taking the black box matrix example first, we are not surprised to find the relevant
header information for CTPRST in file Mp.h of the DEFS subdirectory. Thus, there
is an integer definition, to define the actual number of rows (commodities)
CTNUMCOM, as follows:
int CTNUMCOM; /* number of rows for commodity dimension parms */

In addition, there is a definition for the matrix itself --

NUMBER CTPRST[NUMCOM][NUMREG]; /* Provincial retail sales tax [com x
prov] */

 However, Mp.h does not contain manifest constants for the dimensions of the matrix
(NUMCOM and NUMREG) since these are so closely related to the design of the
commodity tax facility in the SPSM that they have been defined elsewhere so that
the commodity tax module can more conveniently use the constants.

Turning to our experimental poverty measure cutoff matrix, we appreciate that we
shall have to provide the relevant "defining" information to the SPSM via entries in
the Mpu.h file. The specific needs are (1) manifest constants for the dimensions,
(2) a variable for the actual number of rows, and (3) the matrix itself. The Mpu.h
lines for these items might appear as follows:

#define EPMFAMMAX 18 /* maximum of number of family structures (rows) for EPMCO matrix */

#define EPMSIZE 4 /* number of size of place of residence categories for EPMCO matrix */

int EPMCOrows; /* number of rows for EPMCO matrix */

NUMBER EPMCO[EPMFAMMAX][EPMSIZMAX]; /* experimental poverty measure cutoffs [fam x size] */
Appearance in Ampd.c

In parallel with the requirements for vectors of parameters, the SPSM requires for
each parameter matrix a call to pmaddent so that the parameter values can be made

Programmer’s Guide Page 49
SPSD/M Version 9.2

available to the user's source code.

For our black box example, this call, found in file Mpd4.cpp, appears as follows:
(There is, of course a corresponding stradd call.)

pmaddent(pcp, "CTPRST", (char *)MP.CTPRST, NULL, P_TBL, C_NUM,
E_FIXL, NUMCOM, &MP.CTNUMCOM, NUMREG);

The only arguments of any special interest at this point are the P_TBL entry for the
fifth (Agg_Type) argument, and the NUMREG entry for the final (number of columns)
argument. The eighth and ninth entries (maximum and address of actual numbers
of rows) are just as we would expect them given the preceding descriptions for
vectors and schedules.

Turning to our poverty measure glass box example, we recognize that it is
necessary to add a pmaddent call to the Ampd.cpp file to permit the SPSM to give
the user's source code access to the parameter matrix. That call might well appear
as follows:

pmaddent(pcp, "EPMCO", (char *)MP.UM.EPMCO, NULL, P_TBL, C_NUM, E_NONE, EPMFAMMAX,
&MP.UM.EPMCOrows, EPMSIZE);

Presumably, the user would also add to the Ampd.cpp file a call to stradd to permit
the SPSM to produce appropriate documentary information.
Referencing Matrix Elements in Source Code

Referencing the elements of a parameter matrix is easy. Assuming the variable i
holds the (integer) commodity category and variable j the (integer) province code,
then the associated removal factor for that combination is --
MP.CTPRST[i][j]

Similarly, if the integer variable fstruct holds the family structure code, and the
integer variable sizecode provides the category for the size of place of residence,
then the experimental poverty measure cutoff for that structure/size combination is
given by --
MP.UM.EPMCO[fstruct][sizecode]

The primary factor to consider in such references is the C-language's convention
that each dimension begins with the zero element; e.g. our 18 by 4 array uses
indices that run from 0 through 17, and 0 through 3, respectively. A user must make
the decision about the appropriate tradeoff between using "natural, positive" integers
as indices into the matrices, and economizing on the fixed block of memory available
for user parameters (including any necessary row address variables).
Appearance in Parameter Files

Just as with all other forms of parameters, the user must provide values for the
parameters. Normally this will occur via entries in the appropriate parameter or
parameter inclusion files (i.e. .MPR, .MPI, .CPR, .CPI, .APR or .API). For parameter

Programmer’s Guide Page 50
SPSD/M Version 9.2

matrices a parameter file entry consists of a first line that specifies the name of the
parameter and the actual number of rows, plus typically a documentary comment.
The succeeding lines for the parameter then supply the rows of the matrix. In our
illustrations here, we provide only the first, identifying, line and then the first of the
lines of numeric values.

For the black box example –
CTPRST 40 # Provincial retail sales tax
 0.01326 0.01326 0.01326 0.01326 0.01316 0.01406 0.02242 0.00626 0.00010 0.00550
 0.15257 0.15257 0.15257 0.15257 0.13057 0.24354 0.15684 0.13914 0.00013 0.29100
 0.17538 0.17538 0.17538 0.17538 0.16338 0.22635 0.13837 0.08953 0.00010 0.00605
 0.08125 0.08125 0.08125 0.08125 0.08424 0.07750 0.06300 0.08521 0.00009 0.07406
 0.08029 0.08029 0.08029 0.08029 0.07239 0.06953 0.05715 0.07306 0.00010 0.06512
 0.08293 0.08293 0.08293 0.08293 0.06684 0.05282 0.05581 0.00305 0.00008 0.06866
 0.00296 0.00296 0.00296 0.00296 0.00359 0.00197 0.00130 0.00171 0.00001 0.00141
 0.00997 0.00997 0.00997 0.00997 0.00934 0.00753 0.01018 0.01073 0.00024 0.01057
 0.00886 0.00886 0.00886 0.00886 0.01140 0.01421 0.00969 0.00879 0.00022 0.01017
 0.08363 0.08363 0.08363 0.08363 0.06777 0.00206 0.02368 0.04331 0.00004 0.00662
 0.08283 0.08283 0.08283 0.08283 0.35376 0.00201 0.02646 0.00544 0.00004 0.02263
 0.09406 0.09406 0.09406 0.09406 0.06143 0.00733 0.01685 0.01645 0.00064 0.02582
 0.08515 0.08515 0.08515 0.08515 0.07698 0.09175 0.07097 0.06762 0.00011 0.08368
 0.08160 0.08160 0.08160 0.08160 0.09371 0.08702 0.06739 0.06646 0.00008 0.07739
 0.08086 0.08086 0.08086 0.08086 0.08141 0.08654 0.06925 0.06538 0.00009 0.07740
 0.08238 0.08238 0.08238 0.08238 0.08320 0.08203 0.06751 0.05395 0.00011 0.07746
 0.08331 0.08331 0.08331 0.08331 0.09420 0.01711 0.07477 0.01461 0.00009 0.01935
 0.00067 0.00067 0.00067 0.00067 0.00054 0.00464 0.00740 0.00678 0.00006 0.00690
 0.05967 0.05967 0.05967 0.05967 0.05408 0.04822 0.02270 0.01925 0.00017 0.01865
 0.00821 0.00821 0.00821 0.00821 0.01031 0.00618 0.00623 0.00397 0.00011 0.00738
 0.00043 0.00043 0.00043 0.00043 0.00034 0.00124 0.00145 0.00173 0.00002 0.00059
 0.01581 0.01581 0.01581 0.01581 0.00875 0.10256 0.01323 0.00799 0.00025 0.01145
 0.02112 0.02112 0.02112 0.02112 0.02389 0.04246 0.03516 0.00786 0.00013 0.01465
 0.07207 0.07207 0.07207 0.07207 0.06970 0.08270 0.07019 0.04924 0.00005 0.10050
 0.07667 0.07667 0.07667 0.07667 0.07584 0.08081 0.06841 0.03319 0.00014 0.04053
 0.14145 0.14145 0.14145 0.14145 0.14506 0.01002 0.00841 0.00897 0.00012 0.01248
 0.04574 0.04574 0.04574 0.04574 0.04843 0.08112 0.03185 0.02851 0.00021 0.02790
 0.03739 0.03739 0.03739 0.03739 0.04921 0.01000 0.02035 0.01185 0.00019 0.01653
 0.08336 0.08336 0.08336 0.08336 0.08897 0.07353 0.06346 0.06354 0.00003 0.04449
 0.07581 0.07581 0.07581 0.07581 0.08182 0.07966 0.05424 0.06289 0.00007 0.07054
 0.07746 0.07746 0.07746 0.07746 0.08965 0.04561 0.05949 0.03563 0.00009 0.04247
 0.04765 0.04765 0.04765 0.04765 0.04967 0.02692 0.02058 0.02111 0.00016 0.01419
 0.00489 0.00489 0.00489 0.00489 0.00411 0.00745 0.00795 0.00733 0.00017 0.00929
 0.08402 0.08402 0.08402 0.08402 0.11465 0.08444 0.06428 0.06551 0.00008 0.07433
 0.07875 0.07875 0.07875 0.07875 0.07826 0.08018 0.07052 0.06623 0.00015 0.07777
 0.04826 0.04826 0.04826 0.04826 0.04245 0.00867 0.00918 0.00758 0.00008 0.01028
 0.06598 0.06598 0.06598 0.06598 0.07010 0.05898 0.07703 0.01556 0.00707 0.02343
 0.02430 0.02430 0.02430 0.02430 0.02547 0.02539 0.00705 0.00708 0.00018 0.01004
 0.01002 0.01002 0.01002 0.01002 0.01255 0.00805 0.00822 0.00735 0.00029 0.01300
 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

For our postulated poverty measure example --
EPMCO 18 # Experimental poverty measure cutoffs
 5600.0

6210.0
6530.0
7050.0

SUMMARY/CONCLUSION

It is useful to conclude by highlighting, but without redeveloping them in any detail,
the general level key points relevant for adding less typical scalar parameters and
non-scalar parameters to a model. In noting these points, we are assuming that the
analyst is following the general procedures outlined for scalar parameters. For

Programmer’s Guide Page 51
SPSD/M Version 9.2

example, it is taken as given that the analyst is working with COPIES of all the
relevant files, and is performing all of the modifications in a task subdirectory
dedicated to the analysis at hand. We also assume that the user has updated the
project environment, and is following the appropriate "checklists" provided for the
less typical parameters.

1. We recommend the "copycat" approach as general way to proceed. Throughout
this chapter we've provided concrete illustrations of the items a user might want
to use as templates. Users should rarely need to employ the detailed material on
Mpu.h/Cpu.h/Apu.h (definitions, manifest constants for max rows, and actual
rows) and Ampd.cpp (pmaddent and stradd).

2. Advanced users may want to be aware of the special "services" available via the
pmaddent arguments: the ability to specify printing formats, edit checks, and the
maximum number of allowable rows or options.

3. Vectors can sometimes be much more efficient than a number of individually
named scalar parameters. The SPSM provides for this capacity, though the user
must supply additional information in the pmaddent call and be sure to provide
another variable for the number of relevant rows, as well as a constant for
dimensioning. We've offered several potential templates to facilitate the copycat
approach.

4. In many respects, schedules are like a special case of vectors, applicable when
one needs to look up a y-value, as a function of a x-value, from a fixed
relationship.

5. Matrices (2-dimensional) are also possible. Some additional information, the
number of columns, becomes necessary, but the matrix approach can be
considerably more efficient than juggling multiple parallel vectors. Once again,
the copy and modify approach is recommended.

Glass Box Development: Adding New Variables

This chapter describes how to add new user-defined dependent variables to an
SPSM glass box application. Thus, it shows how to address challenges such as
those raised in the Quick Start example, where the user would like to have had a
separate variable for the hypothetical Family Allowance supplement. The availability
of user-defined dependent variables is even more important if the user is modeling
some new program, e.g. an earnings supplement that could not be conveniently
combined into any existing model dependent variable.

Structurally, this chapter covers all of the major issues and steps involved in adding
new dependent variables to a model. Included in this chapter is an introductory
overview of the process, and also a section that characterizes the major types of
variables that the user may wish to add. An explanation follows of the critical vardef
function that establishes the linkages between the user's source code and the rest of

Programmer’s Guide Page 52
SPSD/M Version 9.2

the SPSM and also describes how to use the stradd function to make the new
variables' labeling available throughout the SPSM. We then introduce an illustrative
extension of the Family Allowance supplement example used in previous examples,
which defines new variables that will be available to the SPSM's several output
facilities. Following this are examples of the source code changes that the user has
to make, and the descriptions of the compilation and validation of the resulting
model.
OVERVIEW FOR ADDING VARIABLES

In broadest outline, the key steps involved in adding new variables can be
characterized as follows.

1. Decide what new dependent variables are needed, choose appropriate names
and descriptions for them, and copy all of the relevant header and source code
files over to the subdirectory in which the new model will be built.

2. Make the relevant changes to the project environment (identifying all of the
appropriate source code files associated with the new dependent variables), and
update Adrv.cpp (providing documentary text strings).

3. Make the necessary changes to vsu.h and vsdu.cpp to render the new
dependent variables accessible throughout the SPSM model that will be created.

4. Supply new source code (in new or existing modules) to calculate the values for
the new dependent variables.

5. Compile the new model and validate it for correctness.

The preceding points are, of course, only an overview. Section on adding
parameters and the recapitulation section provide a much fuller description of the
model creation process as a whole. This chapter, however, concentrates on those
details especially relevant for the addition of new dependent variables.
DEPENDENT VARIABLE TYPES AND CHARACTERISTICS

The SPSM provides users with the capacity to create three different types of user-
defined dependent variables. All three types are scalars. The SPSM does not
provide for vectors or matrices of dependent variables. The specific types are as
follows:

1. Numeric analysis -- This is the most common type of user-defined dependent
variable. It consists of a numeric (float) value that will be used as an analysis
variable, e.g. tabulated as a cell entry in the control parameter XTSPEC. A good
example of this type of dependent variable is the value of some new income-
tested benefit that will be payable to a family.

2. Integer analysis -- Less frequently used, this type of dependent variable consists
of an integer (int) value that will be used as an analysis variable. The primary

Programmer’s Guide Page 53
SPSD/M Version 9.2

use of this type of variable is export in SAS format, where an integer variable
takes up fewer characters than a numeric analysis variable. Examples of this
type of variable might be the minimum and maximum numbers of weeks that a
family could be without earnings income during the year (as deduced from the
labour-force variables for the family members, e.g. weeks without work and
looking for work).

3. Integer class -- this type of dependent variable consists of an integer (int) value
that will be used as a classificatory variable, e.g. to define the categories for a
classificatory variable in the XTSPEC parameter. This type of variable is
particularly relevant when its values represent purely nominal categories, e.g. a
classification of families by types.

A few other characteristics of user-defined dependent variables, individually and
collectively, will be of considerable importance to the glass box user --

First, all user-defined dependent variables are defined at the level of the individual.
Thus, the user must take care to assign values to "appropriate" individuals so that
when the unit of analysis is at a higher level, say the census family level, the SPSM's
roll-up algorithms will yield the desired results.

Second, the space allocated for such variables can handle approximately 50
variables. Violation of this limit can result in obscure errors that are difficult to track
down.
THE VARDEF AND STRADD FUNCTIONS AND THEIR ARGUMENTS

The vardef and stradd functions are absolutely critical to the capacity to create new
user-defined variables and have them used properly throughout the rest of the
SPSM. It is only via the information communicated via calls to these functions that
the rest of the SPSM learns about the nature of the new variables and the
documentary text that goes with them. This section documents first the vardef
function, and then the stradd function.

The vardef function plays the same general role for user-defined variables that
pmaddent does for user-defined parameters. There will be one vardef call for each
variable that the user defines. Vardef defines the characteristics of the new variable
so that the SPSM can link it into the same variables framework used by the
SPSD/M's own database, analytic and classificatory variables. The vardef calls are
always made in the vsdu.cpp function. The following short description of the
function's arguments appears at about line 100 of that function --
* vardef("_uvew", <= the name of the variable, quoted, with '_'
* IN, <= home structure (leave at 'IN')
* im.uv.ew, <= variable location (always in im.uv)
* C_INT, <= C-type (C_INT or C_NUM)
* V_CLAS <= type of variable (V_CLAS or V_ANAL)
*);

We'll describe the nature of the vardef arguments one at a time, in order.
Subsequent sections in this chapter provide specific illustrations for the use of both

Programmer’s Guide Page 54
SPSD/M Version 9.2

the vardef and stradd functions.
Vardef "Name" Argument (and Definition of Variable "Stem" Name):

The first argument gives the variable's name as a double-quoted text string. The
user should always include an underscore as the first character after the initial
double quote, and then the characters "uv" as the second and third characters to
indicate the "user variable" status. The remainder of the name, i.e. everything after
the "_uv" prefix, is known as the variable's stem name. Generally speaking, this
stem portion should be as informative and mnemonic as is feasible.

For variables that will not be exported outside the SPSM itself, there is no real limit
on the number of characters in the stem name. However, for variables that are to be
exported to other packages, certain limitations may apply. For example, if the
created variable is to be exported to SAS, then the stem must not exceed six
characters. If it is to be exported to the MAPSIT EXAMINE module, then the stem
portion should not exceed ten characters.
Vardef "Home Structure" Argument:

The second argument indicates the structure in which the new variable resides.
Because user-defined variables are ALWAYS defined at the individual level, the user
should always enter this argument as an (unquoted) 'IN'.
Vardef "Variable Location" Argument:

The third argument indicates the location of the variable (as regards the SPSM's
data structures). The location is specified via three components, two of which are
invariant. Specifically, the first portion of the location is ALWAYS equal to "im.uv"
(but unquoted). This information tells the SPSM that the new variable is inside the
user variable (uv) portion of the im structure (individual level model variables). The
final portion of the location specification is the new variable's stem name, as defined
above for the first argument.
Vardef "C-Type" Argument (C_NUM & C_INT):

The fourth argument specifies the C language type of the variable. It will take on
one of two values. Numerical analysis variables will use the entry "C_NUM"
(unquoted). Integer analysis and integer classification variables will use the value
"C_INT" (unquoted).
Vardef "Usage" (Type) Argument (V_ANAL & V_CLAS):

The fifth and last argument specifies whether the SPSM is to treat the variable as an
analysis variable (tabulatable) or a classificatory variable (categorical). It will take on
one of two values. Both numerical and integer analysis variables will use the entry
"V_ANAL" (unquoted). Integer classification variables will use the "V_CLAS"
(unquoted).

The combination of the fourth and fifth entries tells the SPSM how many bytes of
memory it needs to allocate for the variables, an important consideration given the

Programmer’s Guide Page 55
SPSD/M Version 9.2

limit of 200 bytes for all user-defined variables. As noted above, the requirements
are six bytes for a numerical analysis variable, three bytes for an integer analysis
variable, and one byte for an integer classification variable.

We have already seen simple applications of the stradd function when we discussed
the documentation of user parameters. The same function serves a similar purpose
here, but in a more sophisticated fashion, since it is used to define both a short
description of the user variables themselves, but also, in the special case of integer
analysis and integer classification variables, the range of values and the textual
labels associated with particular values of the variables. The vsdu.cpp file contains,
at about line 110, capsule documentation for both the variable description and value
label uses.
* stradd("uvew", <= the name of the variable, quoted
* "Region" <= a printing label for the variable
*);
** stradd("ew", <= the stem name of the variable, quoted
* "\tEast\tWest" <= string containing a label for each valid
*); level, preceded by a tab '\t' character.

As with the vardef function above, we shall take up the arguments in sequence. A
complicating factor here is that the NUMBER OF stradd INVOCATIONS and
structure of the stradd arguments depends on the type of variable for which stradd is
being used. However, the number of stradd arguments is always constant at two.
Favoring clarity over brevity, we shall describe each of the three types (numeric
analysis, integer analysis, and integer classification) individually.
Stradd Calls for Numeric Analysis Variables:

Numerical analysis variables require only a single invocation of the stradd function.
The first argument specifies the variable name. It is identical to that used for the first
vardef argument, EXCEPT THAT THE LEADING UNDERSCORE PRESENT
THERE IS OMITTED HERE.

The second argument for a numerical analysis variable is the (quoted) string that the
SPSM will use when it needs to print a description of the variable.

For example --
stradd("uvnewben", "New Hypothetical Benefit");
Stradd Calls for Integer Analysis Variables:

Integer analysis variable additions require two separate stradd invocations. The first
invocation defines the label for the variable as a whole. The second invocation
defines, via a set of labels for the individual integer values, the range of values for
the variable.

In the first (variable label) invocation, the first argument specifies the variable name.
It is identical to that used for the first vardef argument, EXCEPT THAT THE
LEADING UNDERSCORE PRESENT THERE IS OMITTED HERE.

In the first (variable label) invocation, the second argument is the (quoted) string that

Programmer’s Guide Page 56
SPSD/M Version 9.2

the SPSM will use when it requires a description of the variable as a whole, e.g. in
documenting a table.

In the second (value labels) invocation, the first argument is the STEM NAME for the
variable; neither the underscore nor the leading “uv” string should be present.

In the second (value labels) invocation, the second argument is a quoted string that
tells the SPSM how many categories are relevant. The string consists of the
repeated pattern ‘tx’ where x always varies from zero to “one minus the total number
of categories”. Thus, for a variable having four categories, the second argument
would take the form -- “t0\t1\t2\t3”. The slash-t notation is the C language’s standard
way of denoting a tab character.

For example --
stradd("uvnputpp", "Number persons unemployed 2+ periods");
stradd("nputpp", "\t0\t1\t2\t3\t4");
Stradd Calls for Integer Classification Variables:

The stradd invocations for integer classification variables are identical to those for
integer analysis variables WITH ONE CRITICAL EXCEPTION. In the second (value
labels) invocation, the second argument is a quoted string that provides the textual
labels for the several categories of the variable. In essence, the several, user-
supplied, labels correspond to the integers 0 .. "categories minus 1" entries of the
second stradd invocation for an integer analysis variable. Thus, for example, the
labels for ”region" documentation might look as follows:
\tAtlantic\tQuebec\tOntario\tPrairies\tBritish Columbia

These labels, which may contain embedded blanks (since the tab characters serve
as delimiters) would appear as labels when the user employed the SPSM's
crosstabulation capacity or exported the new variable to a SAS file.

For example --
stradd("uvfamcat", "Nominal Family Income Category");
stradd("famcat", "\tVery Poor\tPoor\tNear Poor\tNon-Poor\tRich");

Beyond the descriptive definitions of vardef and stradd arguments, appearing about
lines 100-115 of the vsdu.cpp function, vsdu.cpp also contains template
combinations of the vardef and stradd calls for all three types of new variables. In
typical SPSM fashion, users will normally find it convenient to modify copies of these
templates when defining new variables. These templates appear at about lines 125-
145 of vsdu.cpp.
* ------------------
* A numeric variable:
* ------------------
vardef("_xxxxxxxx", IN, im.uv.xxxxxxxx, C_NUM, V_ANAL);
stradd("xxxxxxxx", "Variable label");

* --
* An integer analysis variable, with values 0 through 4:
* --

Programmer’s Guide Page 57
SPSD/M Version 9.2

vardef("_yyxxxxxx", IN, im.uv.yyxxxxxx, C_INT, V_ANAL);
stradd("yyxxxxxx", "Variable label");
stradd("xxxxxx", "\t0\t1\t2\t3\t4");
* ---
* An integer class variable, with values 0 through 4:
* ---
vardef("_yyxxxxxx", IN, im.uv.yyxxxxxx, C_INT, V_CLAS);
stradd("yyxxxxxx", "Variable label");
stradd("xxxxxx", "\tLABEL0\tLABEL1\tLABEL2\tLABEL3\tLABEL4");
THE FAMILY ALLOWANCE SUPPLEMENT EXAMPLE EXTENDED

Although the preceding characterization of adding user-defined variables is complete
from a definitional perspective, it is useful to see how the several steps look in
practice. In this section we summarize the concrete example that the remaining
sections will flesh out. In essence the example is a further extension of the Family
Allowance exploration introduced in Quick Start and subsequently enhanced with the
addition of user-defined parameters.

Our explicit objective here is to provide a worked example that gives concrete
illustrations of all three types of user-defined variables, and to do so without
burdening the reader with the overhead that would inevitably be associated with a
completely new example. In the service of this objective we have not hesitated to
sacrifice some realism (as to institutional motivation and practice) in favor of a clean,
specific example.

We extend the Family Allowance supplement example by adding the following three
user-defined variables:

1. A numeric analysis variable: the new variable is the gross amount of additional
Family Allowance benefit received; we'll name it "uvfasup" (user variable, Family
Allowance supplement). We shall assign this variable to the parent who reports
the Family Allowance benefit for tax purposes.

2. An integer analysis variable: the new variable is the number of children in respect
of whom the supplementary benefit is payable. We'll name the variable
"uvncfasup" (user variable, number of children for Family Allowance
supplement). We shall also assign this variable to the person reporting the FA
for tax purposes. This type of variable finds a major use when exported in the
SAS format because it takes up less space than a numeric analysis variable.
The variable would also be useful as a tabulated variable to count the numbers of
these children.

3. An integer class variable: the new variable categorizes the family by the number
of children in respect of whom the supplement is payable; we'll name the variable
"uvfclfasup" (user variable, family classification for Family Allowance
supplement). We shall use it primarily as a categorical variable for tables
designed to validate our extensions to the FA supplement code. We shall assign
this variable to the nominal head of the family. Note that this class variable is
very similar to the integer analysis variable, but can be used directly as a row or
column variable in a crosstabulation, whereas the integer analysis variable could

Programmer’s Guide Page 58
SPSD/M Version 9.2

not.

As we proceed to the actual changes and coding needed to implement these new
user-defined variables, we assume that the relevant files (Adrv.cpp, vsu.h, vsdu.cpp,
Afamod.cpp, SPSMGL.dsw, etc) have been COPIED over to an appropriate new
subdirectory; here we'll assume that it is named GLASSEX3, this being our third
worked glass box example.
CHANGES TO PROJECT FILES AND ADRV.CPP

We begin by including all the relevant files into the project and by changing the
name of the executable file in Project: Setting: Links to glassex3.exe.

The changes to adrv.cpp are simple, consisting entirely of (a) updating the short
textual descriptions for the model and (b) indicating that Afamod (rather than famod)
is to be used for Family Allowance calculations.

Of the two descriptions, the SPSM displays the first on its opening screen, to tell the
user about the nature of the alternative system. The SPSM outputs the second
description as part of the '.CPR' (control parameter) documentation that it produces
when it runs the model. Recall that the positioning of this text (in the screen and in
the output file) prevents the use of descriptions longer than 20 characters. After
adding the new descriptions, the relevant portion of adrv.cpp (about line 35) appears
as follows:

================ GLOBAL VARIABLE DEFINITIONS ===================
*/
/*global*/ char ALTNAME[IDSIZE+1] = "FA Suppl New Vars Ex";
/* Give global string describing version of this module */
/*global*/ char FAR Tdrv[] = "FA Suppl New Vars Ex"
#ifdef MSC
" [" __TIMESTAMP__ "]"
#endif
;

The altered line (about line 106) to indicate that the alternate driver uses
Afamod.cpp, rather than famod.cpp, appears as --
Afamod(hh); /* compute family allowances

Finally, compile a Debug version in Build:Start:Debug. The required links and
compilations will be identified.
CHANGES TO VSU.H

The file vsu.h serves to define the C language structure that holds the user-defined
variables. The relevant portion of this file, copied from the SPSM\GLASS
subdirectory, appears as follows:
typedef struct uv_ {
 NUMBER uvdummy; /* dummy variable */

Programmer’s Guide Page 59
SPSD/M Version 9.2

} uv_;

We replace the uvdummy line by three lines that define our new variables, uvifasup,
uvncfasup & uvfclfasup. These new lines indicate the types of the new variables.
After the changes, the new portion of vsu.h appears as follows:
typedef struct uv_ {
 NUMBER uvfasup; /* Family Allowance supplement payable */
 int uvncfasup; /* Number Children for FA supplement */
 int uvfclfasup; /* Family Class (Qualifying Children) for FA suppl */
} uv_;

Note the naming conventions used here. The typedef statement requires that the
variables be prefaced with the uv prefix, but does NOT employ the leading
underscore used in the vardef statements that appear later in the changes to
vsdu.cpp.

One need not always modify, as we have done here, the GLASS version of vsu.h. If
an already existing (user-defined) version of vsu.h contains user-defined variables
that are to be retained, simply make a copy of that existing file and modify it as
appropriate. Recall, however, that there is an overall limit of 200 bytes per individual
for the user-defined variables.
CHANGES TO VSDU.C

The necessary changes to the copy of vsdu.cpp consist of the vardef and stradd
invocations that allow the SPSM to access the new variables and their
documentation. Given the simplicity of these invocations, we use the example
templates from the beginning of the file. We shall make these invocations as the
end of the vsdu.cpp file, just before the final 'DEBUG_OFF("vsdu");' statement. The
additions appear as follows:
/* uvfasup: (Analysis) Family Allowance supplement payable */
 vardef("_uvfasup", IN, im.uv.uvfasup, C_NUM, V_ANAL);
 stradd("uvfasup", "Family Allowance Supplement");
/* uvncfasup: (Analysis) number of children for whom supplement paid */
 vardef("_uvncfasup", IN, im.uv.uvncfasup, C_INT, V_ANAL);
 stradd("uvncfasup", "# Children for FA Supplement");
 stradd("ncfasup", "\t0\t1\t2\t3\t4\t5\t6\t7");
/* uvfclfasup: (Class) Family class by number of children for FA suppl. */
 vardef("_uvfclfasup", IN, im.uv.uvfclfasup, C_INT, V_CLAS);
 stradd("uvfclfasup", "Family Class for FA Supplement");
 stradd("fclfasup", "\t0 Ch\t1 Ch\t2 Ch\t3 Ch\t4 Ch \t5 Ch\t6 Ch\t7 Ch");

Notice the second stradd call for each of the two integer variables, and the omission
of the uv prefix in that (second) call that defines the number of cases (integer
analysis variable) or the category labels (integer classification variable).
CHANGES TO AFAMOD.CPP (OR, MORE GENERALLY, ANY NEW SUBSTANTIVE
SOURCE CODE)

The preceding tasks have been preliminary to our central task, revision of
Afamod.cpp to reflect the new calculation of Family Allowances, inclusive of the
possible supplement to the family. We are using Afamod.cpp here, but, more
generally, at this stage, the user is ready to write/modify the source code necessary

Programmer’s Guide Page 60
SPSD/M Version 9.2

to make the desired changes to the calculation of SPSM variables, whatever
modules those changes may involve. We'll illustrate the changes for our Family
Allowances example one portion at a time, showing for each portion what the
unmodified Afamod.cpp file looks like, and then how we have changed it to add our
desired variables. References involving line numbers refer to the "original" version
of Afamod.cpp found in the SPSM\GLASS subdirectory.
Identifying String

Documentation is important. As we proceed through the Afamod.cpp file for our
changes, we first update the description. Where the GLASS version of Afamod.cpp
provides (at about line 39) the placeholder description --
/*global*/ char FAR Tfa[] = "Untitled"

we substitute a more informative description:
/*global*/ char FAR Tfa[] = "New Vars Version"
Local Variables

Intermediate (local) variables can be very useful. Where the GLASS version of
Afamod.cpp defines and initializes its local variables (about line 131), we add the
new lines shown just below. The initialization of NUMBER/float variables with ZERO
provides insurance against an obscure bug that shows up only on a few
nonstandard machines.
/* user-defined intermediate (local) variables in support of glass box example 3 (user-defined SPSM variables)
[using the "stem names" for two of the SPSM variables being created] */
 NUMBER fasup = ZERO; /* amount of new FA supplement */
 int ncfasup; /* number of children for whom supplement payable */
Calculate and Assign the New Model Variables

We are now ready to calculate the new variables, and to assign them to the
appropriate user-defined SPSM variables. For our Afamod.cpp example, we seek to
calculate the amount of the possible supplement. We do so immediately after
taxable and federal Family Allowances have been defined in the SPSM\GLASS
version of Afamod.cpp, but before those values have been assigned as outputs from
the Afamod routine. This condition occurs at about line 358. The relevant original
source code appears as --

else {
 DEBUG1("%s standard FA calculation\n");
 tfa = nch * MP.STDFA; /* taxable family allowances */
 ffa = tfa; /* federal part of family allowances*/
 }

 DEBUG3("%s tfa=%.2f, ffa=%.2f\n", tfa, ffa);

In the new code that we add, we are careful to make sure that an appropriate value
is calculated for our intermediate variables, no matter what the nuclear family looks
like, and that the taxable and federal Family Allowance variables are updated if the
supplement is relevant. Notice that we are retaining the parametric structure
developed in the section 6 of this guide.

Programmer’s Guide Page 61
SPSD/M Version 9.2

/* Conditionally apply the Family Allowance bonus for the
* "FASUPFECth" and subsequent children <18 in the unit,
* including any necessary updates to taxable and federal FA */

 if ((MP.UM.FASUPFLAG == 1) && (nch >= MP.UM.FASUPFEC)) {

 ncfasup = (nch-MP.UM.FASUPFEC+1);
 fasup = ncfasup * MP.UM.FASUPPC;
 tfa += fasup;
 ffa += fasup;
}
else {
 ncfasup = 0;
 fasup = ZERO;
}

In our FA supplement example it makes sense to assign the family classification
value to the nuclear family head. We do so where (about line 368) the
SPSM\GLASS version of Afamod.cpp assigns other values to the eldest member.
That original Afamod.cpp code appears as --
/**
* Associate the taxable amount of family allowances, and the number of
* family allowance children, with the eldest in the nuclear family.
* The function txinet will reassign to the spouse if necessary.
**/

 nf->nfineld->im.imtfa = tfa;
 nf->nfineld->im.imqtfa = qtfa;
 nf->nfineld->im.imnfach = (NUMBER) nch;

After our addition, the modified code reads --

/**
 * Associate the taxable amount of family allowances, and the number of
 * family allowance children, with the eldest in the nuclear family.
 * The function txinet will reassign to the spouse if necessary.
 **/
 nf->nfineld->im.imtfa = tfa;
 nf->nfineld->im.imqtfa = qtfa;
 nf->nfineld->im.imnfach = (NUMBER) nch;
 /* assign family classification by number of supplement children to the
 nuclear family head */
 nf->nfin->im.uv.uvfclfasup = ncfasup;

Finally, of course, we need to make sure that the variables for the supplement and
the number of children supplemented are assigned to the mother if feasible (or in the
absence of the mother to the head of the nuclear family). The relevant original
SPSM\GLASS Afamod.cpp code appears as follows --
/* assign FA to mother if present */
 if (nf->nfspoflg && (nf->nfinspo->id.idsex == FEMALE)) {
 DEBUG1("%s spouse is the mother\n");
 in = nf->nfinspo;
 }

 else {
 DEBUG1("%s head receives FA\n");
 in = nf->nfineld;
 }

Programmer’s Guide Page 62
SPSD/M Version 9.2

Our changes to this are minimal. We add only two new lines to assign the amount of
the supplement and the number of supplemented children. Note that we are
assigning the values of the intermediate variables to the (fully qualified) user-defined
variables that we defined via vsu.h and vsdu.cpp above. The modified version of the
source code reads as follows:
/* assign FA and the supplement, and # Fa supplement children to the mother when she is present */
 if (nf->nfspoflg && (nf->nfinspo->id.idsex == FEMALE)) {
 DEBUG1("%s spouse is the mother\n");
 in = nf->nfinspo;
 }
 else {
 DEBUG1("%s head receives FA\n");
 in = nf->nfineld;
 }

 in->im.imffa = ffa;
 in->im.impfa = pfa;
 in->im.imqaafa = qaafa; /* Quebec Availiability Supplement */
 in->im.imqnbfa = qnbfa; /* Quebec Newborn Allowance */
 in->im.uv.uvfasup = fasup; /* assign new supplement */
 in->im.uv.uvncfasup = ncfasup; /* assign # of children */
Compilation

We should debug the model and test if it work properly and then compile the new
model GLASSEX3.EXE.
VALIDATION

Once the compilation is complete and the GLASSEX3.EXE file exists, the user can
validate it to check whether the logic is performing as was intended. Since validation
was illustrated in some length in Section 6, we include here only one illustrative set
of crosstabulation outputs. In everyday operation, the user will want to ensure the
correctness of the model before proceeding on to make production runs of the
desired tables.

The mini-validation here consists of one set of tables for a single parameter
configuration. It uses the 1986 version of the SPSM, and models the tax and
transfer system existing in 1986. The user sets up the control parameter file to use
C:\SPSD\BA86.MPR as the base system model file. The variant system, the one
using the new logic for Family Allowances, is here named GLASSX3A.MPR. It calls
for a subsidy of $120 per year for the second and subsequent children aged 0 to 17
in the nuclear family. The relevant XTSPEC appears as follows:
XTSPEC
 NF: uvfclfasup+ *
 {units,
 imffa: L="New Family Allowance",
 _imffa: L="Base Family Allowance",
 uvfasup: L="New FA Supplement"};
 NF: nfnkids+ *
 {units,
 imffa: L="New Family Allowance",
 _imffa: L="Base Family Allowance",

Programmer’s Guide Page 63
SPSD/M Version 9.2

 imffa-_imffa: L="Family Allowance Increase"};
 NF: nftype+ *
 {uvfasup: L="New FA Supplement",
 immdisp-_immdisp: L="Disposable Income Increase"}

The first table specification illustrates the use of user-defined variables as analysis
and classification variables. Note that the usage is just the same as if the variables
had been part of the original SPSM, even to the ability to use the "+" qualifier to
indicate the aggregation across a categorical variable's dimension.

The similarity between the first two tables is intentional; it shows that one can use
the created variables to display information that is less conveniently available from
SPSM variables. First, for example, the user does not have to take a difference
between two variables to see the pre-tax impact of the FA supplement. Second,
using the uvfaclfasup variable rather than the nfnkids variable allows the user to
collapse across all those nuclear family units that have no children. The third table
then confirms that the supplement is being taken into account by the rest of the
tax/transfer system, so that, in aggregate, the families' gains in income are less than
the gross amounts of supplement awarded. The tables that result, edited very
slightly as to
SPSD/M (Database 4.00)
Wed Sep 27 08:34:51 1989
Base Description: 1986 actual
[Driver: Version 4.00: 82-89, File: c:\spsd\ba86.mpr]
Variant Description: 1986 actual
[Driver: FA Suppl New Vars Ex, File: glassx3a.mpr]
Sample: 0.0495
AGENAME='Standard adjustment'

Table 1U: Selected Quantities for Nuclear Families by Family Class for FA Supplement
+--------------------+-----------+-----------+-----------+------- ----+
Family Class for FA	Unit Count	New Family	Base Family	New FA
Supplement	(000)	Allowance	Allowance	Supplement
		(M)	(M)	(M)
+--------------------+-----------+-----------+-----------+------------+				
0 Ch	10621.5	564.1	564.1	0.0
1 Ch	1196.5	1020.3	876.7	143.6
2 Ch	521.8	758.2	633.0	125.2
3 Ch	81.1	160.3	131.1	29.2
4 Ch	14.6	34.6	27.6	7.0
5 Ch	1.5	4.3	3.4	0.9
6 Ch	0.0	0.0	0.0	0.0
7 Ch	0.0	0.0	0.0	0.0
+--------------------+-----------+-----------+-----------+------------+				
All	12437.1	2541.7	2235.8	305.9
+--------------------+-----------+-----------+-----------+------------+

Table 2U: Selected Quantities for Nuclear Families by Number of children in nuclear family

+-------------------+------------+------------+------------+----- -------+
Number of children	Unit Count	New Family	Base Family	Family
in nuclear family	(000)	Allowance	Allowance	Allowance
		(M)	(M)	Increase (M)
+-------------------+------------+------------+------------+------------+				
0	9042.2	0.0	0.0	0.0

Programmer’s Guide Page 64
SPSD/M Version 9.2

1	1579.4	564.1	564.1	0.0
2	1196.5	1020.3	876.7	143.6
3	521.8	758.2	633.0	125.2
4	81.1	160.3	131.1	29.2
5	14.6	34.6	27.6	7.0
6	1.5	4.3	3.4	0.9
7	0.0	0.0	0.0	0.0
8	0.0	0.0	0.0	0.0
9	0.0	0.0	0.0	0.0
+-------------------+------------+------------+------------+------------+

+-------------------+------------+------------+------------+------------+

Table 3U: Selected Quantities for Nuclear Families by Nuclear family type
+-----------------------+----------+----------+
Nuclear family type	New FA	Disposable
	Supplement	Income
	(M)	Increase
		(M)
+-----------------------+----------+----------+		
With Kids, 1 Adult	22.2	17.8
With Kids, 2+ Adult	283.7	179.3
With Elderly, 1 Adult	0.0	0.0
With Elderly, 2+ Adult	0.0	0.0
Other, 1 Adult	0.0	0.0
Other, 2+ Adult	0.0	0.0
+-----------------------+----------+----------+		
All	305.9	197.0
+-----------------------+----------+----------+

Note that the first and second tables are completely consistent, except that the first
is slightly more compact (with fewer lines), marginally better labeled, and a bit easier
to specify in XTSPEC. In terms of substance, however, the two are comparable; the
rows from "1 Ch" to "7 Ch" in the first table contain exactly the same information as
the "2" to "8" rows of the second table. This sameness of content is just what we
would expect for an option that subsidizes the second and subsequent children. The
first and second rows of the second table, tabulating families not eligible for any
supplement, collapse into a single line in the first table.

The third table shows that some of the Family Allowance is being recovered, since
the increment in disposable income is less than the full amount of the new
supplement. Further, the fraction "recovered" via the reactions of other programs in
the tax/transfer system is, as expected, greater for two-parent units than for single-
parent units.

Once the validation is complete, the user will proceed to the production of the
desired tables and other outputs.
SUMMARY/CONCLUSIONS

We summarize this chapter's key points by providing a checklist of the main items
required to add new user-defined variables to an SPSM model.

1. Plan the desired changes "on paper”. Choose the new variable names and lay

Programmer’s Guide Page 65
SPSD/M Version 9.2

out the logic by which they will be derived. Ascertain which specific substantive
source code files will be affected (e.g. Afamod.cpp). Choose a subdirectory for
the new model, creating it if necessary.

2. Copy over the relevant files to the subdirectory where the work will be done.

• The files SPSMGL.dsw, Adrv.cpp, vsu.h, and vsdu.cpp will always be
needed, along with the relevant substantive files, e.g. the Afamod.cpp file of
our example.

• The files mpu.h and ampd.cpp may also be needed depending on whether
parameters are to be added at the same time.

3. Update project and change the name of the output file.

4. Update Adrv.cpp.

• Insert appropriate short descriptions for the two documentary string
arguments (ALTNAME and Tdrv).

• Change the function calls to refer to the alternate versions of the tax/transfer
calculation functions, e.g. Afamod(hh) rather than famod(hh).

5. Update vsu.h. Inside the 'uv_' structure, indicate the types and names of the new
user-defined variables. Remember to use the 'uv' prefix, but to omit any leading
underscore.

6. Update vsdu.cpp.

• For each new variable, provide a vardef function call to define the nature of
the variable to the SPSM.

• Also for each new user-defined variable, invoke stradd to provide a variable
description (text string) for the variable.

• For each integer variable, analysis or classificatory, invoke stradd a second
time (using just the stem name) to provide a list of labels for the integer
values of the variable. Remember that for the analysis variables these only
indicate the number of categories (from 0 to n), while for integer classification
user-defined variables, the labels are text of the user's choosing.

7. Make the necessary changes to the substantive tax/transfer routines. Consider
using intermediate variables to simplify things. Be careful to perform appropriate
initializations and to assign the derived values to an appropriate individual.

8. Compile the new model. Don't forget to validate it before using it for any serious
production work.

Changing Base and Variant Data Variables

This chapter describes how users can, when appropriate, change values in the
SPSD/M database for the analysis of policy options. Such changes stand in contrast
to the changes in model logic, parameters and dependent variables described in
previous chapters. Here, we are looking at changes to the data used as input by the

Programmer’s Guide Page 66
SPSD/M Version 9.2

tax/transfer algorithms rather than to the logic of those algorithms. The kinds of
changes discussed here are temporary. They affect the values "seen" by the user's
model in a particular run, but they do not affect the values actually stored in the
SPSD itself.

Typically, but not exclusively, the user's database changes will involve dollar-
denominated amounts -- income or deduction items. The user might wish to grow or
shrink income from a particular source, e.g. shrinking interest income to reflect an
assumption about falling interest rates. However, the user might also want to alter a
non-income variable, e.g. the school attendance variable for older children in
selected families.

For SPSM models that simulate two (base and variant) tax/transfer systems, an
important distinction is whether the changes affect the values as "seen" by the user's
entire model, or by just one of the (base or variant) systems within the model. This
distinction is so important that we have organized the structure of this chapter
around it. Note, however, that the distinction is irrelevant for models that simulate
only a single tax/transfer system. The procedures recommended here encourage
the user to apply the single system approach whenever it is feasible.

The following section describes how to make alterations to the data right after the
SPSM has read it for a model run. The changes discussed there will naturally affect
ALL of the tax/transfer systems appearing in the model. The section describes two
sub-cases -- In the first subcase, the user makes the data adjustments via the
SPSM's built-in data-aging facilities. In the second, more demanding, subcase, the
user crafts his/her own aging logic. This second subcase may involve the definition
of new data-aging parameters for the model. The first section indicates where and
how to make "single system" changes, and provides a detailed worked example.

The subsequent section, in contrast, describes changes that affect only a single
system (base or variant) within an SPSM run. It explains how the use of the SPSM's
"results file" facility can often turn this case into the simpler "single system" as
described in earlier on. However, for instances in which the results file approach is
impossible or inconvenient, this section also includes a description of where and
how to make the necessary changes. It concludes with a worked example of how to
implement system-specific database adjustments.
MAKING CHANGES THAT AFFECT ALL TAX/TRANSFER SYSTEMS IN A MODEL:

This section describes how to make data changes that affect all of the tax/transfer
systems in an SPSM model. It is appropriate both when the model has only a single
tax/transfer system and when the model has two systems, but the user wants the
data changes to affect both of them.

This section first examines the SPSM's built-in data-aging facilities. Under this
method, the user assigns values to existing aging parameters via API (Aging
Parameter Include) files.

Programmer’s Guide Page 67
SPSD/M Version 9.2

This is followed by adding new data adjustment algorithms. For this type of aging,
the user will define the new aging logic in the adju.cpp file, and will probably define
new parameters via changes in the apu.h and apdu.cpp files. The user may also
wish to define new dependent variables to assist in model validation.

Lastly a detailed worked example for this second subcase is presented followed by a
checklist for making this “global” data aging type of change.
Typical Income and Population Growth Changes Via APR/API Files

The design of the SPSD/M already anticipates the user's typical data-aging needs.
The \SPSD subdirectory includes a number of files with names of the form
BAxx_yy.APR that instruct the SPSM to age the data, other than the underlying
demographic structure, from year XX to year YY. Thus, file BA86_88.APR contains
the aging parameters to age the SPSD's non-demographic variables from 1986 to
1988. The degree of detail for this aging is considerable. Each of these files
contains some 600 plus numeric parameters that are used by the SPSM's built-in
aging algorithms.

If the substance of the parameters in these files is acceptable to the user's needs,
then the data aging is straightforward. The user enters the name of the "most nearly
correct" file as the control parameter file's INPAPR parameter. Any necessary
changes to these parameter values are then implemented via an ".API" (Aging
Parameter Include) file.

The Parameter Guide provides the authoritative description of these parameters.
However, it is useful here to characterize broadly the extensive control they provide.

Some parameters specify how imputed/converted incomes are to be treated (i.e.
ignored or either of two synthesis methods adopted). A large block of parameters
governs the "removal" of commodity taxes from family expenditures.

Another parameter block provides the low-income cutoffs for families. It permits the
user to specify a set of "poverty thresholds" for economic families, with the particular
thresholds varying by family size and the size of place of residence. Probably of
most value to a typical user, though, is the large set of growth factors for the SPSD's
dollar-denominated data variables: incomes, deductions, and expenditures. Virtually
every such variable has its own growth factor.

The SPSD/M also provides for convenient demographic aging of its underlying
population. The SPSD directory's ".WGT" files provide the user with the capacity to
adjust the population base throughout the interval 1984 to 1991.
Changes Involving New Logic For adju.cpp

The flexibility provided by the aging parameter (".APR" & ".API") and population
aging (".WGT") files will often be sufficient for the user's needs. However, in some
circumstances, the user will wish or need to exercise more direct control over the
data to be used for a simulation. A few examples will indicate the scope of what is

Programmer’s Guide Page 68
SPSD/M Version 9.2

possible. The reader should appreciate that the focus of these examples lies more
in quickly conveying that scope than in maintaining a strict, policy-oriented realism.

1. The user could increase the average education level by adjusting the "idedlev"
variable for selected individuals, perhaps resulting in a distribution of educational
attainments that falls in line with some exogenous forecast.

2. The user might wish to grow some income or transfer amount by a factor that is a
function of the unit's characteristics. E.g., based on the assumption that
investors' portfolios differ as a function of investor age and income, a user might
be unwilling to model the effect of an increase in interest rates by growing
everyone's interest income using the same proportion. Instead, a smaller factor
might be applied to those individuals felt likely to be conservative and/or to have
portfolios that turn over more slowly. This type of assumption would treat such
families as being unable to benefit as quickly from the higher interest rates.

3. A user might wish to model greater labour force participation by changing the
array of labour force variables relevant for individuals in the SPSD (weeks
worked, paid-employment earnings, unemployment insurance variables, etc.).
Changes in such a wide variety of related variables would only be done after
considerable, comprehensive planning.

4. At the extreme, a highly experienced, knowledgeable SPSM user could even
alter the household/family structure of the SPSD, modeling a baby boom by
adding "synthetic children" to appropriate families in the database.

The adju.cpp function, found in the \SPSM\GLASS subdirectory, is the means by
which the user can add new data aging logic to SPSM models. That adju.cpp
function is called immediately after the SPSM has read in each household, and
before any transfers or memo variables have been computed. The user can insert
the logic for his/her own changes immediately after the "adj(hh)" invocation that the
SPSM uses to carry out its own data aging, i.e. its built-in application of the income
growth parameters specified in the relevant ".APR" and ".API" files.

For the implementation of new data aging logic, users may need to define new
intermediate variables (including counters, pointer variables, etc.) and/or to define
new, custom, data aging parameters. The next subsection describes the general
procedure for adding such new data aging parameters, with the attendant specific
changes developed in the worked example that follows it.
Adding New Database Adjustment Parameters

The addition of new user-defined database parameters closely parallels that of new
model parameters as described in previous chapters. However, some minor
differences are relevant.

(1) SPSM models have only a single aging parameter file (extension ".APR"); they
may have either one or two model parameter (extension ".MPR") files, depending on

Programmer’s Guide Page 69
SPSD/M Version 9.2

whether they model one or two transfer systems. (2) Correspondingly, users supply
the values of user-defined aging parameters in ".API" (Aging Parameter Include)
files that amend standard ".APR" files, rather than via ".MPI" (Model Parameter
Include) files that amends standard ".MPR" files. (3) New aging parameters are
defined in the apu.h (header) file rather than the mpu.h header file used for model
parameters. (4) Similarly, the function calls that make the parameters available to
the rest of the model occur in apdu.cpp, rather than the ampd.cpp file used for model
parameters. However, the structures of the relevant pmaddent and stradd calls are
exactly identical. Note, though, that certain arguments to these functions differ
between aging and model parameters. The worked example highlights these
differences. (5) Finally, the logic changes proper are defined in adju.cpp, rather than
(typically) the individual tax/transfer functions, such as Afamod.cpp, that are relevant
for changes to the transfer calculation logic of a model.

We note in passing that the SPSM's control parameters follow a similar parallel
structure, but, even in glass box applications, users do not need to DEFINE new
control parameters. Instead, they simply alter the values of existing control
parameters.
A Worked Example

Our hypothetical user, seeking to reflect a response to some change in federal
income tax treatment, wants to grow RRSP contributions in a model. S/he wants the
growth to apply either for a single system to be analyzed, or for both the base and
variant systems in a comparative model. However, this user is not willing to assume
that everyone's contributions grow by the same rate, and wants to simulate
disproportionate growth as a function of income. The main focus of the model is
assumed to lie elsewhere in the tax/transfer system. That is, the user has no special
interest in the impacts of the RRSP increases themselves. Rather, the user just
wants "better" representations of the deduction amounts to be used in all of the
calculations for the relevant transfer system(s).

To make the example more precise, assume that the user wishes to grow existing
contributions by x% for each (whole or partial) slice of $10,000 of paid employment
earnings and self employment earnings over an initial base amount of $20,000.
Thus, an individual with $45,000 in earnings would see his/her RRSP contribution
grown by a factor of (1.0 + 3x), where x is a new user-defined parameter. This
growth will be IN ADDITION TO, AND COMPOUNDED WITH, any growth induced
via the standard SPSM growth parameter for RRSP contributions, GFRRSP.

In a possibility NOT developed here, the user might also have induced the presence
of RRSP contributions for individuals who reported zero such contributions. The
example developed later in Section 9.2 provides an illustration of this sort of
synthesis of dollar-denominated amounts.

In the remainder of this subsection, we track the individual steps involved in
implementing this conditional growth (beyond the growth implemented via the aging
parameters GFRRSP). We assume that the user has created the subdirectory

Programmer’s Guide Page 70
SPSD/M Version 9.2

GLASSEX4 for the purpose, and "COPIED IN" all of the relevant files.
(SPSMGL.dsw, apu.h, apdu.cpp, and adju.cpp, plus the SPSM parameter files
relevant for running the new model). In this directory the user will create an ".API file
to provide a value for the new user-defined parameter.

Because the parameter addition process for aging parameters so closely parallels
the procedure described in previous chapters, and for model parameters, our
commentary on these changes is kept to a minimum. The user is assumed to have
modified the project to include all the relevant files and changed the output name of
the compilation to GLASSEX4.EXE

We include the aging documentation in the relevant string defined in adju.cpp as
described below.

(A) Changes to apu.h

We begin by defining a user-defined parameter for the user-defined RRSP
contributions growth factor, the "x" factor in the description above. As a mnemonic,
UDGFRRSP (User-Defined Growth Factor, RRSP contributions) seems appropriate.
The SPSM provides for up to 100 bytes worth of user-defined aging parameters,
with this allocation independent of the 600 bytes allocated for any model parameters
that the user may wish to define.

The additions to apu.h indicate the kind of parameter being defined. They go just
before the function prototype specifications, replacing the dummy user aging
parameter UADUMMY in the apu.h code.
typedef struct UA_ {
int UADUMMY; /* dummy entry */
 }
 UA_;

In our example, we replace the single UADUMMY line with --
 NUMBER UDGFRRSP; /* User-defined growth factor for RRSP Contr. */

(B) Changes to apdu.cpp

In the apdu.cpp function we add invocations to the pmaddent and stradd functions to
give the broader SPSM access to the value of the new parameter. The details of
these functions appear in previous chapters. We make the additions at the end of
the apdu.cpp function, right before the statement --
 DEBUG_OFF("apdu");

Our two invocations look as follows:
pmaddent(pap, "UDGFRRSP", (char *)&AP.UA.UDGFRRSP, NULL, P_SCL, C_NUM, 0, 0, NULL, 0);

and
stradd("UDGFRRSP", "User-defined growth factor for RRSP Contr.");

The explanatory text at the beginning of apdu.cpp function describes the AGING-
ORIENTED arguments for pmaddent and stradd. It also provides the templates for

Programmer’s Guide Page 71
SPSD/M Version 9.2

our utilization here (a scalar parameter).

There are two critical differences in the pmaddent utilization as compared with the
definition of new model parameters. (1) The first argument is pap rather than pcp.
(2) The third argument differs in that the new parameter resides in the UA (User
Aging) structure within the SPSM's AP (Aging Parameter) structure. This stands in
contrast to the "&MP.UM" reference used for user-defined model parameters (User
Model within Model Parameters).

(C) Changes to adju.cpp

The first change updates the documentary text string relating to data aging. The
original SPSM\GLASS function defines this string at about line 43 as
/*global*/ char AGENAME[IDSIZE+1] = "Unnamed";

We modify it here to read --
/*global*/ char AGENAME[IDSIZE+1] = "RRSP Contr(Earnings)";

With the parameter value available throughout the SPSM, we make the source code
additions to implement the RRSP contribution growth. The first thing we need is
some local variables to aid us in stepping through the individuals in the household
being analyzed and possibly assigning modified RRSP contributions. Thus, we add
the following four declarations to the adju.cpp function, inserting them just after the
function's opening brace.
NUMBER earn; /* total paid and self-employment earnings */
int group; /* number of UDGFRRSP multiples to use */
register P_in in; /* pointer to data for current person */
int ini; /* persons processed */

For the aging assignments themselves, the relevant location is near the very end of
the adju.cpp function, inside the code segment --
 DEBUG_ON("adju");
 /* Just call the standard adjustment algorithm */
 adj(hh);
 DEBUG_OFF("adju");

Our addition goes between the adj(hh); and DEBUG_OFF("adju"); statements.
/* Grow RRSP contributions as a function of total earnings */

for (ini=0, in=&hh->in[0]; ini<hh->hhnin; in++, ini++) {
 if (in->id.idrrsp == (NUMBER)0.0) {
 continue;
 }
 earn = in->id.idiemp + in->id.idisefm + in->id.idisenf;
 if (earn <= (NUMBER)20000.0) {
 continue;
 }
 group = (int)(ONE+(earn-(NUMBER)20000.0)/(NUMBER)10000.0);
 in->id.idrrsp*=(ONE+AP.UA.UDGFRRSP*(float)group);
}

The new code, headed by an explanatory comment, breaks out into components
that are relatively straightforward.

Programmer’s Guide Page 72
SPSD/M Version 9.2

(1) The control portion of the "for" statement has been copied, in its entirety, from the
memo1.cpp function (computing totals for individuals) in the SPSM\GLASS
subdirectory. It steps across the individuals in the household. The local
variables defined earlier are used in this stepping.

(2) Growing RRSP contributions multiplicatively is not meaningful if there are none to
begin with. Thus, the "if-continue" statement of the next three lines skips the
remainder of the four statements if the individual has no RRSP contributions.
The typecast "NUMBER," here and later, indicates the user's intentions as
regards variable types; it prevents compiler warnings.

(3) If RRSP contributions are positive, the next line calculates the individual's
earnings from paid employment and from farm or non-farm self-employment. If
the total does not exceed $20,000, then the remainder of the for statement is
skipped; Another "if-continue" statement performs this function.

(4) The assignment to the "group" variable computes the number of multiples of
UDGFRRSP relevant for the growth. The final statement in the body of the loop
applies the growth via a multiplicative assignment. These two statements will
only be executed if some growth is appropriate. The (int) and (NUMBER) casts
they contain indicate the user's explicit intentions as to variable type conversions;
they serve to prevent meaningless warnings during the compilation stage.

(D) Compiling the model enhancement

The model should be debugged before the compilation of GLASSEX4.EXE executable
file. Only then can the model be run for validation testing and production work.

(E) Providing a parameter value

For any particular run of the model, the user must provide a value for the new
parameter, e.g. a value of 0.01. Normally the user will do this "on the fly" during the
run of the new model, or via an ".API" (Aging Parameter Include) file that will modify
the contents of the APR file specified in the model's control file (".CPR"). In our
example, the ".API" file would consist of the single line --
UDGFRRSP 0.01

if no existing aging parameters were to be modified.

(F) Validating the model

Before using the model at all seriously, the user would want to validate the model to
be sure it is performing as intended. Though we shall not carry out such a validation
in detail here for reasons of space, normally one would generate a few selected
tables for different runs, checking to ensure that the model produces the expected
results. For example, inputting a UDGFRRSP factor of zero should leave the total
amount of the RRSP unchanged. Similarly, a small value, say 0.01, should have a
small or zero effect on low-income units, but should have a larger effect on higher

Programmer’s Guide Page 73
SPSD/M Version 9.2

income units. A table, defined at the level of the individual, that showed the increase
in the RRSP contributions variable as a function of individual earnings would go a
long way toward deciding whether the algorithm yields the right amount of RRSP
increase. It could be generated by using a results file based on the unmodified
database, and comparing numbers of individuals and amounts of RRSP
contributions to the counterparts of these variables after the new RRSP contribution
aging.

When one uses the 5% sample SPSD, together with the 1986 population, aging
parameters, and model parameters, one gets the following summary results for a
UDGFRRSP factor of 0.01:
 Before Growth After Growth Difference
RRSP Contributions (M$)
Federal Income Tax (M$)
Prov. Income Tax (M$)

11,134.3
41,173.3
24,190.6

11,329.2
41,118.0
24.160.5

194.9
55.3
30.1

Total RRSP contributions have risen by about 1.75%, and federal and provincial
income taxes have correspondingly dropped by somewhat less than the amount of
new RRSP contributions.
Checklist for Changing Database Variables "Globally"

(A) Check to see whether the SPSM's existing facilities are sufficient to implement
the desired data aging, so that no new logic is required.

Can the desired population aging be implemented via a selection among existing
case weight files? If so, then specify the relevant case weight file (".WGT"
extension) via the INPWGT (Input Weight) control parameter. Use a ".CPI" file to
provide the desired INPWGT value, or enter it on the fly in response to the model's
prompts.

Can the adjustment of the data values be accomplished via changes to the values of
the SPSM's data aging parameters, in conjunction with the SPSM's normal data
aging algorithm (adj(hh))? If so, then provide the relevant aging parameter values to
the SPSM via an ".API" file. Specify it to the SPSM either interactively or via a batch
file being used to coordinate execution of the model.

(B) If the desired adjustments to the data cannot be handled via the built-in data
aging procedures, then some new logic will be required. The steps for adding this
new data aging logic are as follows:

1. Copy all of the relevant files to a new directory established for the analysis. The
files \SPSM\GLASS\adju.cpp, SPSMGL.dsw are always relevant. The files
\SPSM\GLASS apu.h and \SPSM\GLASS\apdu.cpp will be relevant when new
aging parameters are required.

2. Alter the project environment to include all the relevant files and change the
name of the compiled model. Alter apu.h if new data aging parameters are being

Programmer’s Guide Page 74
SPSD/M Version 9.2

defined.

3. Alter apdu.cpp if new data aging parameters are being defined. The changes will
consist of adding new pmaddent and stradd invocations so that the substance of
the new parameters is available throughout the SPSM. Debug the model.

4. Alter adju.cpp. First change the function's documentary text string,
AGENAME[IDSIZE+1]. Then implement the new data aging logic. This step will
often involve declaring useful local variables and stepping through individuals or
families in the household.

5. Compile and validate the model before using it for production runs. Parallel
tabulations of relevant individuals and amounts before and after the data aging
alterations are recommended.

6. Carry out production runs using the new, validated aging logic.
MAKING CHANGES THAT AFFECT ONLY THE BASE OR ONLY THE VARIANT

Building a model in which data aging differs between a base system and a variant
system is inherently more complicated than building one in which the two systems
are treated identically. When it is possible, the user should avoid such complication.
The SPSM's capacity for using "results files" (extension ".MRS") provides the major
mechanism for avoiding data aging that is system-conditioned.

The basic approach is to divide the problem into two parts, one for each system.
Then, within each such system, a single data aging algorithm applies, and the
methods described earlier in this chapter. The user first creates a results file for one
of the two systems, choosing the variables necessary for any system specific
tabulations and for any comparisons to be made. In creating this first system, the
user applies the data aging assumptions relevant to that system. Subsequently, the
second system is simulated, with the appropriate, alternative, data aging applied to
it. The results file is read-in, in parallel with the processing of the second system, so
that the two systems, with their different data aging assumptions, are available
simultaneously for all required comparisons. Introduction and Overview Guide
provides an illustration of the use of results files.

The remainder of this section is relevant when the results file approach is somehow
judged inappropriate or inadequate to the task at hand. A few examples will
illustrate such circumstances.

1. The user may place a high premium on having a model that is self-contained,
and, once it has been validated, relatively easy to use interactively.

2. The intended application of the model may involve sensitivity analysis that would
require several MRS files, with an inherent possibility that confusion might arise.
It might require, for example, investigation of the impact of altering the aging of
one specific variable, with a variety of other variables repeatedly changed in

Programmer’s Guide Page 75
SPSD/M Version 9.2

parallel between the base and variant systems.

3. The intended application might involve complicated comparisons requiring large
.MRS files (or many of them simultaneously) when disk storage is at a premium.

We believe, however, that these kinds of situations, while occurring occasionally, will
be the exception rather than the rule. We encourage users to seek to avoid parallel
system models in which data aging differs across the two systems.

In broadest outline, the method for making system-specific data changes is similar to
that used to make changes to the TAX/TRANSFER LOGIC of a system. Any new
system-specific data aging parameters are added, via the mpu.h and mpdu.cpp files,
as MODEL parameters, and NOT as data adjustment parameters per se. As
described below, the user may wish to add new MODEL dependent variables to
track the changes being made. Although, if new parameters and dependent
variables are not required, the procedure applies equally to SPSM base and variant
models, we shall explain the procedure in terms of the more common situation of
variant models.

The MODEL-oriented approach just summarized is mandated by the design of the
SPSM. Since there is only a single ".APR" file, its parameters inevitably affect the
data aging for all systems within a model. In contrast, changes made via ".MPI"
files, and via the system-specific Adrv.cpp and drv.cpp functions, apply only to a
single designated tax/transfer system. The user can take advantage of this system-
specificity to implement system-specific data adjustments.

The key to the system-specific data aging changes lies with alterations made to the
Adrv.cpp (or drv.cpp) file. In essence, the user "intercepts" a household's data
record just before it is used by the functions in that procedure, makes the desired
changes, and later restores the data record to its original state just before execution
leaves that procedure. The next section explores these Adrv.cpp-oriented steps in
greater depth.
Implementing Changes in Adrv.cpp

The focus in this section rests almost exclusively with the details of changes made
within Adrv.cpp. Because of the similarity of system-specific data adjustments to the
kinds of tax/transfer system revisions described earlier in this Programmer's Guide,
certain topics are not repeated here. Specifically, users are expected to add any
new parameters, and any necessary new dependent variables using the methods
documented in previous sections. For example, a user might wish to add a new
model variable to indicate whether the original database value for a variable has
been changed by the system-specific adjustments.

We'll take up the required changes in the order in which a reader would encounter
them when reading Adrv.cpp's source code. Later, a worked example provides a
concrete application of the changes.

Programmer’s Guide Page 76
SPSD/M Version 9.2

 (A) Declare New Local (to Adrv.cpp) Variables

Recall that the general procedure requires the user to save the values of the
variables to be adjusted. The storage permits the values to be restored again before
leaving Adrv.cpp. Thus, the user must include in Adrv.cpp appropriate local
declarations to provide the needed storage. Typically, the variables to be adjusted
will be defined at the level of the individual. Thus, the new variables should typically
be defined as vectors of length MAXIND. (MAXIND is the maximum number of
individuals in a family; version 4.0 of the SPSM sets it to 9.) The user may also wish
to define other local, working, variables. Normally, the user will declare these
variables just before the opening brace for the function, at about line 99 of the
unmodified version of Adrv.cpp.

(B) Save the Values to Be Changed

As the very first thing within the executable portion of Adrv.cpp, the user should
store away the original values of the variables that will be changed. If this is done,
none of the other functions invoked inside Adrv.cpp can alter the value first or use
the unaltered value. Typically, the storage is accomplished via a "for" statement that
steps across the individuals in a household and copies them, one at a time, into the
elements of a vector declared in step (A). One of the elements in the bestiary
provides the relevant stepping control. The user will do this at about line 101 of the
unmodified code, just after the statement -
 DEBUG_ON("drv");

(C) Change the Database Values

Immediately after the values have been stored, and still before the household's
pointer has been passed to any of the tax/transfer or roll-up functions, the user
should make the desired changes to the values of the relevant variables. These
changes will constitute the bulk of the "real programming”, i.e. logic that cannot
necessarily be conveniently adapted from elsewhere in the SPSM.

(D) Use the Now Adjusted Values

This step is the easiest of all, since it requires no special effort on the part of the
user. It consists of RETAINING the calls to the several tax/transfer and memo
functions. Since the values of the relevant variables have already been adjusted at
this point, all of those functions will perform their calculations using the adjusted
household.

(E) Replace the Original Values

The final step consists of restoring the original values to the variables that were
adjusted. It will typically be done at about line 125 of the unmodified version of
Adrv.cpp, just before control passes out of the function, i.e. just before the statement
--
 DEBUG_OFF("drv");

Programmer’s Guide Page 77
SPSD/M Version 9.2

Execution of the replacement is important from the perspective of the code's
generality, maintainability, and reusability. The user programs the changes without
knowing whether the system programmed will be a base or variant system. By
putting things back the way they were, the user can minimize the possibility of
unwanted side effects elsewhere in the model. Equally important, this procedure
minimizes the potential for unwanted side effects should the new adjustments be
used again in another model.
A Worked Example

(A) The Substance to be Modeled

We begin with a description of the substantive logic used in the example. It will be
obvious that the same data-aging goals could have been achieved using the
"avoidance" techniques described above; however, since our documentary objective
here is the illustration of system-specific data aging techniques, we arbitrarily deem
those avoidance techniques to be "inappropriate" for our immediate purposes.

Suppose that some exogenous analysis relating to new income tax reporting
requirements suggests that individuals will be reporting more self-employment
income. More specifically, suppose that 5% of those individuals (1) not reporting
more than $100.00 of self-employment income (farm and non-farm combined) and
(2) who are aged both over 25 and under 60 and (3) who further have half a year or
more without work and looking for work, really have non-farm self-employment
income that has not previously been reported, but now will be reported. Moreover,
suppose the amounts of "new" self-employment income for these persons is believe
to be distributed uniformly between zero and $4000 per year.

The user seeks to estimate the additional income taxes collectible from these
persons and also to assess the impact of this "discovered" income on reducing the
poverty rate as measured against the LICOs. To carry out this investigation the user
plans, in the variant tax/transfer system, to impute appropriate amounts of these new
incomes to randomly selected persons who satisfy the three conditions.

(B) Relevant New Parameters and Variables

Following recommended SPSM practices for avoiding hard-wired values in a model,
the user establishes the following new user-defined aging parameters:
Parameter Description: Value:
NSEFLAG
NSEAMT
NSEFRC
NSEWKS
NSEMINAGE
NSEMAXAGE
NSEMAXINC

"New Self-Employment Income Flag"
"New Self-Employment 'Trivial Amount'"
"New Self-Employment Fraction"
"New Self-Employment Weeks Requirement"
"New Self-Employment Minimum Age"
"New Self-Employment Maximum Age"
"New Self-Employment Maximum New
Income"

1
100.0
0.05
26
25
60
4000.0

Programmer’s Guide Page 78
SPSD/M Version 9.2

Similarly, the user defines new variables that will permit convenient counts of the
numbers of eligible persons and of the number for whom new incomes are
synthesized. It will also be useful to have an additional new variable for the amounts
of synthesized income.

Variable: Description:
uvnseef "Eligible New Self-Empl"
uvnsesf "Received New Self-Empl"
uvnseamt "New Self-Empl Amount"
(C) Setting Up for the Analysis

The user begins by creating a new subdirectory for the analysis, GLASSEX5. S/he
copies in the required template files: SPSMGL.dsw (to control the compilation),
mpu.h and Ampd.cpp (to make the new parameters available), vsu.h and vsdu.cpp
(to make the new variables available), and Adrv.cpp (to implement the new system-
specific database adjustments).

We look at the changes in the order in which the user would be encouraged to make
them.

(D) Changes to project

All the relevant files should be include in the project and the name of the output
model changed to GLASSEX5.EXE.

 (E) Changes to mpu.h

The user provides declarations for all of the new parameters described above.
int NSEFLAG; /* New Self-Employment Income Flag */
NUMBER NSEAMT; /* New Self-Employment 'Trivial Amount' */
NUMBER NSEFRC; /* New Self-Employment Fraction */
NUMBER NSEWKS; /* New Self-Employment Weeks Requirement */
NUMBER NSEMINAGE; /* New Self-Employment Minimum Age */
NUMBER NSEMAXAGE; /* New Self-Employment Maximum Age */
NUMBER NSEMAXINC; /* New Self-Employment Maximum New Income */

(F) Changes to Ampd.cpp

The user alters the Ampd.cpp file by providing pmaddent and stradd invocations for
all of the new parameters. Appropriate new pmaddent calls would be as follows:
pmaddent(pcp, "NSEFLAG", (char *)&MP.UM.NSEFLAG, NULL, P_SCL, C_INT, E_FLAG, 0, NULL, 0);
pmaddent(pcp, "NSEAMT", (char *)&MP.UM.NSEAMT, NULL, P_SCL, C_NUM, 0, 0, NULL, 0);
pmaddent(pcp, "NSEFRC", (char *)&MP.UM.NSEFRC, NULL, P_SCL, C_NUM, E_FRCT, 0, NULL, 0);
pmaddent(pcp, "NSEWKS", (char *)&MP.UM.NSEWKS, NULL, P_SCL, C_NUM, 0, 0, NULL, 0);
pmaddent(pcp, "NSEMINAGE", (char *)&MP.UM.NSEMINAGE, NULL, P_SCL, C_NUM, 0, 0, NULL, 0);
pmaddent(pcp, "NSEMAXAGE", (char *)&MP.UM.NSEMAXAGE, NULL, P_SCL, C_NUM, 0, 0, NULL, 0);
pmaddent(pcp, "NSEMAXINC", (char *)&MP.UM.NSEMAXINC, NULL, P_SCL, C_NUM, 0, 0, NULL, 0);

The associated stradd invocations would appear as follows:
stradd("NSEFLAG", "New Self-Employment Income Flag");
stradd("NSEAMT", "New Self-Employment 'Trivial Amount'");

Programmer’s Guide Page 79
SPSD/M Version 9.2

stradd("NSEFRC", "New Self-Employment Fraction");
stradd("NSEWKS", "New Self-Employment Weeks Requirement");
stradd("NSEMINAGE", "New Self-Employment Minimum Age");
stradd("NSEMAXAGE", "New Self-Employment Maximum Age");
stradd("NSEMAXINC", "New Self-Employment Maximum New Income");

(G) Changes to vsu.h

In this file the user declares the new variables that will contribute to more convenient
validation and tabulation of the individuals for whom new income is considered or
actually synthesized.
int uvnseef; /* Eligible for New Self-Empl Synthesis */
int uvnsesf; /* Received New Self-Empl Income */
NUMBER uvnseamt; /* New Self-Empl Amount */

(H) Changes to vsdu.cpp

In vsdu.cpp the user invokes vardef and stradd to make the new variables available
throughout the new model. As indicated above, there are two classificatory
variables to be used for crosstabulation outputs, and a NUMBER float value for the
amount of synthesized self-employment income.
/* uvnseef: (Class) Flag: Individual eligible for NSE synthesis? */
vardef("_uvnseef", IN, im.uv.uvnseef, C_INT, V_CLAS);
stradd("uvnseef", "Eligibility for Synth Self-Empl");
stradd("nseef", "\tNot Eligible\tEligible");

/* uvnsesf: (Class) Flag: Individual Got Synth. NSE? */
vardef("_uvnsesf", IN, im.uv.uvnsesf, C_INT, V_CLAS);
stradd("uvnsesf", "Synth Self-Empl Receipt");
stradd("nsesf", "\tNo Receipt\tReceipt");

/* uvnseamt: (Analysis) NUMBER: Amount of synthesized NSE */
vardef("_uvnseamt", IN, im.uv.uvnseamt, C_NUM, V_ANAL);
stradd("uvnseamt", "Synth Self-Empl Amount");

(I) Changes to Adrv.cpp

i) The changes begin with the declaration of new variables critical to the data
adjustment process. We use standard SPSM notation for the pointer to an
individual, and for the number of persons processed (for the stopping rule within
households). In addition, there is a vector declared to hold the original values of the
individuals' non-farm self-employment income.
register P_in in; /* pointer to data for current person */
int ini; /* persons processed */
NUMBER orignfse[9]; /* original non-farm self-empl income */

ii) The changes continue with the code to store the existing non-farm self-
employment income so that it can later be restored to its original state. We use one
of the standard elements of the bestiary, stepping across individuals in the
household, to implement this archival.
/* Archive original database values for non-farm self-employment */

for (ini=0, in=&hh->in[0]; ini<hh->hhnin; in++, ini++) {
 orignfse[ini]=in->id.idisenf;
}

Programmer’s Guide Page 80
SPSD/M Version 9.2

A slightly more efficient version of this code would make the execution of the storage
instructions conditional upon the NSEFLAG parameter being set to a value of 1 to
activate the synthesis facility. The version here is simpler and slightly safer.

iii) Implement the conditionally augmented self-employment income

[Work in the use of existing pseudo-random variables for both the choice of new
persons to report self-employment earnings (non-farm) and the amount of it to
report. Explain how this is central to replicability given selection of subsets of the
data.]
 /* Selectively synthesize non-farm self-employment income */

for (ini=0, in=&hh->in[0]; ini<hh->hhnin; in++, ini++) {
 in->im.uv.uvnseef=0; /* assign values to new vars */
 in->im.uv.uvnsesf=0;
 in->im.uv.uvnseamt=(NUMBER)0.0;
 if (MP.UM.NSEFLAG==0) {
 continue; /* don't synthesize if facility is off */
 }

if (((in->id.idisefm+in->id.idisenf)>MP.UM.NSEAMT) ||
 (in->id.idnage<MP.UM.NSEMINAGE) ||
 (in->id.idnage>MP.UM.NSEMAXAGE) ||
 (in->id.idlyun<(int)MP.UM.NSEWKS)) {
 continue; /* ignore ineligible individuals */
 }

 in->im.uv.uvnseef=1; /* mark indiv. as potentially eligible */

if (in->id.idrand[2]>MP.UM.NSEFRC) {
 continue; /* individual was not selected to get income */
}

in->im.uv.uvnsesf=1; /* mark indiv. as recipient */ in->im.uv.uvnseamt=in->id.idrand[3]*MP.UM.NSEMAXINC;
/*synthesize amt */ in->id.idisenf+=in->im.uv.uvnseamt; /* add syn amt to non-farm self-empl */
}

The preceding code, though a bit lengthy, is straightforward. Inside the loop through
individuals, one performs the following actions:

Assign default values to the new user-defined variables.

Skip the rest of the loop if the facility was not activated.

Skip the rest of the loop if the individual doesn't meet the qualifying conditions
for synthesis of new self-employment income.

Mark the individual as potentially eligible for synthesis; then skip the rest of
the loop if the individual is not "chosen" to receive income.

If execution reaches this stage, mark the individual as a recipient of
synthesized income and impute the amount, adding the new amount to the
person's non-farm self-employment variable.

Programmer’s Guide Page 81
SPSD/M Version 9.2

Once the loop has been executed, the synthesis of new non-farm self-employment
income is complete for all members of the household. At this point the "regular"
statements of Adrv.cpp follow, calculating the tax/transfer amounts and the several
memo items.

iv) Finally, after the adjusted household has been processed through all of the
tax/transfer and memo functions, the new code restores the original non-farm self-
employment income values.
 /* Restore original database values for non-farm self-employment */

 for (ini=0, in=&hh->in[0]; ini<hh->hhnin; in++, ini++) {

in->id.idisenf=orignfse[ini]; }

A slightly more efficient version of this code would make the execution of the
restoration instructions conditional upon the NSEFLAG parameter being set to the
value of 1 that activates the synthesis facility. The version here is simpler and
slightly safer.

(J) The new MPI and CPI files

It still remains to provide values to the several parameters so that the SPSM, during
a particular run, can implement the desired adjustments. An aging parameter
"include file" (extension ".API") with the following entries performs this function.
NSEFLAG 1
NSEAMT 100.0
NSEFRC 0.05
NSEWKS 26.0
NSEMINAGE 25.0
NSEMAXAGE 60.0
NSEMAXINC 4000.0

Similarly, it is necessary to make sure that the relevant independent streams of
pseudo-random variates are generated to serve as inputs to the "random" choices of
synthetic income recipients and the associated amounts of synthesized income.
These control parameters would be provided via a ".CPI" file containing the following
statements --
SEED 4
0 1 2 3

The parameter above indicates that the user is requesting 4 independent streams.
As noted above, streams 0 and 1 are used for GIS calculations; the non-farm self-
employment income synthesis algorithm uses streams 2 and 3. See the "SEED:
Random Number Generator Seed" entry in the Parameter Guide for an explanation
of this facility and its usage.

(K) Compiling and Validating the Model

With all of the source code changes complete, the user should first debug the model
and then compile the desired executable file, GLASSEX5. We conclude this worked
example by characterizing a very quick and dirty set of validation tables. For a

Programmer’s Guide Page 82
SPSD/M Version 9.2

serious application, the user would normally undertake a much more rigorous
validation of the changes. Recall too, that this kind of system-specific data
adjustment could more easily have been accomplished using results files (".MRS").
Under that mechanism an equivalent income assignment logic would have been
applied via the adju.cpp file, and the relevant parameters would have been supplied
via an API file.

Assume, for purposes of this quick and dirty illustrative validation, that the user's
exogenous source has already indicated roughly how many individuals should
display new self-employment income, perhaps as a function of some relevant policy
variable.

The user will first want to tabulate the numbers of individuals according to the
values of the two user-defined classificatory variables, uvnseef, and uvnsesf.
Then the entries in this table can be compared to the exogenous source to
confirm (1) that the numbers of eligible individuals agrees with those specified
in the "exogenous source," (2) that an appropriate proportion of these
individuals have had new self-employment income imputed.

Next, the user would want to confirm that the average amount of new imputed
self-employment income is appropriate (i.e. half of the $4,000 NSEMAXINC
parameter value). It would also make sense to tabulate the total amount of
new income imputed, so that this amount can be compared to the increases
in federal and provincial income taxes. Thus the user can confirm whether an
appropriate proportion of the new income is flowing to the government sector
as income taxes.

Even for the validation runs, it makes sense to look at the degree of change in
the incidence of units below the relevant LICOs. Given the relatively tight
conditions for the eligibility to receive the synthesized income, and the
relatively small portion of the eligible population selected to receive new self-
employment income, the user should expect only a small change in that
incidence.

Here we show the first part of this validation, verifying the amounts of new self-
employment income. We use the SPSD/M for 1986 with the 5% sample. The
changes in "poverty rate," not shown here, would be derived using the SPSM's
"efpovthr" (poverty threshold) and "impovinc" (income for comparison against the
relevant poverty threshold) variables. The validation is most conveniently performed
via crosstabulations. The relevant control parameters, input via a ".CPI" file, are as
follows:
XTFLAG 1
XTSPEC
 IN: { units }

* uvnseef
* uvnsesf;

 IN: { uvnseamt,
 uvnseamt/units }
 * uvnsesf;

Programmer’s Guide Page 83
SPSD/M Version 9.2

 IN: { uvnseamt,
 imtxf-_imtxf,
 imtxp-_imtxp }
 * uvnsesf

The resulting tables then appear as --
Table 1U: Unit Count (000) for Individuals by Eligibility for Synth Self-Empl and Synth Self-Empl Receipt

Synth Self-Empl Receipt
+--------------------------------+----------+----------+
|Eligibility for Synth Self-Empl |No Receipt| Receipt |
+--------------------------------+----------+----------+
|Not Eligible | 23351.7| 0.0|
|Eligible | 809.6| 47.2|
+--------------------------------+----------+----------+

Table 2U: Selected Quantities for Individuals by Synth Self-Empl Receipt

Synth Self-Empl Receipt
+---------------------------------------+----------+---------- +
|Quantity |No Receipt| Receipt |
+---------------------------------------+----------+---------- +
|Synth Self-Empl Amount (M) | 0.0| 92.5|
|uvnseamt/units | 0| 1962|
+---------------------------------------+----------+---------- +

Table 3U: Selected Quantities for Individuals by Synth Self-Empl Receipt

Synth Self-Empl Receipt
+---------------------------+----------+----------+
|Quantity |No Receipt| Receipt |
+---------------------------+----------+----------+
Synth Self-Empl Amount (M)	0.0	92.5
imtxf-_imtxf (M)	1.0	12.9
imtxp-_imtxp (M)	0.5	9.5
+---------------------------+----------+----------+

As regards the substance of these tables, we'll assume that the 809.6 thousand
persons in table 1U agrees reasonably well with the hypothesized "exogenous data
source." Since 47.2 thousand of these persons received some new self-employment
income, the 5% objective has been roughly met. Presumably the proportion would
be closer to 5% were we to use the full SPSD.

Table 2U confirms that our new algorithm assigns new self-employment income only
to those eligible to receive it. The total amount of new income, and the associated
average amount, confirm that the expected amounts of the new income are being
synthesized (roughly $2000 per selected individual).

Table 3U then indicates how much of the new income, a bit more than a quarter of it,
is being captured by the tax system. As expected, most of the capture is directly
from the recipient individuals, though there is some from non-recipients, primarily
because some recipient individuals become less valuable as personal exemptions
due to their new income. Clearly, with income of less than $100M being distributed
across the whole personal sector, we do not expect any major impacts on the
proportion of the population below the LICOs.

Programmer’s Guide Page 84
SPSD/M Version 9.2

Finally, once the user is satisfied as to the correctness of the adjustment
procedures, s/he would run the full SPSD through the model in one or more
production runs. To meet the illustrative goals described at the start of this section,
outputs would have to include the federal and provincial income tax totals, and the
numbers of families above and below the LICOs, with these outputs being produced
both with and without the synthesis of new non-farm self-employment income.
Normally, the user would also include breakouts of these variables by relevant
classificatory variables such as family type.
Checklist for System-Specific Database Changes

(A) Create a new subdirectory for the analysis. Copy into it templates for all of the
files that will needed for the analysis. Items that are likely to be required include
SPSMGL.dsw, mpu.h, Ampd.cpp, vsu.h, vsdu.cpp, Adrv.cpp, and a control
(".CPR") file. The user will also create, in this same subdirectory, other files
required for the analysis for which there are no obvious templates, e.g. the ".MPI"
file that will provide values for the system-specific data aging parameters, or a
batch file to control the SPSM session.

(B) Change the project environment to include all the relevant files and change the
name of the executable output file.

(C) Change mpu.h and Ampd.cpp to declare any new system-specific data
adjustment parameters, and to make them available, via invocations of pmaddent
and stradd, to the rest of the SPSM.

(D) Change vsu.h and vsdu.cpp as required to declare any new system-specific
model variables, and to make them available, via invocations of vardef and
stradd, to the rest of the SPSM.

(E) Change Adrv.cpp to save the original values of the variables to be adjusted, to
effect the adjustments, and then, after the household has been processed, to
restore the original values before leaving the procedure. These steps will
typically require the definition of local VECTORS of values dimensioned for the
numbers of possible individuals in a household.

(F) Compile the new model and correct any problems identified by the compiler.

(G) Supply values for the new system-specific data adjustment parameters via an
".MPI" file or files. When the aging depends on the use of pseudo-random
variables, provide a ".CPI" file with appropriate changes to the SEED parameter.
The model will gain access to these control and model parameter values at
model execution time either interactively or via an SPSM batch file.

(H) Validate the model carefully, and then make production runs.

Programmer’s Guide Page 85
SPSD/M Version 9.2

	Introduction
	PURPOSE OF THE GLASS BOX MODE
	HARDWARE AND SOFTWARE REQUIREMENTS FOR THE GLASS BOX MODE
	PROGRAMMING KNOWLEDGE REQUIRED
	Operating System Knowledge Required
	Fundamental Programming Concepts (Not Language Specific)
	Knowledge of the C Programming Language

	Quick Start Example
	PRELIMINARIES
	CHANGING THE PROJECT ENVIRONMENT
	CHANGING THE ALTERNATIVE DRIVER FUNCTION (ADRV.CPP)
	CHANGING THE ALTERNATIVE FAMILY ALLOWANCES FUNCTION (AFAMOD.
	TESTING THE RESULTING ALTERNATIVE SPSM MODEL
	SUMMARY

	SPSD/M and Glass Box Directory Structure
	The SPSD Household/Individual Structure
	THE SPSD/M'S DATA STRUCTURE
	INTRODUCTION TO POINTERS IN THE SPSD/M
	THE BESTIARY
	Examples of Looping:
	References With Respect to an Individual:

	SUMMARY

	SPSM Function Calling Structure
	Glass Box Development: Adding Typical Scalar Parameters
	GENERAL PROCEDURE FOR MAKING GLASS BOX CHANGES: A RECAPITULA
	Create Task Sub-directory
	Identify Files to be Changed
	Copy Relevant Files to Task Sub-directory
	Edit Those Relevant Files
	Compile the new version
	Test the New Version of the Model
	Carry Out the Intended Analysis

	INTRODUCTION TO PARAMETER ADDITION
	COPY FILES ADRV.CPP, MPU.H, AMPD.CPP, AFAMOD.CPP, SPSMGL.DSW
	UPDATE THE PROJECT
	UPDATE THE ALGORITHM DESCRIPTION IN ADRV.C
	MODIFY MPU.H TO DEFINE THE NEW PARAMETERS
	MODIFY AMPD.CPP TO MAKE THE PARAMETERS AVAILABLE TO THE SPSM
	MODIFY THE FUNCTIONS THAT USE THE NEW PARAMETER(S)
	VALIDATE AND MAKE BLACK-BOX PRODUCTION RUNS
	SUMMARY/CONCLUSION

	Glass Box Development: Adding Less Typical Parameters
	PMADDENT: THE FUNCTION AND ITS ARGUMENTS
	CHARACTERIZING SCALAR PARAMETERS
	REAL/float/NUMBER Parameters
	INTEGER/int Parameters
	FLAG Parameters
	FRACTION Parameters
	OPTION Parameters
	EDIT-FRACTION Parameters
	DUMMY Parameters

	VECTORS OF USER-DEFINED PARAMETERS
	Additions to Mpu.h, Cpu.h or Apu.h
	Additions to Ampd.cpp
	User-Defined Parameter Vector References in the Source Code
	Specification of Parameter Vector Values
	Summary

	USER-DEFINED SCHEDULES FOR LOOKUPS
	Schedule Types and Lookup Functions
	Appearance in SPSM Header Files
	Appearance in pma ddent Calls in Ampd.c
	Employing Schedule References in User Code
	Appearance in Parameter Files
	Key Points for Adding Schedule Parameters

	ADDING MATRICES OF PARAMETERS
	Appearance in Mpu.h
	Appearance in Ampd.c
	Referencing Matrix Elements in Source Code
	Appearance in Parameter Files

	SUMMARY/CONCLUSION

	Glass Box Development: Adding New Variables
	OVERVIEW FOR ADDING VARIABLES
	DEPENDENT VARIABLE TYPES AND CHARACTERISTICS
	THE VARDEF AND STRADD FUNCTIONS AND THEIR ARGUMENTS
	Vardef "Name" Argument (and Definition of Variable "Stem" Na
	Vardef "Home Structure" Argument:
	Vardef "Variable Location" Argument:
	Vardef "C-Type" Argument (C_NUM & C_INT):
	Vardef "Usage" (Type) Argument (V_ANAL & V_CLAS):
	Stradd Calls for Numeric Analysis Variables:
	Stradd Calls for Integer Analysis Variables:
	Stradd Calls for Integer Classification Variables:

	THE FAMILY ALLOWANCE SUPPLEMENT EXAMPLE EXTENDED
	CHANGES TO PROJECT FILES AND ADRV.CPP
	CHANGES TO VSU.H
	CHANGES TO VSDU.C
	CHANGES TO AFAMOD.CPP (OR, MORE GENERALLY, ANY NEW SUBSTANTI
	Identifying String
	Local Variables
	Calculate and Assign the New Model Variables
	Compilation

	VALIDATION
	SUMMARY/CONCLUSIONS

	Changing Base and Variant Data Variables
	MAKING CHANGES THAT AFFECT ALL TAX/TRANSFER SYSTEMS IN A MOD
	Typical Income and Population Growth Changes Via APR/API Fil
	Changes Involving New Logic For adju.cpp
	Adding New Database Adjustment Parameters
	A Worked Example
	Checklist for Changing Database Variables "Globally"

	MAKING CHANGES THAT AFFECT ONLY THE BASE OR ONLY THE VARIANT
	Implementing Changes in Adrv.cpp
	A Worked Example
	Checklist for System-Specific Database Changes

